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Abstract. Let F be a non-Archimedean local field. For an irreducible representation π
of GLn(F ) and a multisegment m, one associates a simple quotient Dm(π) of a Bernstein-
Zelevinsky derivative of π. In the preceding article, we showed that

S(π, τ) := {m : Dm(π) ∼= τ} ,
has a unique minimal element under the Zelevinsky ordering, where m runs for all
multisegments. The main result of this article includes commutativity and subsequent
property of the minimal sequence. At the end of this article, we conjecture some module
structure arising from the minimality.
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Part 1. Introduction and preliminaries

1. Introduction

1.1. The poset S(π, τ) and the minimal sequence. Let F be a non-Archimedean local
field. Let Gn = GLn(F ), the general linear group over F . Fix a cuspidal representation
ρ throughout the whole article. All the representations we consider are smooth and over
C. Let Irr(Gn) be the set of irreducible representations of Gn. We shall usually not
distinguish isomorphic irreducible representations. For a smooth representation π1 of Gn1

and a representation π2 of Gn2
, denote the normalized parabolic induction by π1 × π2.

Let ν : Gn → C× be the character ν(g) = |det(g)|F , where |.|F is the normalized absolute
value for F . Let Irrρ(Gn) be the set of irreducible representations which are an irreducible
constitutent of νa1ρ× . . .× νarρ for some integers a1, . . . , ar. Let Irrρ = ⊔nIrr(Gn).

We now define some combinatorial objects to parametrize and study representations.
For a, b ∈ Z with b− a ∈ Z≥0, we call [a, b]ρ to be a segment (associated to ρ). We also set
[a, a− 1]ρ = ∅ for a ∈ Z. For a segment ∆ = [a, b]ρ, we write a(∆) = a and b(∆) = b. We
also write [a]ρ := [a, a]ρ. Let Segρ be the set of segments. A multisegment (associated to
ρ) is a multiset of non-empty segments. Let Multρ be the set of mulitsegments. One may
refer to [Ch22+] a more general notion of multisegments, which we shall not use in this
article.

For π ∈ Irrρ(Gn) and a segment ∆ ∈ Segρ, there is at most one irreducible module
τ ∈ Irrρ(Gn−i) such that

π ↪→ τ × St(∆).

If such τ exists, we denote such τ by D∆(π). Otherwise, we set D∆(π) = 0. We shall refer
D∆ to be a derivative.

A sequence of segments [a1, b1]ρ, . . . , [ak, bk]ρ (all aj , bj ∈ Z) is said to be in an ascending
order if for any i ≤ j, either [ai, bi]ρ and [aj , bj ]ρ are unlinked; or ai < aj . For a multi-
segment n ∈ Multρ, which we write the segments in n in an ascending order ∆1, . . . ,∆k.
Define

Dn(π) := D∆k
◦ . . . ◦D∆1(π).

The derivative is independent of a choice of an ascending order [Ch22+d]. In particular,
one may choose an ordering such that a1 ≤ . . . ≤ ak. We say that n is admissible to π if
Dn(π) ̸= 0. We refer the reader to [LM16, Ch22+b, Ch22+c] for more theory on derivatives.

For π ∈ Irrρ, denote its i-th Bernstein-Zelevinsky derivatives by π(i). We shall refer
the reader [Ze80, Ch21, Ch22+d] for the precise definition and the main discussions and
proofs will not involve the use of Bernstein-Zelevinsky derivatives. The main relation of
derivatives and Bernstein-Zelevinsky derivatives is that Dn(π) is a simple quotient of π(i),
where i = labs(n) [Ch22+d]. The goal of this series of articles [Ch22+d, Ch22+e] is to
study constructions from Dn(π). In particular, [Ch22+e] studies the following poset:

S(π, τ) := {n ∈ Multρ : Dn(π) ∼= τ} ,

where τ is a simple quotient of π(i). The ordering ≤Z on S(π, τ) is the Zelevinsky ordering
(see Section 4.1). We record two fundamental combinatorial structure on the set S(π, τ):

Theorem 1.1. [Ch22+e] We use the notatons above. Let n1, n2 ∈ S(π, τ) with n1 ≤Z n2.
If n ∈ Multρ with n1 ≤Z n ≤Z n2, then n ∈ S(π, τ).

Theorem 1.2. [Ch22+e] We use the notatons above. Suppose S(π, τ) ̸= ∅. Then S(π, τ)
has a unique ≤Z-minimal element.
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For π ∈ Irrρ, a multisegment n ∈ Multρ is said to be minimal to π if Dn(π) ̸= 0
and n is ≤Z-minimal in S(π,Dn(π)). We shall sometimes refer such n to be the minimal
multisegment or minimal sequence (of derivatives).

1.2. Main results. The main goal of this article is to study the minimal sequence. The
main results are the following subsequent and commutativity properties:

Theorem 1.3. (Theorem 8.6) Let π ∈ Irrρ. If n ∈ Multρ is minimal to π, then any
submultisegment n′ of n is also minimal to π and in particular, Dn′(π) ̸= 0.

Theorem 1.4. (=Theorem 9.4) Let π ∈ Irrρ. If n ∈ Multρ is minimal to π, then for any
submultisegment n′ of n, we have:

(1) n− n′ is minimal to Dn′(π); and
(2) Dn−n′ ◦Dn′(π) ∼= Dn(π).

The main idea of the proof for Theorem 1.4 is to reduce checking elementary intersection-
union processes by Theorem 1.1. Then one uses some more basic commutativity (e.g.
Proposition 5.4) to reduce to the three segment case in Definition 4.1. One important
ingredient in studying the commutativity is a notion of η-invariant (see Definition 4.1),
which also plays an important role in studying ’left-right’ commutativity in [Ch22+c].

While our proof is largely combinatorial in nature, a motivation comes from a simple
example from Lemma 10.2 and this article attempts to generalize in a larger extent. We
provide more representation-theoretic aspects in latter sections to give another perspective.

By using Theorem 1.4 multiple times, we have:

Corollary 1.5. Let π ∈ Irrρ. Let n ∈ Multρ be minimal to π. Write the segments in n as
{∆1, . . . ,∆r} in any order. Then,

D∆r
◦ . . . ◦D∆1

(π) ∼= Dn(π).

The commutativity and minimality also play important roles in the branching law
[Ch22+b]. The uniqueness of minimality is closely related to the layer of Bernstein-
Zelevinsky filtration determining a branching law [Ch22+b].

There are some further results on minimality such as construction from the removal
process, which will be explored in the sequel [Ch24+]

1.3. Discussions on applications. For π ∈ Irrρ and ∆ ∈ Segρ, instead of studying
D∆(π), one studies on a so-called big derivative in [Ch22+] involving some higher structures.
It is shown in [Ch22+] to be useful to study a reduced decomposition [AL23] for π in the
following sense:

St(p)×Dp(π) ↠ π (equivalently, π ↪→ Dp(π)× St(p) ),(1.1)

where p = mx(π,∆) for some segment ∆ (see (10.4) for the definition of mx). In Appendix B,
we give a generalization to mutlisegment cases. Such reduced decomposition is also useful
to study the relation between Bernstein-Zelevinsky derivatives and layers of Bernstein-
Zelevinsky filtrations in [Ch22+b].

Another application is to give some inductive construction of some simple quotients of
Bernstein-Zelevinsky derivatives. For example, for π ∈ Irrρ and ∆ ∈ Segρ, if a simple
quotient of π(i) is ∆-reduced in the sense that mx(π,∆) = ∅, then one may construct such
simple quotient from a simple quotient of (Dp(π))

(i−l) via (1.1), where l = labs(p). The
idea of this construction is closely related to the commutativity and see Proposition 15.2.
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1.4. Organization. In first few sections, we recall some main ingredients: highest deriva-
tive multisegments in Section 2, removal processes in Section 3, and non-overlapping and
intermediate segment properties in Section 4.

Sections 5 to 9 study the commutativity and subsequent property for minimal sequences.
The approach is largely combinatorial using the overlapping property. Section 5 studies
the two segment case while Section 7 studies the three segment case. Section 6 shows
some preliminary results for general cases. Sections 8 and 9 prove the general case for the
commutativity and subsequent property respectively.

Sections 10 to 13 study some representation-theoretic aspects of the minimality. Section
10 explains a representation-theoretic proof of commutativity of two segment case. Sec-
tion 11 conjectures a representation-theoretic interpretation for the minimality and proves
for the two segment case. Sections 12 and 13 study how the interpretation gives some
applications and connections to removal processes.

1.5. Acknowledgements. The project is partly supported by the Research Grants Coun-
cil of the Hong Kong Special Administrative Region, China (Project No: 17305223) and
NSFC grant for Excellent Young Scholar (Project No.: 12322120).

2. Highest derivative multisegments

The highest derivative multisegment is introduced in [Ch22+] as a main tool for the
entire study. In this section, we first recall the definition and then prove a new realization
theorem, which is of independent interests.

2.1. Highest derivative multisegments. A multisegment m is said to be at c ∈ Z if any
segment ∆ in m takes the form [c, b]ρ for some b ≥ c. For π ∈ Irrρ, define mxpta(π, c) to be
the maximal multisegment such that

(1) for any ∆ ∈ mxpta(π, c), a(∆) = c; and
(2) Dmxpta(π,c)(π) ̸= 0.

Here the maximality is to taken the lexicographical ordering on the b(∆) values for all seg-
ments in mxpta(π, c) . See [Ch22+d] for details and examples. Define the highest derivative
multisegment of π ∈ Irrρ to be

hd(π) :=
∑
c∈Z

mxpta(π, c).

It is shown in [Ch22+d] that Dhd(π)(π) is the highest derivative of π in the sense of [Ze80].

2.2. Realization Theorem. For d,m ∈ Z>0 and a cuspidal representation ρ, define

uρ(d,m) = St

({[
−d+m− 2

2
,
d−m

2

]
ρ

, . . . ,

[
−d−m

2
,
d+m− 2

2

]
ρ

})
An irreducible representation π is said to be an essentially Speh representation if π ∼=

νc · uρ(d,m) for some c ∈ Z Denote such representation by uρ(c, d,m).

Theorem 2.1. Let m ∈ Multρ. Then there exists π ∈ Irrρ such that

hd(π) = m.

Proof. We label the segments in m as:

∆1, . . . ,∆r

such that b(∆1) ≤ b(∆2) ≤ . . . ≤ b(∆r).
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We simply let π1 = St(∆1). It is clear that hd(π1) = {∆1}. Now, for i ≥ 2, we
recursively define πi to be an essentially Speh representation uρ(ci, di,mi) such that for
any σ ∈ csupp(πi−1), σ ∈ csupp(πi). We just have to justify such πi exists. To see this, we
write ∆i = [ai, bi]ρ and we can first choose di large enough such that any representation in
csupp(πi−1) lies in [bi − di + 1, bi]ρ. (Such di exists by using b(∆i) ≥ b(∆i−1).) For such
fixed di, now we solve ci and mi such that hd(uρ(ci, di,mi)) = ∆i.

Now let
π = π1 × . . .× πr.

The cuspidal conditions guarantee that π is irreducible. A similar argument in dealing with
the Arthur type representation in [Ch22+d] gives that

hd(π) = hd(π1) + . . .+ hd(πr) = m.

□

Part 2. Combinatorial aspects

3. Removal processes

In this section, we recall some results in [Ch22+d].

3.1. More notations on multisegmetns. For a multisegment m in Multρ and an integer
c, let m[c] be the submultisegment of m containing all the segments ∆ satisfying a(∆) = c;
and let m⟨c⟩ be the submultisegment of m containing all the segments ∆ satisfying b(∆) = c.

For a multisegment m = {∆1, . . . ,∆k}, we also set:

labs(m) = labs(∆1) + . . .+ labs(∆k).

3.2. Removal process. We write [a, b]ρ ≺L [a′, b′]ρ if either a < a′; or a = a′ and b < b′.
A segment ∆ = [a, b]ρ is said to be admissible to a multisegment h if there exists a segment
of the form [a, c]ρ in h for some c ≥ b. We now recall the removal process.

Definition 3.1. [Ch22+d] Let h ∈ Multρ and let ∆ = [a, b]ρ be admissible to h. The
removal process on h by ∆ is an algorithm to carry out the following steps:

(1) Pick a shortest segment [a, c]ρ in h[a] satisfying b ≤ c. Set ∆1 = [a, b]ρ. Set a1 = a
and b1 = c.

(2) One recursively find the ≺L-minimal segment ∆i = [ai, bi]ρ in h such that ai−1 < ai
and bi < bi−1. The process stops if one can no longer find those segments.

(3) Let ∆1, . . . ,∆r be all those segments. For 1 ≤ i < r, define ∆tr
i = [ai+1, bi]ρ and

∆tr
r = [br + 1, b]ρ (possibly empty).

(4) Define

r(∆, h) := h−
r∑

i=1

∆i +

r∑
i=1

∆tr
i .

We call ∆1, . . . ,∆r to be the removal sequence for (∆, h). We also define Υ(∆, h) = ∆1,
the first segment of the removal sequence. If ∆ is not admissible to h, we set r(∆, h) = ∞,
called the infinity multisegment. We also set r(∆,∞) = ∞.

3.3. Properties of removal process. For a segment ∆ = [a, b]ρ ̸= ∅, let −∆ = [a+1, b]ρ.
We recall the following properties for computations:

Lemma 3.2. [Ch22+d] Let h ∈ Multρ and let ∆,∆′ ∈ Segρ be admissible to h. Then
(1) Let h∗ = h−Υ(∆, h) + −Υ(∆, h). Then r(∆, h) = r(−∆, h∗).
(2) Write ∆ = [a, b]ρ. For any a′ < a, r(∆, h)[a′] = h[a′].
(3) If ∆ ∈ h, then r(∆, h) = h−∆.
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(4) Suppose a(∆) = a(∆′). Then

Υ(∆, h) + Υ(∆′, r(∆, h)) = Υ(∆′, h) + Υ(∆, r(∆′, h)).

(5) If ∆,∆′ are unlinked, then r(∆′, r(∆, h)) = r(∆, r(∆′, h)).

For h ∈ Multρ, a multisegment n = {∆1, . . . ,∆r} ∈ Multρ written in an ascending order,
define:

r(n, h) = r(∆r, . . . , r(∆1, h) . . .).

We say that n is admissible to h if r(n, h) ̸= ∞.

Theorem 3.3. [Ch22+d] Let π ∈ Irrρ. Let m,m′ ∈ Multρ be admissible to π. Then m,m′

are admissible to hd(π), and furthermore, Dm(π) ∼= Dm′(π) if and only if r(m, π) = r(m′, π).

3.4. More relations to derivatives. For h ∈ Multρ and ∆ = [a, b]ρ ∈ Segρ, set

ε∆(h) = |
{
∆̃ ∈ h[a] : ∆ ⊂ ∆̃

}
|.

Define ε∆(π) := ε∆(hd(π)), which is equivalent to a different formulation of the same
notation in [Ch22+d]. We also remark that when ∆ is a singleton, this number coincides
with the number defined in [Ja07, Definition 2.1.1]. In terms of derivatives, we have the
following:

Theorem 3.4. [Ch22+d, Theorem 6.20] Let π ∈ Irrρ. Let ∆ = [a, b]ρ ∈ Segρ be admissible
to π. Let ∆′ = [a′, b′]ρ be another segment. If either a′ > a; or ∆′ and ∆ are unlinked,
then

ε∆′(D∆(π)) = ε∆′(r(∆, π)).

Theorem 3.5. [Ch22+d, Theorem 6.20] Let π ∈ Irrρ. Let ∆ = [a, b]ρ ∈ Segρ be admissible
to π. Let ∆′ = [a′, b′]ρ be another segment. If a′ < a, then

ε∆′(D∆(π)) ≥ ε∆′(r(∆, π)) = ε∆′(π).

We remark that the equality in Theorem 3.5 follows from Lemma 3.2(2).

4. Non-overlapping property for a sequence

In [Ch22+e], we have shown some characterizations for the miniamlity of two segment
case. The goal of this section is to generalize a so-called non-overlapping property to a
multisegment case. For this, we first recall some ingredients in [Ch22+e]: fine chains and
local minimizability. Those ingredients are combinatorics in nature and so most statements
will be formulated for Multρ rather than Irrρ.

4.1. Zelevinsky ordering. Two non-empty segments ∆ = [a, b]ρ and ∆′ = [a′, b′]ρ in Segρ
are said to be linked if one of the following conditions holds:

(1) a < a′ ≤ b+ 1 ≤ b′; or
(2) a′ < a ≤ b′ + 1 ≤ b.

Otherwise, ∆ and ∆′ are called to be not linked or unlinked. For two linked segments
∆,∆′, we write ∆ < ∆′ if it is in the first condition above. Otherwise, we write ∆′ < ∆.
For example, [2, 3]ρ < [4, 5]ρ

For two linked segments ∆ = [a, b]ρ and ∆′ = [a′, b′]ρ with ∆ < ∆′, we define:

∆ ∪∆′ = [a, b′]ρ, ∆ ∩∆′ = [a′, b]ρ.

A multisegment n is said to be obtained from m by an elementary intersection-union process
if there exists a pair of linked segments ∆,∆′ such that

n = m−∆−∆′ +∆ ∪∆′ +∆ ∩∆′.
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Here the subtractions mean the (multi-)set theoretic subtraction and additions mean the
(multi-)set theoretic union. We shall also use such notions for substractions and addi-
tions later. Note that ∆ ∩ ∆′ is possibly the empty set and in such case, we simply
drop the term. For example, {[1, 3]ρ, [2]ρ, [4, 5]ρ} and {[1, 2]ρ, [2, 5]ρ} are obtained from
{[1, 2]ρ, [2, 3]ρ, [4, 5]ρ} by elementary intersection-union processes.

For two multisegments m, n ∈ Multρ, we wrtie n ≤Z m if n is obtained from m be a
sequence of intersection-union processes, or m = n. It is well-known from [Ze80] that ≤Z

defines a partial ordering on Multρ.

4.2. Non-overlapping property and intermediate segment property. We first de-
fine the η-invariant, which is crucial in studying minimality of derivatives:

Definition 4.1. • Let h ∈ Multρ. Let ∆ = [a, b]ρ ∈ Segρ be admissible to h. Define

η∆(h) := (ε[a,b]ρ(h), ε[a+1,b]ρ(h), . . . , ε[b,b]ρ(h)).

• Let π ∈ Irrρ. Let ∆ ∈ Segρ be admissible to h. Define η∆(π) = η∆(hd(π)).

Definition 4.2. Let ∆,∆′ ∈ Segρ with ∆ < ∆′. Let h ∈ Multρ such that ∆ is admissible
to h. Let ∆̃ be the last segment in the removal sequence for (∆, h) that contains ν−1a(∆′).

(1) We say that (∆,∆′, h) satisfies the non-overlapping property if

η∆′(D∆(π)) = η∆′(π).

(2) We say that (∆,∆′, h) satisfies the intermediate segment property if there exists a
segment ∆̃ ∈ h such that

a(∆) ≤ a(∆̃) < a(∆′), and a(∆̃) ≤ b(∆) ≤ b(∆̃) < b(∆′).

We remark that the original formulation of non-overlapping property in [Ch22+e] is
phrased in terms of some properties among segments related to overlapping/intersection
between segments. We shall use the above equivalent combinatorial formulation, which is
more useful for our study later.

Proposition 4.3. [Ch22+d] Let ∆,∆′, h be as in Definition 4.2. We further assume that
∆′ is admissible to h. Then the following conditions are equivalent:

(1) (∆,∆′, h) satisfies the non-overlapping property.
(2) (∆,∆′, h) satisfies the intermediate segment property.
(3) {∆,∆′} is the minimal element in S(π, r({∆,∆′} , h)).

4.3. Fine chains.

Definition 4.4. Let h ∈ Multρ and let n ∈ Multρ. Let a be the smallest integer such that
n[a] ̸= ∅. Write n[a] = {∆1, . . . ,∆k}.

• Define r1 = h. For i ≥ 2, define

ri := r(∆i−1, . . . , r(∆1, h) . . .).

Define
fs(n, h) := {Υ(∆1, r1), . . . ,Υ(∆k, rk)} .

• Define
trr(n, h) := h− fs(n, h) + −(fs(n, h))

and
trd(n, h) := n− n[a] + −(n[a]).
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Definition 4.5. Let h ∈ Multρ. Let n ∈ Multρ be admissible to h. Set h0 = h and n0 = n.
Define recursively

hi = trr(ni−1, hi−1), ni = trd(ni−1, hi−1).

The fine chain for the removal process for (n, h) (or simply fine chain for (n, h)) is the
sequence

fs(n0, h0), fs(n1, h1), . . .

The sequences h0, h1, . . . and n0, n1, . . . will also be useful later.

Lemma 4.6. We use the notations in Definition 4.5. Then, for all i,

r(n, h) = r(ni, hi).

Proof. This follows from repeated uses of Lemma 3.2(1). □

4.4. Local minimizability.

Definition 4.7. Let h ∈ Multρ and let n ∈ Multρ. Let a be the smallest integer such that
n[a] ̸= ∅. We say that (n, h) is locally minimizable if there exists a segment ∆ in n[a + 1]
such that

|
{
∆̃ ∈ n[a] : ∆ ⊂ ∆̃

}
| < |

{
∆̃ ∈ fs(n, h) : ∆ ⊂ ∆̃

}
|.

Note that each ∆̃ ∈ n[a] satisfying ∆ ⊂ ∆̃ guarantees the first segment ∆ in the removal
sequence satisfying ∆ ⊂ ∆. Roughly speaking, when the difference of two cardinalities in
Definition 4.7 is non-zero, one can find a ’short’ segment in n[a] to do the intersection-union
process which still does not change the choices of first segments in the removal processes.

Theorem 4.8. [Ch22+e] Let h ∈ Multρ. Let n ∈ Multρ be admissible to h. Let h0, h1, . . .
and n0, n1, . . . be as cosntructed in Definition 4.5. Then n is minimal to h if and only if
(ni, hi) is not locally minimizable for all i.

4.5. Non-overlapping property for a sequence. We now generalize Proposition 4.3 to
a multisegment situation, which will be used in Section 7.3. We first prove a lemma:

Lemma 4.9. Let ∆ = [a, b]ρ and ∆′ = [c, d]ρ be two segments. Suppose ∆′ < ∆. Let
h ∈ Multρ such that ∆′ is admissible to h. Let ∆̃ = Υ(∆′, h). If ∆ ⊂ ∆̃, then η∆(r(∆

′, h)) ̸=
η∆(h).

Proof. Let ∆1, . . . ,∆r be the removal sequence for (∆′, h). Let i∗, which exists from our
assumption, be the largest integer such that b(∆) ≤ b(∆i∗). Then ∆tr

i∗ ̸= ∅ contributes
extra one to ε∆tr

i∗
for r(∆′, h). However, the segments ∆1, . . . ,∆r and ∆tr

j (j ̸= i∗) do not
contribute to ε∆tr

i∗
. This implies the desired inequality. □

Proposition 4.10. Let h ∈ Multρ. Let n ∈ Multρ be minimal to h. Let ∆ = [a, b]ρ be a
segment such that a(∆′) < a and b(∆′) < b for any ∆′ ∈ n. Then n+∆ is still minimal to
h if and only if

η∆(r(n, h)) = η∆(h).

Proof. We construct a sequence of multisegments n0, n1, n2, . . . and h0, h1, h2, . . . as in Def-
inition 4.5. By Lemma 4.6, we have:

(∗) r(n0, h0) = r(n1, h1) = . . .

Let ai be the smallest integer such that ni[ai] ̸= ∅.
Let i∗ be the index such that ai∗ = c − 1. If such index does not exist, it implies

that b(∆̃) < c − 1 for all ∆̃ ∈ n. In such case, by a direct computation of removal
process using Definition 3.1(3) and (4), one has r(n, h)[x] = h[x] for x ≥ c. In particular,
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η∆(r(n, h)) = η∆(h); and n+∆ is still minimal since ∆ is unlinked to any segment in n. In
other words, both conditions are automatically satisfied if such i∗ does not exist.

We now assume such i∗ exists. We first prove the only if direction. By the minimality
condition and Theorem 4.8, (ni∗ +∆, hi∗) is not locally minimizable. On the other hand,
the hypothesis in this proposition guarantees that any segment ∆̃ in ni∗ satisfies ∆ ̸∈ ∆̃
and so

|
{
∆̃ ∈ ni∗ [a] : ∆ ⊂ ∆̃

}
| = 0.

The local minimizability on (ni∗ +∆, hi∗) implies that

|
{
∆̃ ∈ fs(ni∗ +∆, hi∗) : ∆ ⊂ ∆̃

}
| = 0.

In other words, for any segment [x, y]ρ in fs(ni∗ +∆, hi∗) = fs(ni∗ , hi∗) (the equaltiy follows
from Definition 4.5), it must take the form [x′, y′]ρ for y′ ≤ b − 1. Thus the segments
involved or produced in the removal process (by the nesting property) cannot contribute
to η∆(r(ni∗ , hi∗)) and so

(∗∗) η∆(r(ni∗ , hi∗)) = η∆(hi∗).

Moreover, hi∗ is obtained by truncating left points for νxρ for some x ≤ c − 2. Thus,
η∆(h0) = . . . = η∆(hi∗) by Definitions 4.4 and 4.5. Combining with (*) and (**), we have
the desired equation, proving the only if direction.

We now prove the if direction. By the construction of hi (Definition 4.5), we have:

η∆(h) = η∆(hi∗)

Now with (*) and the hypothesis η∆(h) = η∆(r(n, h)), we again have that

η∆(r(ni∗ , hi∗)) = η∆(hi∗).

This condition says that fs(ni∗ , hi∗) cannot take the form [c − 1, y]ρ for some y ≥ b, by
Lemma 4.9 and the assumption that any segment in n (and so ni∗) satisfies b(∆) < b. In
other words, (ni∗ , hi∗) is not locally minimizable. The non-local minimizability for other
pairs (nj , hj) for j < i∗ follows from the minimality of n. Then the minimality of n+∆ to
h follows from Theorem 4.8. □

5. Two segment basic case (commutativity)

5.1. Lemma for unlinked segments. We recall the following first commutativity (see
e.g. [Ch22+d]), which will be used later:

Lemma 5.1. Let ∆,∆′ ∈ Segρ be unlinked. For any π ∈ Irrρ,

D∆′ ◦D∆(π) ∼= D∆ ◦D∆′(π).

5.2. Intermediate segment property under a derivative.

Lemma 5.2. Let π ∈ Irrρ. Let ∆,∆′′ ∈ Segρ be admissible to π. Let ∆′ ∈ Segρ. Suppose
(∆,∆′, hd(π)) satisfies the non-overlapping property or intermediate segment property. If
∆′′ ⊂ ∆′, then (∆,∆′, hd(D∆′′(π))) also satisfies the non-overlapping property and the
intermediate segment property.

Proof. Since the overlapping property and the intermediate segment property are equivalent
by Proposition 4.3, it suffices to see that (∆,∆′, hd(D∆′(π))) also satisfies the intermediate
segment property.

Write ∆ = [a, b]ρ, ∆′ = [a′, b′]ρ and ∆′′ = [a′′, b′′]ρ. By Theorems 3.4 and 3.5, we have
that for segment ∆̃

(∗) ε∆̃(r(∆
′′, π)) ≤ ε∆̃(D∆′′(π)).
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From this, one can recover hd(π)[c] and r(∆, π)[c] for each integer c. The missing part of
(*) between r(∆′, hd(π)) and hd(D∆′′(π)) is on some values a′′ − 1, . . . , b′′ − 1 < b′. Thus,
one obtains hd(D∆′′(π)) by prolonging some segments in r(∆′′, hd(π)) using (possibly some
of) a′ − 1, . . . , b′ − 1.

Now, by the intermediate segment property for (∆,∆′, hd(π)), there exists a segment of
the form [c, d]ρ satisfying:

a ≤ c < a′, b ≤ d < b′.

Now, by the above process of obtaining hd(D∆′′(π)), the segment [c, d]ρ can be prolonged
to the form [c, e]ρ in r(∆′′, π) for some e ≤ a′ − 1. Then the segment [c, e]ρ gives the
desired requirement for the intermediate segment property for (∆,∆′, D∆′′(π)). Thus, by
Proposition 4.3, the triple satisfies the two properties. □

For a segment ∆ = [a, b]ρ ∈ Segρ and π ∈ Irrρ, define:

|η|∆(π) = ε[a,b]ρ(π) + ε[a+1,b]ρ(π) + . . .+ ε[b,b]ρ(π).

Lemma 5.3. Let π ∈ Irrρ. Let ∆,∆′ ∈ Segρ. Suppose ∆ is admissible to π. Suppose
(∆,∆′, hd(π)) satisfies the overlapping property or the intermediate segment property. Let
∆̃ = ∆ ∪∆′.

|η|∆̃(π)− |η|∆′(π) = |η|∆̃(D∆(π))− |η|∆′(D∆(π)).

Proof. Write the removal sequence for (∆, π) to be:

∆1, . . . ,∆r.

By the intermediate segment property, there exists a segment ∆k such that a(∆k) < a(∆′)
and b(∆k) < b(∆′). Let k∗ be the smallest such integer. Then, with the nesting property,
only ∆1, . . . ,∆k∗−1 (among ∆1, . . . ,∆r) contribute to |η|∆̃(π)− |η|∆′(π).

Write ∆ = [a, b]ρ and ∆′ = [a′, b′]ρ. By Theorem 3.4, for a ≤ c ≤ a′ − 1

ε[c,b′]ρ(D∆(π)) = ε[c,b′]ρ(r(∆, π)).

Then, only ∆tr
1 , . . . ,∆tr

k∗−1 (among ∆tr
1 , . . . ,∆tr

r ) can contribute to |η|∆̃(π)− |η|∆′(π) and
so this implies the equality. □

5.3. Commutativity and minimality for two segment case.

Proposition 5.4. Let π ∈ Irrρ. Let ∆1,∆2 ∈ Segρ be admissible to π. Suppose ∆1 < ∆2

and (∆1,∆2, hd(π)) satisfies the over-lapping property, or equivalently

D∆2
◦D∆1

(π) ̸∼= D∆1∪∆2
◦D∆1∩∆2

(π).

Then
D∆2

◦D∆1
(π) ∼= D∆1

◦D∆2
(π).

Proof. The equivalence of the two conditions follows from Proposition 4.3.
We shall use the notations in the proof. Indeed, in view of a criteria of commutativity

in [Ch22+d, Proposition 4.12], it suffices to prove

D∆1
◦D∆2

(π) ̸∼= D∆1∪∆2
◦D∆1∩∆2

(π).

Let ∆̃ = ∆1 ∪∆2. To this end, it suffices to show that

(|η|∆̃ − |η|∆2)(D∆1 ◦D∆2(π)) = (|η|∆̃ − |η|∆2)(π).(5.2)

Note that, by the unlinked part of Theorem 3.4,

(|η|∆̃ − |η|∆2
)(D∆2

(π)) = (|η|∆̃ − |η|∆2
)(π)
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Now, a direct computation using the removal process on r(∆1, D∆2
(π)) that |η|∆̃(D∆1

◦
D∆2

(π)) = |η|∆̃(D∆2
(π)).

On the other hand, by Proposition 4.3 (2), (∆1,∆2, π) satisfies the intermediate seg-
ment property and so (∆1,∆2, D∆2(π)) also satisfies the intermediate segment property by
Lemma 5.2. Now, by Lemma 5.3,

(|η|∆̃ − |η|∆2
)(D∆1

◦D∆2
(π)) = (|η|∆̃ − |η|∆2

)(D∆2
(π)).

Combining above two equations, we have (5.2) as desired. □

We shall give a proof of Proposition 5.4 from a representation-theoretic perspective (see
Lemma 10.2).

6. Some preliminary resutls for subsequent and commutativity properties

6.1. Cancellative property.

Proposition 6.1. (Cancellative property) Let π ∈ Irrρ. Let n and n′ be multisegments with
respective segments in the following respective ascending sequences:

∆′
1, . . . ,∆

′
p,∆1, . . . ,∆r

and
∆′′

1 , . . . ,∆
′′
q ,∆1, . . . ,∆r.

Then r(n′, π) = r(n′′, π) if and only if

r(
{
∆′

1, . . . ,∆
′
p

}
, π) = r(

{
∆′′

1 , . . . ,∆
′′
q

}
, π).

Proof. The if direction is straightforward. We now consider the only if direction. By
Theorem 2.1, let π ∈ Irrρ such that hd(π) = h. By Theorem 3.3, we have that

D∆r ◦ . . . ◦D∆1 ◦D∆′
p
◦ . . . ◦D∆′

1
(π) ∼= D∆r ◦ . . . ◦D∆1 ◦D∆′

q
◦ . . . ◦D∆′

1
(π).

For any irreducible τ and any segment ∆, denote by I∆(τ) the unique irreducible submodule
of π×St(∆). Now, by uniqueness, I∆i

◦D∆i
(τ) ∼= τ if D∆i

(τ) ̸= 0 for any i and irreducible
τ . Hence, we cancel the derivatives D∆r

, . . . , D∆1
to obtain:

D∆′
p
◦ . . . ◦D∆′

1
(π) ∼= D∆′

q
◦ . . . ◦D∆′

1
(π).

□

6.2. First subsequent property. We shall frequently use the following simple fact:

Lemma 6.2. [Ze80, Section 6.7] Let ∆1, . . . ,∆r be a sequence of segments in an ascending
order. Suppose∆k and ∆k+1 are linked for some k. Then

∆1, . . . ,∆k−1,∆k ∪∆k+1,∆k ∩∆k+1,∆k+2, . . . ,∆r

is also in an ascending order.

Proposition 6.3. Let π ∈ Irrρ. Let n be minimal to π. We write the segments in n in an
ascending order

∆1, . . . ,∆r.

Then, for any s ≤ r,
(1) {∆1, . . . ,∆s} is still minimal to π.
(2) {∆s+1, . . . ,∆r} is minimal to r({∆1, . . . ,∆s} , π).
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Proof. We only prove (1), and (2) can be proved similarly.
The admissibility follows from definitions (and Lemma 3.2(5)). Let

n′ = {∆1, . . . ,∆s} .
We pick two linked segments ∆i and ∆j in n′ and we set

n′′ = n′ − {∆i,∆j}+∆i ∪∆j +∆i ∩∆j .

It suffices to show that r(n′′, h) ̸= r(n, h). To this end, we first write the segments in n′′ in
an ascending order:

∆′
1, . . . ,∆

′
s.

(There are s− 1 segments if ∆i ∩∆j = ∅, but the below arguments could be still applied.)
It follows from Lemma 6.2 that ∆′

1, . . . ,∆
′
s,∆s+1, . . . ,∆r is still in an ascending order.

Now we return to the proof. The minimality of n implies that

r({∆′
1, . . . ,∆

′
s,∆s+1, . . . ,∆r} , π) ̸= r({∆1, . . . ,∆s,∆s+1, . . . ,∆r} , π).

By Proposition 6.1,
r({∆′

1, . . . ,∆
′
s} , π) ̸= r({∆1, . . . ,∆s} , π),

as desired. □

7. Three segment basic cases

The main goal of this section is to prove the subsequent property and commutativity
for three segment cases. To show the minimality, the main strategy is to use the convex
property for S(π, τ) of Theorem 1.1 and the overlapping property of Theorem 4.3.

7.1. Case: {∆1,∆3} minimal to D∆2(π).

Lemma 7.1. Let ∆,∆′ ∈ Segρ with ∆ ⊂ ∆′. Let π ∈ Irrρ with D∆′(π) ̸= 0. Then, the
following holds:

(1) If a(∆) > a(∆′), then η∆(D∆′(π)) = η∆(π).
(2) If a(∆) = a(∆′), then η∆(D∆′(π)) is obtained from η∆(π) by decreasing the coor-

dinate ε∆(π) by 1.

Proof. By Theorem 3.4, it suffices to compare η∆(r(∆
′, π)) and η∆(π). Let the removal

sequence for (∆′, π) be
∆1, . . . ,∆r.

For (1), we consider two cases.
(i) Suppose there does not exist an integer i∗ such that a(∆i∗) ≥ a(∆) and a(∆i∗) ≤

b(∆). In such case, all ∆1, . . . ,∆r and ∆tr
1 , . . . ,∆tr

r do contribute η∆. Thus we
have such equality.

(ii) Suppose there exists an integer i∗ such that a(∆i∗) ≥ a(∆). Let i∗ > 1 be the
smallest such integer. Let j∗ be the largest integer such that a(∆j∗) ≤ b(∆). We
have that ∆i∗ , . . . ,∆j∗ are all the segments in the removal sequence contributing to
η∆(π) and ∆tr

i∗−1, . . . ,∆
tr
j∗−1 are all the segments in the truncated one contributing

to η∆(r(∆
′, π)). Note that, for i∗ ≤ k ≤ j∗, ∆k and ∆tr

k−1 contribute to the same
coordinate ε∆̃ for some segment ∆̃. This shows the equality to two η∆.

For (2), it is similar, but i∗ in above notation becomes 1. Again, for 2 ≤ k ≤ j∗, ∆k and
∆tr

k−1 contribute to the same ε. The term ∆1 explains ε∆(π) is decreased by 1 to obtain
ε∆(D∆′(π)). □

Lemma 7.2. Let m = {∆1,∆2,∆3} ∈ Multρ in an ascending order. Let π ∈ Irrρ be such
that m is minimal to π. Then {∆1,∆3} is also minimal to D∆2

(π).
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Proof. By Proposition 5.4 (for the linked case between ∆1 and ∆2) and Proposition 5.1
(for the unlinked case between ∆1 and ∆2), we have that

D∆3 ◦D∆2 ◦D∆1(π)
∼= D∆3 ◦D∆1 ◦D∆2(π).

It is automatic if ∆1 and ∆3 are unlinked. So we shall assume that ∆1 and ∆3 are linked.
There are three possibilities:

• ∆2 is unlinked to ∆1 (and so {∆2,∆1,∆3} is still in an ascending order). Then
the minimality of m and Proposition 6.3 implies this case.

• ∆2 is unlinked to ∆3. We consider following possibilities:
(i) ∆3 ⊂ ∆2. Then {∆1,∆3} is also minimal to π by Lemma 5.1 and Proposition

6.3. Hence, η∆3(D∆1(π)) = η∆3(π). On the other hand, if a(∆3) > a(∆2), by
Lemma 7.1(1),

η∆3
(D∆2

(π)) = η∆3
(π)

and
η∆3(D∆2 ◦D∆1(π)) = η∆3(D∆1(π)).

Combining two equations, we have

η∆3
(D∆2

◦D∆1
(π)) = η∆3

(D∆2
(π))

and so, by Proposition 5.4 and Proposition 5.1 again,

η∆3
(D∆1

◦D∆2
(π)) = η∆3

(D∆2
(π)).

Thus, we have the minimality by Proposition 4.3.
When a(∆3) ∼= a(∆2), the argument is similar. The only difference, by Lemma
7.1(2), is that η∆3

(D∆2
(π)) (resp. η∆3

(D∆2
◦D∆1

(π))) is obtained from η∆3
(π)

(resp. η∆3
(D∆1

(π))) by decreasing the ε∆3
(π) (resp. ε∆3

(D∆1
(π))) by 1.

(ii) ∆2 ⊂ ∆3. In such case, one first has that (∆1,∆3, hd(π)) satisfies the non-
overlapping property by the minimality of {∆1,∆3} to π. Then, by Lemma 5.2
to show that (∆1,∆3, hd(D∆2

(π))) still satisfies the non-overlapping property.
Thus, {∆1,∆3} is minimal to D∆2

(π).
(iii) b(∆2) < a(∆3). Then the ascending order and linkedness between ∆1 and ∆3

also give that ∆1 and ∆2 are not linked. This goes back to the above bullet.
(iv) b(∆3) < a(∆2). Then the ascending order and linkedness between ∆1 and ∆3

also give that ∆1 and ∆2 are not linked. This goes back to the above bullet.
• ∆1 < ∆2 < ∆3. If {∆1,∆3} is not minimal to D∆2

(π), then

D∆1∪∆3
◦D∆1∩∆3

◦D∆2
(π) ∼= D∆3

◦D∆1
◦D∆2

(π) ∼= D∆3
◦D∆2

◦D∆1
(π).

This contradicts the minimality of m.
□

7.2. Case: {∆2,∆3} minimal to π.

Lemma 7.3. Let π ∈ Irrρ. Let ∆1,∆2,∆3 be segments in an ascending order. If {∆1,∆2,∆3}
is minimal to π, then {∆2,∆3} is also minimal to π.

Proof. When ∆2 and ∆3 are unlinked, there is nothing to prove. We assume that ∆2 and
∆3 are linked and so ∆2 < ∆3. We consider the following cases:

• b(∆3) ≤ b(∆1). Then ∆1 is unlinked to both ∆2 and ∆3. Then the minimality of
{∆2,∆3} to π follows from the minimality of {∆1,∆2,∆3} to π by Proposition 6.3.
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• b(∆1) < b(∆3) and a(∆1) < a(∆3). Then {∆1,∆2} with ∆3 is in the situation of
Proposition 4.10. Then η∆3

(D{∆1,∆2}(π)) = η∆3
(π). On the other hand, we have

η∆3(D∆1 ◦ D∆2(π)) = η∆3(D∆2(π)) by Lemma 7.2 with Proposition 4.3(1)⇔(3).
Thus, we have η∆3

(π) = η∆3
(D∆2

(π)). This implies {∆2,∆3} is minimal to π by
Proposition 4.3(1)⇔(3).

• b(∆1) < b(∆3) and a(∆3) ≤ a(∆1). In particular, ∆1 is unlinked to ∆3. Since we
are assuming ∆1,∆2,∆3 are in ascending order, and we are assuming that ∆2 and
∆3 are linked, we also have that ∆1 and ∆2 are unlinked. Then the minimality of
{∆2,∆3} to π follows from the minimality of {∆1,∆2,∆3} to π.

□

7.3. Case: {∆1,∆3} minimal to π.

Lemma 7.4. Let π ∈ Irrρ. Let ∆1,∆2,∆3 be segments in an ascending order. If {∆1,∆2,∆3}
is minimal to π, then {∆1,∆3} is minimal to π.

Proof. We may assume ∆1 and ∆3 are linked. Otherwise, there is nothing to prove. We
consider the following cases.

• ∆1 < ∆2 < ∆3. By Proposition 5.4, we have

D{∆1,∆3,∆2}(π)
∼= D∆2

◦D{∆1,∆3}(π).

If the minimality does not hold, then we have

D{∆1,∆2,∆3}(π)
∼= D{∆2,∆1∪∆3,∆1∩∆3}(π)

since ∆1 ∪∆3,∆1 ∩∆3,∆2 are still in an ascending order. This contradicts to the
minimality of {∆1,∆2,∆3} to π.

• ∆2 and ∆3 are not linked. Then we can switch the labellings of ∆2 and ∆3, which
gives the minimality of {∆1,∆3} to π by Proposition 6.3.

• ∆1 and ∆2 are not linked. In this case, we can switch the labellings for ∆1 and ∆2

by using linkedness. Then the result follows from Lemma 7.3.
□

7.4. Case: {∆1,∆2} minimal to D∆3
(π). We now need some inputs from representation

theory to prove a combinatorics result. Let Ni ⊂ Gn (depending on n) be the unipotent

radical containing matrices of the form
(
In−i ∗

Ii

)
. For a smooth representation π of Gn,

we write πNi
to be its Jacquet module.

Lemma 7.5. Let ∆ = [a, b]ρ,∆
′ = [a′, b′]ρ be two segments such that ∆ < ∆′. Let

ω = St({∆,∆′}). Let m be a multisegment whose segments ∆′′ = [a′′, b′′]ρ satisfy that
b′′ = b and a′′ < a. Then St(m)× ω is irreducible and

St(m)× ω ∼= ω × St(m).

Proof. It is well-known that the second assertion implies the first one. We only have to
prove the first one. Since St(m) can be written as ×∆∈mSt(∆), it reduces to the case that
m contains only one segment and so now we consider m =

{
∆̃
}

.
We analyse possible composition factors of

St(∆̃)× ω.

Since we know that a composition factor of St(∆̃) × ω is also a composition factor of
St(∆̃)× St(∆)× St(∆′), the possible composition factors are

St(
{
∆̃,∆,∆′

}
),St(∆̃ ∪∆′ + ∆̃ ∩∆′ +∆),St(∆ ∪∆′ +∆ ∩∆′ + ∆̃).
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We denote the three representations π1, π2, π3 respectively.
Thus it suffices to show that the last two composition factors cannot appear in St(∆̃)×ω.

We first consider π2. Note that π2 is generic. However, ω is not generic and so St(∆̃)× ω

cannot contains a generic composition factor and so π2 cannot appear in St(∆̃)× ω.
We now consider π3. Let l = labs(∆ ∪ ∆′). Then (π3)Nl

has the composition factor
St(∆)⊠St(∆∪∆′). Now we consider composition factors in (St(∆̃)×ω)Nl

. If (St(∆̃)×ω)Nl

contains the factor St(∆)⊠St(∆∪∆′), a simple composition factor is a simple composition
factor in

St(∆)× ω1 ⊠ ω2,

where ω1 ⊠ ω2 is a simple composition factor in ωNl
. However, the possibilities of those

composition factors are well-known and it is impossible for ω2 to be the factor St(∆ ∪
∆′). □

Lemma 7.6. Let π ∈ Irrρ. Let ∆1,∆2,∆3 be segments satisfying ∆1 < ∆2 < ∆3. Suppose
{∆1,∆2,∆3} is minimal to π. Then D∆3

(π). Let ∆̃ = ∆1 ∪∆2. Then the followings hold:
(1) |η|∆̃(π)− |η|∆2

(π) = |η|∆̃(D∆3
(π))− |η|∆2

(D∆3
(π));

(2) If (∆1,∆2, π) satisfies the intermediate segment property, then (∆1,∆2, D∆3
(π))

also satisfies the intermediate segment property.
Here the subtraction in (1) means the subtraction entry-wise.

Proof. We have shown in Lemma 7.3 that {∆2,∆3} is minimal to π. Thus, we have

D∆3
◦D∆2

(π) ̸∼= D∆2∪∆3
◦D∆2∩∆3

(π).

By a standard argument in [Ch22+d], we have that π is the unique simple submodule of

D∆3 ◦D∆2(π)× St({∆2,∆3}).
Write ∆2 = [a2, b2]ρ. Let

m =
∑
c<a2

ε[c,b2]ρ(D∆3
(π)) · [c, b2]ρ,

and
p =

∑
c<a2

ε[c,b2]ρ(π) · [c, b2]ρ.

Thus, we have:

D∆3
◦D∆2

(π) ↪→ Dm ◦D∆3
◦D∆2

(π)× St(m)

and so

π ↪→ D∆2
◦D∆2

(π)× St({∆2,∆3}) ↪→ Dm ◦D∆3
◦D∆2

(π)× St(m)× St({∆2,∆3}).
By Lemma 7.5,

π ↪→ Dm ◦D∆3
◦D∆2

(π)× St({∆2,∆3})× St(m).

This implies that Dm(π) ̸= 0 and so m is a submultisegment of p. On the other hand, using
Lemma 3.2 and Theorem 3.5, we also have that p is a submultisegment of m. Hence, m = p.
Translating to η-invariants, we obtain (1).

We now prove (2). Write ∆1 = [a1, b1]ρ. Suppose (∆1,∆2, π) satisfies the intermediate
segment property. Then there exists a segment [a, b]ρ in hd(π) satisfying that a1 ≤ a < a2
and b1 ≤ b < b2. Then,

ε[a,b]ρ(π) > ε[a,b2]ρ(π)

By (1), we have that
ε[a,b2]ρ(π) = ε[a,b2]ρ(D∆3

(π).
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By Theorem 3.5,
ε[a,b]ρ(D∆3

(π)) ≥ ε[a,b]ρ(π).

Combining the above equalties and inequalities, we have:

ε[a,b]ρ(D∆3
(π)) > ε[a,b2]ρ(D∆(π)).

This implies that there exists a segment [a, b′]ρ in hd(D∆3(π)) with b′ < b2. Thus (∆1,∆2, D∆3(π))
satisfies the intermediate segment property. □

Lemma 7.7. Let π ∈ Irrρ. Let ∆1,∆2,∆3 be segments in an ascending order. If {∆1,∆2,∆3}
is minimal to π, then {∆1,∆2} is also minimal to D∆3

(π).

Proof. If ∆1 and ∆2 are unlinked, then there is nothing to prove. If ∆2 and ∆3 are unlinked,
then we use Lemma 5.1 to transfer to Lemma 7.2.

The remaining case is that ∆1 and ∆2 are linked, and ∆2 and ∆3 are linked. In other
words, ∆1 < ∆2 < ∆3. This case follows from Proposition 4.3(2)⇔(3) and Lemma 7.6. □

7.5. Case: {∆1,∆2} minimal to π.

Lemma 7.8. Let π ∈ Irrρ. Let ∆1,∆2,∆3 be segments in an ascending order. If {∆1,∆2,∆3}
is minimal to π, then {∆1,∆2} is also minimal to π.

The above lemma is a special case of Proposition 6.3(1).

7.6. Case: {∆2,∆3} minimal to D∆1(π).

Lemma 7.9. lem basic subsequent property 23 1 Let π ∈ Irrρ. Let ∆1,∆2,∆3 be segments
in an ascending order. If {∆1,∆2,∆3} is minimal to π, then {∆1,∆2} is also minimal to
D∆1

(π).

The above lemma is again a special case of Proposition 6.3(2).

8. Subsequent property of minimal sequence

8.1. Consecutive pairs.

Definition 8.1. Let m ∈ Multρ. Two segments ∆1 and ∆2 in m are said to be consecutive
in m if

• ∆1 < ∆2 i.e. ∆1 and ∆2 are linked with a(∆1) < a(∆2)
• there is no other segment ∆′ in m such that

a(∆1) ≤ a(∆′) ≤ a(∆2), b(∆1) ≤ b(∆′) ≤ b(∆2)

and ∆′ is linked to either ∆1 or ∆2.
(The last linkedness condition guarantees that ∆′ ̸= ∆1 ∩∆2 and ∆′ ̸= ∆1 ∪∆2.)

Example 8.2. • Let h = {[0, 3], [1, 4], [2, 5]}. Then [0, 3], [1, 4] form a pair of consec-
utive segments. Similarly, [1, 4], [2, 5] also form a pair of consecutive segments, but
[0, 3], [2, 5] do not form a pair of consecutive segments.

• Let h = {[0, 4], [1, 2], [2, 5]}. Then [0, 4], [2, 5] form a pair of consecutive segments;
and [1, 2], [2, 5] also form a pair of consecutive segments.

• Let h = {[0, 3], [1, 3], [2, 4], [2, 5]}. Then [1, 3], [2, 4] form a pair of consecutive seg-
ments, while [0, 3], [2, 4] do not form a pair of consecutive segments.

The terminology of consecutive segments is suggested by its property in the intersection-
union process.
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Lemma 8.3. Let ∆1,∆2 be linked segments with ∆1 < ∆2. Suppose there exists a segment
∆′ satisfying the conditions in the second bullet of Definition 8.1. Then, if ∆′ is linked to
∆i (i = 1, 2), then

{∆1 ∩∆2,∆1 ∪∆2,∆
′} ≤Z {∆i ∩∆′,∆i ∪∆′,∆j} ≤Z {∆1,∆2,∆

′} .
Here j is the index other than i i.e. j ∈ {1, 2} − {i}.

The above lemma follows from a direct checking and we omit the details. A simple
combinatorics give the following:

Lemma 8.4. (1) Let m,m′ ∈ Multρ such that m′ ≤Z m with m′ ̸= m. Then there
exists a pair of consecutive segments ∆,∆′ in m such that for the multisegment m′′

obtained from m by the elementary intersection-union process involving ∆ and ∆′,
m′ ≤Z m′′ ≤Z m.

(2) Let m ∈ Multρ. Let ∆,∆′ be a pair of consecutive segments in m with ∆ < ∆′.
Let m′ be the submultisegment of m−∆−∆′ that contains all the segments ∆̃ with
a(∆′) ≤ a(∆̃) or b(∆′) ≤ b(∆̃). Write the segments in m − m′ in an ascending
order: ∆1, . . . ,∆r and write the segments in m′ in an ascending order: ∆′

1, . . . ,∆
′
s.

Then the sequence:

∆1, . . . ,∆r,∆,∆′,∆′
1, . . . ,∆

′
s

is ascending.

Proof. For (1), it suffices to show for m′ obtained by a pair of elementary intersection-union
operation involving ∆ and ∆

′
. If the segments involved in the operation are consecutive,

then the statement is immediate. Otherwise, there exists a segment ∆̃ such that ∆̃ is linked
to either ∆ or ∆

′
, and produce a multisegment m̃ such that m′ ≤Z m̃ ≤Z m′′. We repeat the

process if such linked pair is still not consecutive. Note that if ∆̃ is linked to ∆ (resp. ∆
′
),

we must have ∆̃ ∩∆ (resp. ∆̃ ∩∆
′
) strictly longer than ∆ ∩∆

′
, and hence after repeating

the process several times, we obtain desired consecutive segments.
For (2), it is a direct check from the definition of an ascending order. □

8.2. Minimality under commutativity (second basic case).

Lemma 8.5. Let π ∈ Irr. Let ∆,∆1,∆2, . . . ,∆r be in an ascending order and minimal to
π. Then {∆,∆k+1, . . . ,∆r} is also minimal to D∆k

◦ . . . ◦D∆1
(π) ̸= 0, and

D∆r
◦ . . . ◦D∆k+1

◦D∆ ◦D∆k
◦ . . . D∆1

(π) ∼= D∆r
◦ . . . ◦D∆1

◦D∆(π).

Proof. By induction, it suffices to show when k = 1. The case that ∆ and ∆1 are unlinked
is easy by Lemma 5.1 and Proposition 6.3(1). Suppose {∆,∆2, . . . ,∆r} is not minimal to
D∆1

(π) to arrive a contradiction. By Theorem 1.1, there exists a pair of consecutive seg-
ments ∆′ < ∆′′ such that the multisegment obtained from the intersection-union operation
of those two segments ∆′,∆′′ gives the same derivative on π.

Note that {∆2, . . . ,∆r} is minimal to D∆1
◦D∆(π) ∼= D∆◦D∆1

(π) (the last isomorphism
by Proposition 5.4). Thus the possible cases could be that one of ∆′,∆′′ is ∆ and so ∆′ = ∆.
Let

n = {∆i : a(∆i) ≤ a(∆) or b(∆i) ≤ b(∆)}
By the ascending arrangement, any ∆i is unlinked to ∆ and ∆1 by using the ascending
property for the sequence ∆,∆1, . . . ,∆r (and ∆ < ∆1). (In particular, ∆1 is not in n.)

Let m = {∆2, . . . ,∆r}. Now, since we chose ∆ and ∆′′ are consecutive, we can arrange
and relabel the segments in an ascending order:

∆̃1, . . . , ∆̃l,∆,∆′′, ∆̃k+1, . . . , ∆̃r−1,
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where all ∆̃1, . . . , ∆̃l are all elements in n and ∆̃k+1, . . . , ∆̃r−1 are all elements in m− n.
Case 1: n = ∅. We still have that ∆,∆1,∆

′′, ∆̃1, . . . , ∆̃r−1 form an ascending order and is
minimal to π. In particular, we have ∆,∆1,∆

′′ is minimal to π by the cancellative property.
Thus

D∆′′ ◦D∆ ◦D∆1(π) ̸∼= D∆′′∪∆ ◦D∆′′∩∆ ◦D∆1(π)

by Lemma 7.2 and Proposition 5.4. Since

∆′′ ∩∆,∆′′ ∪∆, ∆̃1, . . . , ∆̃r−1

still form an ascending order (Lemma 6.2), applying D∆̃1
, . . . , D∆̃r−1

gives different deriva-
tives on π and so this gives a contradiction.

Case 2: n ̸= ∅. This implies that ∆+m− n is not minimal to Dn ◦D∆1
(π). However, we

have that, by using unlinkedness discussed in the second paragraph,

Dn ◦D∆1(π)
∼= D∆1 ◦Dn(π).

and ∆ + ∆1 + m − n is minimal to Dn(π) by Proposition 6.3. However, from Case 1, we
have that ∆+m− n is minimal to

D∆1
◦Dn(π)(∼= Dn ◦D∆1

(π)).

This gives a contradiction. □

8.3. Minimality of a subsequent sequence.

Theorem 8.6. Let π ∈ Irrρ. Let n ∈ Multρ be minimal to π. Then any submultisegment
of n is also minimal to π.

Proof. By an induction, it suffices to show the minimality for n′ = n−∆ for some segment
∆ in n. By Theorem 1.1 and Lemma 8.4, it reduces to check that for any multisegment m′

obtained from n′ by an elementary intersection-union operations involving two consecutive
segments,

Dm′(π) ̸= Dn′(π).

Denote such two consecutive segments by ∆̃ < ∆̃′.
Let m be obtained by the intersection-union process from n involving ∆̃ and ∆̃′. Then

m′ = m−∆.
We consider following possibilities:
(1) Case 1: Suppose ∆̃ and ∆̃′ still form a pair of consecutive segments in n. Then we

write the segments in n as in Lemma 8.4 (with obvious notation replacement):

∆1, . . . ,∆r, ∆̃, ∆̃′,∆′
1, . . . ,∆

′
s.

(a) Case 1(a): ∆ appears in one of ∆′
1, . . . ,∆

′
s. If Dn−∆(π) = Dm−∆(π), then the

cancellative property (Proposition 6.1) and Lemma 8.4 (also see Proposition
6.3) imply that

D{∆1,...,∆r,∆̃,∆̃′}(π) ̸∼= D{∆1,...,∆r,∆̃∪∆̃′,∆̃∩∆̃′}(π).

However, this implies Dn(π) ̸∼= Dm(π) by applying D∆′
1
, . . . , D∆′

s
with D∆

omitted.
(b) Case 1(b): ∆ appears in one of ∆1, . . . ,∆r. Let

p =
{
∆1, . . . ,∆r, ∆̃, ∆̃′

}
−∆
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and let q be obtained from p by an elementary intersection-union operation on
∆̃ and ∆̃′. By the cancellative property (Proposition 6.1), it suffices to show
that Dp(π) ̸∼= Dq(π).
Let τ = Dp−∆̃−∆̃′−∆(π). By repeatedly using Lemma 8.5, we have:

Dp+∆(π) ∼= D∆̃′ ◦D∆̃ ◦D∆(τ)

and
{
∆, ∆̃, ∆̃′

}
is minimal to τ . Now by Lemma 7.3, we have that

Dp(π) = D∆̃′ ◦D∆̃(τ) ̸∼= D∆̃∪∆̃′ ◦D∆̃∩∆̃′(τ) = Dq(π)

as desired.
(2) Case 2: ∆̃ and ∆̃′ do not form a consecutive pair. We then first write the segments

in n′ as in Lemma 8.4:

∆1, . . . ,∆r, ∆̃, ∆̃′,∆′
1, . . . ,∆

′
s.

Since the pair is not consecutive, the segment ∆ must take the form as in the second
bullet of Definition 8.1. Then one can still check that

∆1, . . . ,∆r, ∆̃,∆, ∆̃′,∆′
1, . . . ,∆

′
s

is an ascending sequence. Now let τ = D{∆1,...,∆r}(π). By the cancellative property
(Proposition 6.1), it suffices to show that

(∗) D{∆̃,∆̃′}(τ) ̸= D{∆̃∩∆̃′,∆̃∪∆̃′}(τ).

This follows from the basic case of Lemma 7.4.
□

9. Commutativity and minimality

In this section, we study the commutativity for a minimal sequence.

9.1. Commutativity and minimality.

Lemma 9.1. Let π ∈ Irrρ. Let m ∈ Multρ minimal to π. Let ∆ ∈ m. Then Dm−∆ ◦
D∆(π) ∼= Dm(π).

Proof. We write the segments in m−∆ in an ascending order: ∆1, . . . ,∆r. By Proposition
6.3(1), we can reduce to the case that ∆1, . . . ,∆r,∆ still form an ascending order. By
Propositions 6.3(2) and the basic case (Proposition 5.4),

Dm(π) ∼= D∆ ◦Dm−∆(π) ∼= D∆r ◦D∆ ◦Dm−∆−∆r (π).

By Theorem 8.6, m−∆r is still minimal to π. We now inductively obtain the statement. □

We first study a special case of commutativity and minimality, and we shall prove a full
version in Theorem 9.3.

Lemma 9.2. Let π ∈ Irrρ. Let m ∈ Multρ be minimal to π. Let c (resp. d) be the largest
integer such that m[c] ̸= 0 (resp. m⟨d⟩ ̸= 0). Let ∆ ∈ m[c] or ∈ m⟨d⟩. Then m − ∆ is
minimal to D∆(π).

Proof. The condition in the lemma guarantees that ∆ can be arranged in the last one for
an ascending order for m.

Suppose m−∆ is not minimal to D∆(π). Let m′ = m−∆. By Theorem 1.1 and Lemma
8.4, it suffices to show that for any pair ∆̃ < ∆̃′ of consecutive segments,

n′ := m′ −
{
∆̃, ∆̃′

}
+ ∆̃ ∪ ∆̃′ + ∆̃ ∩ ∆̃′
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does not give the same derivative on D∆(π) i.e.

(∗) Dn′ ◦D∆(π) ̸∼= Dm′ ◦D∆(π).

Now we arrange and relabel the segments in m′ as in Lemma 8.4:

∆1, . . . ,∆k, ∆̃, ∆̃′,∆k+3, . . . ,∆r,

which is in an ascending order. By Proposition 6.3, in order to show (*), it suffices to show
that

{
∆1, . . . ,∆k, ∆̃, ∆̃′

}
is still minimal to D∆(π). Let

τ = D∆k
◦ . . . ◦D∆1(π), and τ ′ = D∆k

◦ . . . D∆1 ◦D∆(π).

By Lemma 6.2, it suffices to prove

D∆̃′ ◦D∆̃(τ
′) ̸∼= D∆̃′∪∆̃ ◦D∆̃′∩∆̃(τ

′).(9.3)

Let p = {∆1, . . . ,∆k}. To this end, by the subsequent property (Theorem 8.6), we have
that p + ∆̃′ + ∆̃ + ∆ is minimal to π. Thus, we also have that

{
∆, ∆̃′, ∆̃

}
is minimal to

τ = Dp(π) by Proposition 6.3. Now, Lemma 7.7 implies:

D∆̃′ ◦D∆̃ ◦D∆(τ) ̸∼= D∆̃′∪∆̃ ◦D∆̃′∩∆̃ ◦D∆(τ).

On the other hand, by the subsequent property (Theorem 8.6), which gives that {∆1, . . . ,∆k,∆}
is minimal to π. Then combining with Lemma 9.1, we have D∆(τ) ∼= τ ′. Combining, we
have the desired non-isomorphism (9.3). □

9.2. Minimality on commutated sequence: general case.

Theorem 9.3. Let π ∈ Irrρ. Let n ∈ Multρ be minimal to π. Let ∆ ∈ n. Then n −∆ is
minimal to D∆(π) and

Dn−∆ ◦D∆(π) ∼= Dn(π).

Proof. We first prove the second assertion. We write the segments in n in an ascending
order:

∆1, . . . ,∆k,∆,∆k+1, . . . ,∆r

with b(∆1) ≤ . . . ≤ b(∆) ≤ . . . ≤ b(∆r). Then, by Proposition 6.3, {∆1, . . . ,∆k,∆} is still
minimal to n. Then, the second assertion follows from Lemma 9.2.

We now prove the first assertion. By Theorem 1.1 and Lemma 8.4, it suffices to prove
for a consecutive pair of segments. Let ∆̃, ∆̃′ be a pair of consecutive segments in n −∆.
Let

n′ = n−∆−
{
∆̃, ∆̃′

}
+ ∆̃ ∪ ∆̃′ + ∆̃ ∩ ∆̃′.

We consider the following two cases:

(1) ∆̃ and ∆̃′ still form a pair of consecutive segments in n. We arrange and relabel
the segments as:

∆1, . . .∆p, ∆̃, ∆̃′,∆p+1, . . . ,∆r

with ∆p+1, . . . ,∆r to be all the segments with a(∆t) ≥ a(∆̃′) or b(∆t) ≥ b(∆̃′).
Similar to Lemma 8.4, one has that

∆1, . . . ,∆p, ∆̃ ∪ ∆̃′, ∆̃ ∩ ∆̃′,∆p+1, . . . ,∆r

form an ascending sequence.
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(i) Suppose ∆ appears in one of ∆1, . . . ,∆p, say ∆i. Let τ = D∆p
◦ . . . ◦D∆i+1

◦
D∆i−1

◦ . . .◦D∆1
◦D∆(π). In such case, the proved second assertion gives that

τ ∼= D∆p
◦ . . . ◦D∆1

(π).

The isomorphism with the minimality of
{
∆1, . . . ,∆p, ∆̃, ∆̃′

}
to π and the

discussion on the ascending sequence above gives that

D∆̃′ ◦D∆̃(τ) ̸∼= D∆̃′∪∆̃ ◦D∆̃′∩∆̃(τ).

Applying D∆p+1 , . . . , D∆r , we have that

Dn−∆ ◦D∆(π) ̸∼= Dn′ ◦D∆(π).

(ii) Suppose ∆ appears in one of ∆p+1, . . . ,∆r, say ∆j . By rearranging and rela-
beling the segments in ∆p+1, . . . ,∆r if necessary, we assume b(∆p+1) ≤ . . . ≤
b(∆r) if b(∆̃′) ≤ b(∆j) and assume a(∆p+1) ≤ . . . ≤ a(∆r) if a(∆̃′) ≤ a(∆j).
Let

nj =
{
∆1, . . . ,∆p, ∆̃, ∆̃′,∆p+1, . . . ,∆j = ∆

}
,

n′j =
{
∆1, . . . ,∆p, ∆̃ ∪ ∆̃′, ∆̃ ∩ ∆̃′,∆p+1, . . . ,∆j = ∆

}
.

Then, by Lemma 9.2,

Dn′
j−∆ ◦D∆(π) ̸∼= Dnj−∆ ◦D∆(π)

Thus, applying the derivatives D∆j+1 , . . . , D∆r , we have Dn′◦D∆(π) ̸∼= Dn−∆◦
D∆(π) as desired.

(2) ∆̃ and ∆̃′ do not form a consecutive pair in n. One uses similar argument in
Theorem 8.6 to reduce to three segment case. Then one reduces to a basic case
(see similar discussions in the proof of Theorem 8.6), that is Lemma 7.2.

□

9.3. General form of commutativity and minimality.

Theorem 9.4. Let π ∈ Irrρ. Let n ∈ Multρ be minimal to π. Let n′ be a submultisegment
of n. Then Dn−n′ ◦Dn′(π) ∼= Dn(π) and n− n′ is minimal to Dn′(π).

Proof. This follows by repeatedly using Theorem 9.3. □

Part 3. Representation-theoretic aspects

10. η-invariant and commutativity

We shall first discuss the representation-theoretic intrepretation for η-invariants. Then
we explain how to relate with the commutativity. The representation-theoretic approach
provides different techniques, which are of independent interests.

10.1. Representation-theoretic counterpart of η∆. Let ∆ = [a, b]ρ. For π ∈ Irr, let

mx(π,∆) =
∑

a≤a′≤b

ε[a′,b]ρ(π) · [a
′, b]ρ,(10.4)

which means that [a′, b]ρ appears with multiplicity ε[a′,b]ρ(π) in mx(π,∆). This is the
multisegment analogue of the η-invariant.

The following is the key property:

Lemma 10.1. [Ch22+] Let l = labs(mx(π,∆)). Let m = mx(π,∆). Then Dm(π) ⊠ St(m)
is a direct summand in πNl

.
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10.2. Commutativity. Here we explain how to view the commutativity of Proposition
5.4 from the perspective of Lemma 10.1. We first show the following new lemma, using
Lemma 10.1:

Lemma 10.2. Let π ∈ Irrρ(Gn). Let ∆1,∆2 ∈ Segρ be admissible to π. Suppose ∆1 < ∆2.
Suppose (∆1,∆2, π) satisfies the non-overlapping property. Let m = mx(π,∆2). Then
D∆1

◦Dm(π) ∼= Dm ◦D∆1
(π).

Proof. Let l = labs(∆1) and let N = Nl. We have that:

π ↪→ Dm(π)× St(m).

Then
D∆1

(π)⊠ St(∆1) ↪→ πN ↪→ (Dm(π)× St(m))N .

An anslysis on the layers in geometric lemma, we have that

(∗) D∆1(π)⊠ St(∆1) ↪→ Dm(π)Nl
×̇1

St(m),

where ×̇1 means that the induction to a Gn−l×Gl-representation. By the non-overlapping
property and Lemma 10.1, Dm ◦D∆1

(π)⊠ St(m) is a direct summand in D∆1
(π)Nl′ , where

l′ = labs(m). Furthermore, no other composition factors in D∆1
(π)Nl′ take the form τ ⊠

St(m). Now, via Frobenius reciprocity on the map in (*), we obtain a non-zero map from
D∆1(π)Nl′ ⊠St(∆1) to (Dm(π)Nl

⊠St(m))ϕ, where ϕ is a twisting sending a Gn−l−l′ ×Gl×
Gl′ -representation to a Gn−l−l′ ×Gl′ ×Gl-representation. Then

Dm ◦D∆1
(π)⊠ St(∆1) ↪→ Dm(π)Nl

.

Thus, we have Dm ◦D∆1(π)
∼= D∆1 ◦Dm(π). □

Lemma 10.2 can also be deduced from Proposition 5.4 and Lemma 5.2. On the other
hand, one can also give another proof for Proposition 5.4 by using Lemmas 5.2 and 10.2.

11. Conjectural interpretation for minimal sequences

11.1. Minimality for two segments.

Proposition 11.1. Let π ∈ Irrρ. Let ∆1,∆2 be a pair of linked segments with ∆1 < ∆2.
Suppose

D∆1∪∆2 ◦D∆1∩∆2(π) ̸∼= D∆2 ◦D∆1(π).

Then the unique map

D∆2
◦D∆1

(π)⊠ (St(∆1)× St(∆2)) → πN ,

where N = Nlabs(∆1)+labs(∆2), is injective.

Proof. Suppose the map is not injective. Since D∆2
◦ D∆1

(π) ⊠ (St(∆1) × St(∆2)) is
indecomposable and has length 2, the image of the map can only be isomorphic to D∆2

◦
D∆1(π)⊠ (St(∆1 ∪∆2)× St(∆1 ∩∆2)). This implies that

D∆2
◦D∆1

(π)⊠ (St(∆1 ∪∆2)× St(∆1 ∩∆2))

is a submodule of πN . Then, applying Frobenius reciprocity, we have that π is the unique
submodule of D∆2 ◦D∆1(π)× St(∆1 ∪∆2 +∆1 ∩∆2) (see [LM16, Ch22+b]).

Recall that St(∆1 ∪∆2 +∆1 ∩∆2) ∼= St(∆1 ∪∆2)× St(∆1 ∩∆2). Let τ be the unique
submodule of D∆2

◦D∆1
(π)× St(∆1 ∪∆2) so that

(∗) D∆1∪∆2
(τ) ∼= D∆2

◦D∆1
(π).

Then the uniqueness of submodule above also forces that

π ↪→ τ × St(∆1 ∩∆2)
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and so D∆1∩∆2
(π) ∼= τ . Combinbing with (*), we have:

D∆1∪∆2 ◦D∆1∩∆2(π)
∼= D∆2 ◦D∆1(π),

giving a contradiction. □

In the Appendix, we shall prove a converse of Proposition 11.1.

11.2. A representation-theoretic interpretation of minimal sequences.

Definition 11.2. For a multisegment h = {∆1, . . . ,∆r} ∈ Multρ labelled in an ascending
order, define

λ̃(h) := St(∆1)× . . .× St(∆r).

We shall call it a co-standard representation. Sometimes λ(h) is used for standard modules
and so we prefer to use λ̃ here.

We conjecture that Proposition 11.1 can be generalized to general minimal multiseg-
ments.

Conjecture 11.3. Let π ∈ Irrρ. Let n ∈ Multρ be minimal to π. Then the unique non-zero
map

Dn(π)⊠ λ̃(n) → πNl
,

where l = labs(∆1) + . . .+ labs(∆r), is injective.

We remark that the uniqueness of the non-zero map in Conjecture 11.3 follows from the
uniqueness of simple quotients, shown in [Ch22+d].

12. Some applications on the embedding model

In this section, we shall discuss applications of the embedding model arising from the
minimality in Proposition 11.1.

Lemma 12.1. Let ∆′,∆′′,∆′′′ ∈ Segρ. Suppose ∆′ < ∆′′. Let τ = D∆′′ ◦D∆′(π) and let
l′ = labs(∆

′), l′′ = labs(∆
′′), l′′′ = labs(∆

′′′). Suppose the followings hold:
• dim HomGn−l′−l′′×Gl′+l′′ (τ ⊠ (St(∆′)× St(∆′′′)), (κ× St(∆′′′))Nl′+l′′ ) ≤ 1;
• The non-zero map in the first bullet factors through the natural embedding:

κNl′+l′′ ×̇
1
St(∆′′) ↪→ (κ× St(∆′′′))Nl′+l′′

from the bottom layer in the geometric lemma. Here ×̇1 again denotes a parabolic
induction from a Gn−l′−l′′−l′′′×Gl′′′×Gl′+l′′-representation to a Gn−l′−l′′×Gl′+l′′-
representation.

• D∆′′′ ◦D∆′′ ◦D∆′(π) ∼= D∆′′ ◦D∆′′′ ◦D∆′(π).
Then, if {∆′,∆′′} is minimal to π, then {∆′,∆′′} is minimal to D∆′′′(π).

Proof. Suppose {∆′,∆′′} is not minimal to D∆′′′(π). Let i = l′ + l′′. Let λ1 = St(∆′ ∪
∆′′)× St(∆′ ∩∆′′). Let i = labs(∆

′) + labs(∆
′′). Then, by Proposition 11.1,

D∆′′ ◦D∆′ ◦D∆′′′(π)⊠ λ1 ↪→ D∆′′′(π)Ni
.

On the other hand, we have the following embedding:

π ↪→ D∆′′′(π)× St(∆′′′).

Let ω = D∆′′ ◦D∆′ ◦D∆′′′(π)× St(∆′′′). Via the bottom layer in the geometric lemma, we
have an embedding:

ω ⊠ λ1 ↪→ (D∆′′′(π)× St(∆′′′))Ni
.
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By the third bullet of the hypothesis, D∆′′ ◦D∆′(π) is a submodule of ω. Combining above,
we have that:

D∆′′ ◦D∆′(π)⊠ λ1 ↪→ (D∆′′′(π)× St(∆′′′))Ni
.

Let λ2 = St(∆′) × St(∆′′). Then, by the minimality of {∆′,∆′′} to π and Proposition
11.1, we have

D∆′′ ◦D∆′(π)⊠ λ2 ↪→ πNi .

This induces another embedding:

D∆′′ ◦D∆′(π)⊠ λ2 ↪→ (D∆′′′(π)× St(∆′′′))Ni
.

Since λ1 and λ2 have no isomorphic submodules, the above two embeddings give:

D∆′′ ◦D∆′(π)⊠ (λ1 ⊕ λ2) ↪→ (D∆′′′(π)× St(∆′′′))Ni .

However, this induces two non-zero maps from D∆′′ ◦D∆′(π)⊠λ1 to (D∆′′′(π)×St(∆′′′))Ni
,

which are not scalar multiple of each other. This contradicts to the first bullet. □

Lemma 12.1 provides another strategy for checking minimality in some three segment
cases in Section 7 e.g. the second bullet case in the proof of Lemma 7.2 and the linked case
in the proof of Lemma 7.7. Checking the second bullet usually involves analysis on the
layers arising from the geometric lemma while checking the third bullet usually uses some
known commutativity from minimality (Proposition 5.4) in some other cases. Checking the
first case requires some inputs of multiplicity theorems from [AGRS10] and [Ch23].

13. Embedding model, minimality and removal process

13.1. Combintorial preparations. Let Sn be the symmetric group permuting the inte-
gers {1, . . . , n}.

Definition 13.1. Let w ∈ Sn. For 1 ≤ k ≤ n and 1 ≤ l ≤ n, define

w[k, l] := | {a : 1 ≤ a ≤ k,w(a) ≥ l} |.

We shall write ≤B to be the Bruhat ordering on Sn i.e. w′ ≤B w if and only if w′ is a
subword of a reduced expression of w. We write w′ <B w if w′ ≤B w and w′ ̸= w.

Proposition 13.2. [BB05, Theorem 2.1.5] Let w,w′ ∈ Sn. Then the following statements
are equivalent:

(1) w′ ≤B w;
(2) w′[k, l] ≤ w[k, l] for any k, l.

We shall now discuss a special situation. Let Sn−i,i be the set of minimal representatives
in the cosets in Sn/(Sn−i × Si). It is well-known that w ∈ Sn−i,i if and only if

• w(k) < w(l) if k, l ∈ {1, . . . , n− i};
• w(k) < w(l) if k, l ∈ {n− i+ 1, . . . , n}.

Proposition 13.3. Let w,w′ ∈ Sn−i,i. The following statements are equivalent:
(1) w′ ≤B w;
(2) w′(k) < w(k) for all k = 1, . . . , n− i;
(3) w′(k) > w(k) for all k = n− i+ 1, . . . , n.

Proof. Note that w′ ≤B w if and only if w′−1 ≤B w−1. We first prove (2)⇒(1).
Let xl be the smallest integer in {1, . . . , n− i} such that w−1(xl) ≥ l if it exists and let

xl = n− i+ 1 if such integer does not exist. We have the following formulae:
(i) If k ≤ n− i,

w[k, l] = max {0, k − x+ 1} .
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(ii) If k > n− i, let k′ = k − (n− i). Then

w[k, l] = max {0, k′ − (l − x)}+ (n− i)− x+ 1

Note that when l ≤ k′, the formula becomes w′−1[k, l] = k − l + 1.
We similarly have the formula for w′[k, l] and we shall replace the respective xl’s by x′

l’s
in the above discussions. Now, by using (2), we have that xl ≤ x′

l for all l. Thus, if we are
in Case (i), it is clear that w′[k, l] ≤ w[k, l]. If we are now in Case (ii), we only have to
additionaly note that k− l+1 is always a lower bound for w[k, l]. By Proposition 13.2, we
then have (1).

We now prove (1)⇒(2). Suppose (2) does not hold to arrive a contradiction. Then there
exists a smallest k∗ in {1, . . . , n− i} such that w′(k∗) > w−1(k∗). Let l∗ = w′(k∗). Then
w′[k∗, l∗] = 1, but w−1[k∗, l∗] = 0.

We now prove (1)⇔(3). Let ι : Sn → Sn be the involution given by i ↔ n − i + 1
(i = 1, . . . n). This induces a natural bijection between (Sn−i×Si)\Sn and (Si×Sn−i)\Sn.
Then (3) follows from translation under the bijection and the proved equivalence of (1) and
(2). □

13.2. Embedding model and removal process.

Proposition 13.4. Let h ∈ Multρ. Let l = labs(∆). Then there exists an embedding

λ̃(r(∆, h))⊠ St(∆) ↪→ λ̃(h)Nl
.

Proof. Write the segments in m as ∆i = [ai, bi]ρ (i = 1, . . . , r). We arrange the segments
in m satisfying:

• b1 ≤ b2 ≤ . . . ≤ br;
• if bi = bi+1, then ai+1 ≥ ai.

We now apply the geometric lemma on λ̃(m)Nl
. We first write the segments as:

∆1 = [a1, b1]ρ, . . . ,∆r = [ar, br]ρ.

and ∆ = [a, b]ρ. Set

∆+,lk
k = [ak + lk, bk]ρ, ∆−,lk

k = [ak, ak + lk − 1]ρ

Those are possiby empty sets.
Then the layers arising from the geometric lemma takes the form:

(∗) (St(∆+,l1
1 )× . . .× St(∆+,lr

r ))⊠ (St(∆−,l1
1 )× . . .× St(∆−,lr

r ),

where l1, . . . , lr run for all integers such that l1 + . . .+ lr = l/deg(ρ). We now describe the
underlying element in (St1 × . . . × Str ) \ Sn/(Sn−i × Si) corresponding to the geometric
lemma. Let d = deg(ρ). Let tk = labs(∆

+,lk
k ). The assignment takes the form:

n− (j − 1) 7→ t1 + . . .+ tr−1 + tr − (j − 1) for j = 1, . . . , lrd ,

(n− lr)− (j − 1) 7→ t1 + . . .+ tr−1 − (j − 1) for j = 1, . . . , lr−1d,

...
(n− l2 − . . .− lr)− (j − 1) 7→ t1 − (j − 1) for j = 1, . . . , l1d .

The assignment for x < n− l1d− l2d− . . .− lrd is then uniquely determined by using the
properties of elements in Sn/(Sn−i × Si) stated before Proposition 13.2.

We now consider a specific layer from the geometric lemma. The segments are chosen
in the order as the sequence removal process labelled as:

∆p1
, . . . ,∆pe

.(13.5)
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For those indexes, if there is more than one segment for ∆pi
, we always choose the one of

smaller index pi. By using the nesting property and our arrangement of segments in m, we
have that

p1 > p2 > . . . > pe.

If k ̸= pi for some i = 1, . . . , e, then we set l̃k = 0. If k = pi for some i = 1, . . . , e− 1, then
we set l̃k = api−1

− api
. If k = pe, then we set l̃k = b− ape

.
We now compare study layers of the geometric lemma of the form (*) such that, as sets,

∆+,l1
1 ∪ . . . ∪∆+,lr

r = ∆.

For such layer, we say it is in standard order if

a(∆+,lx
1 ) ≤ a(∆+,ly

r )

for any x < y with lx, ly ̸= 0.
We now analyse some behaviours of two cases.
(1) Case 1: ∆+,l1

1 , . . . ,∆+,lr
r are in standard order. Let q1 < . . . < qk be all the indexes

such that lqx ̸= 0. We first prove the following claim:

Claim 1: The sequence ∆q1 , . . . ,∆qk satisfies the nesting property i.e.

∆q1 ⊃ . . . ⊃ ∆qk .

Proof of Claim 1: Suppose the sequence does not satisfy the nesting property.
Since the nesting property is not transitive, we have that a pair ∆qx ,∆qx+1 does
not satisfy the nesting property. Due to the arrangement of the segments in m, we
must have that bqx < bqx+1

and so the violation of the nestng property implies that

aqx < aqx+1
.

However, this then contradicts that the sequence is in standard order.

As a consequence of Claim 1, we also ahve that lqi = aqi−1 − aqi .
Let w∗ be the fixed element in (St1 × . . . × Str ) \ Sn/(Sn−i × Si) associated to

(13.5) and let w be the element in (St1 × . . .× Str ) \ Sn/(Sn−i × Si) associated to
any layer in standard order in the sense defined above with w ̸= w∗.

Claim 2: w ̸≤B w′.
Proof of Claim 2: The strategy is to apply Proposition 13.3. Let i∗ be the largest
integer such that pi∗ = qi∗ . Set i∗ = 0 if such integer does not exist i.e. p1 ̸= q1.

If i∗ = r, then qi∗+1 is also not defined. Otherwise, by the nesting property
shown in Claim 1, we obtain a contradiction to choices of segments in the removal
sequence for (∆, h). This implies that w′ = w, giving a contradiction.

Thus i∗ < r. Now we compare ∆pi∗+1
and ∆qi∗+1

. By using Definition 3.1(2)
and Claim 1, we must have that

api∗+1
≤ aqi∗+1

,

or qi∗+1 is not defined.
We further divide into two subcases.
• ap∗+1 = aqi∗+1

. But now, we must have that bqi∗+1
≥ bp∗+1 by the nesting

property in Claim 1 again. Then, from our arrangements and choices, qi∗+1 >

pi∗+1. As noted from above that lq1 = l̃p1
, . . . , lqi∗ = l̃pi∗ , one checks that

w(n− l1 − . . .− li∗ − 1) > w∗(n− l1 − . . .− li∗ − 1)
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and so w ̸≤B w′ by Proposition 13.3.
• ap∗+1 > aqi∗+1

or qi∗+1 is not defined. In such case, lqi∗ > l̃pi∗ . Hence we also
have that:

w(n− l1 − . . .− li∗ − 1) > w∗(n− l1 − . . .− li∗ − 1)

and so again w ̸≤B w′ by Proposition 13.3.
(2) Case 2: ∆+,l1

1 , . . . ,∆+,lr
r are not in standard order.

Let ωl1,...,lr = St(∆−,l1
1 )× . . .× St(∆−,lr

r ) and similarly let ωl̃1,...,l̃r
.

Claim 3: Let l̃ = l̃1 + . . .+ l̃r. For all j,

ExtjG
n−l̃

×G
l̃
(ωl̃1,...,l̃r

⊠ St(∆), ωl1,...,lr ⊠ St(∆+,l1
1 )× . . .× St(∆+,lr

r )) = 0

Proof of Claim 3: We apply Frobenius reciprocity on the second factor. Then the
Jacquet module of St(∆) takes the form

St(∆′
1)⊠ . . .⊠ St(∆′

r)

with ∆′
1, . . . ,∆

′
r in standard order. Since ∆+,l1

1 , . . . ,∆+,lr
r are not in standard

order, an argument on comparing cuspidal support gives

ExtjG
l̃
(St(∆),St(∆′

1)⊠ . . .⊠ St(∆′
r)) = 0

for all j. Then Künneth formula then gives the claim.
We now go back to the proof. The element w∗ ∈ (St1 × . . . × Str ) \ Sn/(Sn−i × Si) is

defined as above. For each w ∈ (St1 × . . .×Str )\Sn/(Sn−i×Si), let κ(w) be the associated
layer taking the form (*). Note that ωl̃1,...,l̃r

∼= λ̃(r(∆, h)).
Let κ≤w∗ (resp. κ<w∗) be the submodule of λ̃(h)Nl

that consists of only the layers
associated to w′ ∈ (St1 × . . .×Str ) \Sn/(Sn−i×Si) satisfying w′ ≤B w∗ (resp. w′ <B w∗).
We have the short exact sequence:

0 → κ<w∗ → κ≤w∗ → κ(w∗) → 0.

On the other hand, there is an embedding

ωl̃1,...,l̃r
⊠ St(∆) ↪→ κ(w∗)

Hence, we have a submodule κ′ of κ≤w∗ admitting a short exact sequence:

0 → κ<w∗ → κ′ → ωl̃1,...,l̃r
⊠ St(∆) → 0.

However, for w′ < w∗, we can conclude that

ExtjGn−l×Gl
((r(∆, h))⊠ St(∆), κ(w′)) = 0)

for all j. This follows from a standard cuspdial support argument if the Gl-part of κ(w′)
does not have the same cuspidal support as St(∆), and follows from Claim 2 and Claim 3
otherwise. In other words, we have:

κ′ ∼= κ<w∗ ⊕ λ̃(r(∆, h))⊠ St(∆).

This then gives the following desired embedding

(r(∆, h))⊠ St(∆) ↪→ κ′ ↪→ κ ↪→ λ(h̃)Nl
.

□
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13.3. Conjectures. For n1 + . . . + ns = n, define Pn1,...,ns
to be the parabolic subgroup

of Gn generated by the matrices diag(g1, . . . , gs) (each gi ∈ Gni
) and upper triangular

matrices. Let Nn1,...,ns
be the unipotent radical of Pn1,...,ns

.
We end with some conjectures for the embedding model, which are possibly used to

interpret some results in this article from representation-theoretic viewpoint:

Conjecture 13.5. Let h ∈ Multρ. The embedding in Proposition 13.4 is unique.

We remark that Conjecture 13.5 is not a mere consequence of the multiplicity one the-
orem for standard representations in [Ch23].

Conjecture 13.6. Let h ∈ Multρ. Let n ∈ Multρ be minimal to h. Let l = labs(n). Then
there exists a unique embedding:

λ̃(r(n, h))⊠ λ̃(n) ↪→ λ̃(h)Nl
.

Proposition 13.4 is a special case of Conjecture 13.6.

Conjecture 13.7. Let π ∈ Irrρ. Let n ∈ Multρ be minimal to π. Let h = hd(π). Let
l1 = labs(n) and let l2 = labs(hd(π))− labs(n). Suppose Conjectures 11.3 and 13.6 hold. We
have the following diagram of maps:

Dh(π)⊠ λ̃(r(n, π))⊠ λ̃(n) �
�ι1 // Dh(π)⊠ λ̃(h)Nl2,l1

� � ι2 // πNn−l1−l2,l2,l1

Dn(π)Nn−l1−l2,l2
⊠ λ̃(n)

?�

ι3

OO
,

where
• ι1 is the map in Conjecture 13.6.
• ι2 is the map induced from the unique embedding Dh(π)⊠ λ̃(h) in Conjecture 11.3
• ι3 is the map induced from the unique embedding Dn(π) ⊠ λ̃(n) ↪→ πn−l1,l1 in

Conjecture 11.3.
Then ι2 ◦ ι1 factors through ι3.

Part 4. Appendices

14. Appendix A: Non-isomorphic derivatives

We prove a converse of Proposition 11.1 in this appendix. For a ladder representation or
a generic representation σ of Gk, let Iσ(π) be the unique submodule of π × σ (see [LM16],
also see [Ch22+, Ch22+d]).

14.1. Non-isomorphic integrals.

Proposition 14.1. Let π ∈ Irrρ. Let ∆1,∆2 be two linked segments. Let ∆′
1 = ∆1∪∆2 and

let ∆′
2 = ∆1∩∆2 (possibly the empty set). Let σ = St({∆1,∆2}) and let σ′ = St(∆′

1+∆′
2).

Then Iσ(π) ̸∼= Iσ′(π).

Proof. We shall use the invariant mx(.,∆) to distinguish the two representations. Write
∆1 = [a1, b1]ρ and ∆2 = [a2, b2]ρ. Switching labels if necessary, we may and shall assume
a1 < a2. We shall prove by an induction on the sum labs(∆1) + labs(∆2). When the sum is
2, the argument is similar to the cases below and we omit the details.
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Case 1: a1 ̸= a2 − 1. Let k = ε[a1]ρ(σ). We have that ε[a1]ρ(Iσ(π)), ε[a2]ρ(Iσ′(π)) =

ε[a1]ρ(π) + 1. Let κ = St({−∆1,∆2}) and let κ′ = St({−∆′
1,∆

′
2}. We write Da1

= D[a1]ρ .
Furthermore,

Dk+1
a1

(Iσ(π)) = Iκ(D
k
a1
(π)), Dk+1

a1
(Iσ′(π)) = Iκ′(Dk

a1
(π)).

Then, by induction, we have that Iκ(D
k
a1
(π)) ̸∼= Iκ′(Dk

a1
(π)) as desired.

Case 2: a1 = a2 − 1. In this case, let m = mx(π,∆1). Then

π ↪→ Dm(π)× St(m)

Now let ∆̃ = [a2, b1]ρ = ∆1 ∩∆2 and let σ̃ = D∆̃(σ). We have that

Iσ(π) ↪→ π × σ

↪→ Dm(π)× St(m)× σ

∼= Dm(π)× σ × St(m)

↪→ Dm(π)× σ̃ × St(∆̃ +m),

where the isomorphism in the third line follows from St(∆′) × σ ∼= σ × St(∆′) for any
∆1-saturated segment ∆′ (see e.g. [MW86, Lemme II 10.1]).

Since mx(Dm(π),∆1) = ∅ and mx(σ̃,∆1) = ∅, we have that

mx(Iσ(π),∆1) = m+ ∆̃

The last equality follows from an application on the geometric lemma (see details from the
proof of [Ch22+, Proposition 11.1]).

Similarly, let σ̃′ = D∆1 ◦D∆̃(π). We also have that:

Iσ′(π) ↪→ π × σ′

↪→ Dm(π)× St(m)× σ′

∼= Dm(π)× σ′ × St(m)

↪→ Dm(π)× σ̃′ × St(∆1)× St(∆̃)× St(m)

↪→ Dm(π)× σ̃′ × St(m+∆1 + ∆̃)

Again, mx(Dm(π),∆1) = ∅ and mx(σ̃′,∆1) = ∅. Thus,

mx(Iσ′(π),∆1) = m+∆1 + ∆̃.

Thus, comparing the invariant mx(.,∆1), we have Iσ(π) ̸∼= Iσ′(π). □

It is an interesting to investigate if an analogue of Proposition 14.1 can be obtained if
one replaces essentially square-integrable representations by other interesting representa-
tions such as Speh representations and ladder representations. The composition factors for
parabolically induced from Speh representations and ladder representations are studied in
[Ta15] and [Gu21], and so it is possible to develop a parallel theory from those via above
approach.

14.2. Consequences. We similarly define those notions for derivatives for ladder repre-
sentations (also see e.g. [Ch22+c]). If there exists ω ∈ Irr(Gn−k) such that ω ⊠ σ ↪→ πNk

for σ defined in the above lemma, then denote such ω by Dσ(π). Otherwise, set Dσ(π) = 0.

Corollary 14.2. We use the notations in Proposition 14.1. Then Dσ(π) ̸∼= Dσ′(π) if both
terms are non-zero.

Proof. Let π′ = Dσ(π). Then Iσ(π
′) ̸∼= Iσ′(π′) and so π ̸∼= Iσ′ ◦Dσ(π). Applying Dσ′ on

both sides, we obtain the corollary. □
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Corollary 14.3. Let ∆1,∆2 ∈ Segρ such that ∆1 < ∆2. Let π ∈ Irrρ. Suppose D∆2
◦

D∆1(π) ̸= 0. If the non-zero map

D∆2
◦D∆1

(π)⊠ (St(∆1)× St(∆2)) → πNla(∆1)+la(∆2)

is injective, then {∆1,∆2} is minimal to π.

Proof. If the map is injective, then D∆2
◦ D∆1

(π) ⊠ St({∆1 +∆2}) is a submodule of
πNla(∆1)+la(∆2)

. This implies that

D∆2 ◦D∆1(π)
∼= DSt(∆1+∆2)(π).

Then the corollary follows from Corollary 14.2. □

15. Appendix B: Applications

15.1. Minimality under ∆-reduced condition.

Corollary 15.1. Let π ∈ Irrρ. Let n ∈ Multρ be minimal to π. Let ∆ be a segment.
Suppose b(∆′) < b(∆) for any segment ∆′ ∈ n with b(∆′) ̸= b(∆). If η∆(Dn(π)) = 0, then
mx(π,∆) ⊆ n.

Proof. Let ∆ = [a, b]ρ. Let p = mx(π,∆). Let p′ be all the segments ∆′ in n such that
b(∆′) = b and ∆′ ⊂ ∆.

We first prove the following claim:
Claim: |p′| ≥ |p|.

Proof of Claim: We also let p′′ be all the segments ∆′ in n such that b(∆′) = b and ∆ ⊊ ∆′.
Note that

η∆(Dp′′ ◦Dn−p′′(π)) = η∆(Dn−p′′(π)).

Hence, we also have η∆(Dn−p′′(π)) = 0. But then, by counting the multiplicity at b(∆),
we must have that |p′| ≥ |p|. This proves the claim.

If p ̸= p′, then Claim 1 implies that there exists a ≤ c ≤ b such that the number of
segments [c, b]ρ in p′ is strictly greater than ε[c,b]ρ(π). Let c∗ be such smallest integer. Now
let ñ be the submultisegment of n whose segments ∆′ satisfy a(∆′) < a. By the subsequent
property, ñ + [c∗, b]ρ and ñ + p′ are still minimal to π. Now, by Proposition 4.10 and the
minimality of ñ + [c∗, b]ρ, ε[c∗,b]ρ(r(ñ, π)) = ε[c∗,b]ρ(π). But, by the admissibility of ñ + p′,
ε[c∗,b]ρ(r(ñ, π)) > ε[c∗,b]ρ(π). This gives a contradiction. Thus we must have p′ = p. □

15.2. Generalized reduced decomposition. The notion of reduced decomposition is
introduced in [AL23, Section 7] for a segment ∆.

We now describe a generalization of reduced decompositin for multisegments. Let π ∈
Irrρ(Gn). Let n be minimal to π. Let b be the largest b(∆) among all segments ∆ in n.
We then choose the longest segment ∆1 ∈ n such that b(∆1) = b. Let p1 = mx(Dn(π),∆).
We now set m′

1 = n + p1. In general, n1 is not minimal to π and so one find the minimal
element, denoted by m1, in S(π,Dm1

(π)). Then, by Corollary 15.1, m1 = q1 + n2 for
some multisegment n2 and q1 = mx(π,∆). Thus, from commutativity, we now have that
Dm1

(π) ∼= Dn2
◦ Dq1

(π). Thus, one may consider that π ↪→ Dq1
(π) × St(q1) is the step

for the reduction. One can repeat the same process for n2 and then repeatedly to obtain a
sequence of triples (p1, q1, n1), . . . , (pr, qr, nr) until the process terminates. Then we obtain
a kind of reduced decompositon for π with respect to n as follows:

π ↪→ (Dqr
◦ · · · ◦Dq1

)(π)× St(qr)× . . .× St(q1).
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Let l = labs(n). One may expect there is a natural map:

Dn(π)⊠ St(n) → (Dqr ◦ · · · ◦Dq1)(π)×̇
1
(St(qr)× . . .× St(q1))Nl

,

where ×̇1 is a parabolic induction from a Gn1 ×Gn2 ×Gl-representation to aGn1+n2 ×Gl

representation. Here n1 = n− labs(q1)− . . .− labs(qr) and n2 = labs(p1) + . . .+ labs(pr).

15.3. An inductive construction of simple quotients of Bernstein-Zelevinsky
derivatives. Let π ∈ Irrρ. Let ∆ ∈ Segρ and let n ∈ Multρ. Let p = mx(π,∆). Then
Dn ◦ Dp(π) is a simple quotient of the labs(n + p)-th Bernstein-Zelevinsky derivative of
St(p)×Dp(π). Then one may ask if Dn ◦Dp(π) is also a simple quotient of the labs(n+ p)-
th Bernstein-Zelevinsky derivative of π. In a special case, we have the following criteria
using commutativity:

Proposition 15.2. We use the set-up mentioned above.
(1) Suppose n is minimal to Dp(π). Suppose further that for any segment ∆′ ∈ n,

b(∆′) < b(∆). If Dn ◦Dp(π) ∼= Dm(π) for some m ∈ Multρ, then n+ p is minimal
to π.

(2) Suppose m is minimal to π. Suppose further that for any segment ∆′ ∈ m, b(∆′) ≤
b(∆). Then Dm(π) ∼= Dn ◦Dp(π) and m = n+ p for some multisegment n minimal
to Dp(π).

Proof. We first consider (1). Suppose Dn ◦Dp(π) ∼= Dm(π) for some m ∈ Multρ. Without
loss of generality, we may assume that m is minimal to π. Then, by Corollary 15.1, m =
p+n′. By the subsequent property and commutativty property, n′ is also minimal to Dp(π)
and Dn′ ◦Dp(π) ∼= Dm(π). By Theorem 1.2, we then have that n = n′ and this implies (1).

We now consider (2). By Corollary 15.1, p ⊂ m and so m = p+n for some multisegment
n. By the subsequent property and commutativity property (Theorem 1.4), we also have
that n is minimal to Dp(π). □
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