
Neural Option Pricing for Rough Bergomi Model

Changqing Teng * and Guanglian Li†

February 6, 2024

Abstract

The rough Bergomi (rBergomi) model can accurately describe the historical and
implied volatilities, and has gained much attention in the past few years. However,
there are many hidden unknown parameters or even functions in the model. In this
work we investigate the potential of learning the forward variance curve in the rBer-
gomi model using a neural SDE. To construct an efficient solver for the neural SDE, we
propose a novel numerical scheme for simulating the volatility process using the mod-
ified summation of exponentials. Using the Wasserstein 1-distance to define the loss
function, we show that the learned forward variance curve is capable of calibrating
the price process of the underlying asset and the price of the European style options
simultaneously. Several numerical tests are provided to demonstrate its performance.

Keywords: rBergomi model, neural SDE, initial forward variance, Wasserstein 1-distance,
summation of exponentials

1 Introduction

Empirical studies of a wild range of assets volatility time-series show that the log-volatility
in practice behaves similarly to fractional Brownian motion (FBM)1 with a Hurst index
H ≈ 0.1 at any reasonable time scale [8]. Motivated by this empirical observation, several
rough stochastic volatility models have been proposed, all of which are essentially based
on fBM and involve the fractional kernel. The rough Bergomi (rBergomi) model [3] is one
recent rough volatility model that has a remarkable capability of fitting both historical and
implied volatilities.

The rBergomi model can be formulated as follows. Let St be the price of underlying
asset with the time horizon [0, T] on a given filtered probability space (Ω,F , {Ft}t≥0, Q),

*Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong. Email:
u3553440@connect.hku.hk.

†Corresponding author. Department of Mathematics, The University of Hong Kong, Pokfulam Road,
Hong Kong. Email: lotusli@maths.hku.hk.

1FBM with a Hurst index H is the unique centered Gaussian process WH(t) with autocorrelation being
E[WH

t WH
s] = 1

2 (|t|2H + |s|2H − |t− s|2H).

1

with Q being a risk-neutral martingale measure:

St = S0 exp
(
−1

2

∫ t

0
Vsds +

∫ t

0

√
VsdZs

)
, t ∈ [0, T]. (1)

Here, Vt is the spot variance process satisfying

Vt = ξ0(t) exp
(

η
√

2H
∫ t

0
(t− s)H− 1

2 dWs −
η2

2
t2H
)

, t ∈ [0, T]. (2)

S0 > 0 denotes the initial value of the underlying asset, and the parameter η is defined by

η := 2ν

√
Γ(3/2− H)

Γ(H + 1/2)Γ(2− 2H)
,

with ν being the ratio between the increment of log Vt and the FBM over (t, t + ∆t) [3,
Equation (2.1)].

The Hurst index H ∈ (0, 1/2) reflects the regularity of the volatility Vt. ξ0(·) is the
so-called initial forward variance curve, defined by ξ0(t) = EQ[Vt|F0] = E[Vt] [3]. Zt is a
standard Brownian motion:

Zt := ρWt +
√

1− ρ2W⊥t . (3)

Here, ρ ∈ (−1, 0) is the correlation parameter and W⊥t is a standard Brownian motion
independent of Wt. The price of a European option with payoff function h(·) and expiry
T is given by

P0 = E[e−rTh(ST)]. (4)

Despite its significance from a modeling perspective, using a singular kernel in the rBer-
gomi model leads to the loss of Markovian and semimartingale structure. In practice,
simulating and pricing options using this model involves several challenges. The primary
difficulty arises from the singularity of the fractional kernel

G(t) := tH− 1
2 , (5)

at t = 0, which impacts the simulation of the Volterra process given by:

It :=
√

2H
∫ t

0
G(t− s)dWs. (6)

Note that this Volterra process is a Riemann-Liouville FBM or Lévy’s definition of FBM up
to a multiplicative constant [18]. The deterministic nature of the kernel G(·) implies that
It is a centered, locally (H − ε)-Hölder continuous Gaussian process with E[I2

t] = t2H.
Furthermore, a straightforward calculation shows

E[It1 It2] = t2H
1 C

(
t2

t1

)
, for t2 > t1,

2

where for x > 1, the univariate function C(·) is given by

C(x) := 2H
∫ 1

0
(1− s)H−1/2(x− s)H−1/2ds,

indicating that It is non-stationary.
Even though the rBergomi model enjoys remarkable calibration capability with the

market data, there are many hidden unknown parameters even functions. For exam-
ple, the Hurst exponent (in a general SDE) is regarded as an unknown function H :=
H(t) : R+ → (0, 1) parameterized by a neural network in [21], which is learned using
neural SDEs. According to [3], ξ0(t) can be any given initial forward variance swap curve
consistent with the market price. In view of this fact and the high expressivity of neural
SDEs [9, 10, 14, 16, 17, 22, 23], in this work, we propose to parameterize the initial forward
variance curve ξ0(t) using a feedforward neural network:

ξ0(t) = ξ0(t; θ), (7)

where θ represents the weight parameter vector of the neural network. The training data
are generated via a suitable numerical scheme for a given target initial forward variance
curve ξ0(t).

Motivated by the implementation in [7], we adopt the Wasserstein metric as the loss
function to train the weights θ. Since the Wasserstein loss is convex and has a unique
global minima, any SDE maybe learnt in the infinite data limit [13]. Remarkably, the
attained Wasserstein-1 distance during the training is a natural upper bound for the dis-
crepancy between the exact option price P0 and the learned option price P0(θ

∗) given by
the neural SDE. This in particular implies that if the approximation of the underlying dy-
namics of stock price St is accurate to some level, then the European option price P0 with
this stock as the underlying asset will be accurate to the same level. In this manner, the
loss can realize two optimization goals simultaneously.

To generate the training data to learn θ, we need to jointly simulate the Volterra process
It and the underlying Brownian motion Zt for the stock price. The non-stationarity feature
and the joint simulation requirement make Cholesky factorization [3] the only available
exact method. However, it has an O(n3) complexity for the Cholesky factorization, O(n2)
complexity and O(n2) storage with n being the total number of time steps. Clearly, the
method is infeasible for large n. The most well known method to reduce the computa-
tional complexity and storage cost is the hybrid scheme [4]. The hybrid scheme approx-
imates the kernel G(·) by a power function near zero and by a step function elsewhere,
which yields an approximation combining the Wiener integrals of the power function with
a Riemann sum. Since the fractional kernel G(·) is a power function, it is exact near zero.
Its computational complexity is O(n log n) and storage cost is O(n).

In this work, we propose an efficient modified summation of exponentials (mSOE)
based method (16) to simulate (1)-(2) (to facilitate the training of the neural SDE). Simi-
lar approximations have already been considered, e.g. by Bayer and Breneis [2], and Abi
Jaber and El Euch [1]. We further enhance the numerical performance by keeping the ker-
nel exact near the singularity, which achieves high accuracy with the fewest number of
summation terms N. Numerical experiments show that the mSOE scheme considerably

3

improve the prevalent hybrid scheme [4] in terms of accuracy, while having less com-
putational complexity O(Nn) and storage costs O(N). Besides the rBergomi model, the
proposed approach is applicable to a wide class of stochastic volatility models, especially
the rough volatility models with completely monotone kernels.

In sum, the contributions of this work are three-fold. First, we derive an efficient mod-
ified sum-of-exponentials (mSOE) based method (16) to solve (1)-(2) even with very small
Hurst parameter H ∈ (0, 1/2). Second, we propose to learn the forward variance curve
by the neural SDE using the loss function based on the Wasserstein 1-distance, which can
learn the underlying dynamics of the stock price as well as the European option price.
Third and last, the mSOE scheme is further utilized to obtain the training data to train our
proposed neural SDE model and serves as the solver for the neural SDE, which improves
the efficiency significantly.

The remaining of the paper is organized as follows. In Section 2, we introduce an ap-
proximation of the singular kernel G(·) by the mSOE, and then describe two approaches
for obtaining them. Based on the mSOE, we propose a numerical scheme for simulating
the rBergomi model (1)-(2). We introduce in Section 3 the neural SDE model and describe
the training of the model. We illustrate in Section 4 the numerical performance of the
mSOE scheme. Moreover, several numerical experiments on the performance of our neu-
ral SDE model are shown for different target initial forward variance curves. Finally, we
summarize the main findings in Section 5.

2 Simulation of the rBergomi model

In this section, we develop an mSOE scheme for efficiently simulating the rBergomi model
(1)-(2). Throughout, we consider an equidistant temporal grid 0 = t0 < t1 < · · · < tn = T
with a time stepping size τ := T/n and ti := iτ.

2.1 Modified SOE based numerical scheme

The non-Markovian nature of the Gaussian process It in (6) poses multiple theoretical
and numerical challenges. A tractable and flexible Markovian approximation is highly
desirable. By the well-known Bernstein’s theorem [25], a completely monotone function
(i.e., functions that satisfy (−1)kg(k)(x) ≥ 0 for all x > 0 and k = 0, 1, 2, · · ·) can be
represented as the Laplace transform of a nonnegative measure. We apply this result to
the fractional kernel G(·) and obtain

G(t) =
1

Γ(1
2 − H)

∫ ∞

0
e−xtx−H− 1

2 dx = :
∫ ∞

0
e−xtµ(dx) (8)

where µ(dx) = w(x)dx, with w(x) = 1
Γ(1

2−H)
x−H− 1

2 . Γ(·) denotes Euler’s gamma func-

tion, defined by Γ(z) =
∫ ∞

0 sz−1e−sds for <(z) > 0. That is, G(t) is an infinite mixture of
exponentials.

4

The stochastic Fubini theorem implies

It =
√

2H
∫ t

0
G(t− s)dWs =

√
2H
∫ ∞

0

∫ t

0
e−x(t−s)dWsµ(dx)

=:
√

2H
∫ ∞

0
Yx

t µ(dx). (9)

Note that for any fixed x ≥ 0, (Yx
t ; t ≥ 0) is an Ornstein-Uhlenbeck process with parameter

x, solving the SDE dYx
t = −xYx

t dt + dWt starting from the origin. Therefore, I(t) is a
linear functional of the infinite-dimensional process Yt := (Yx

t , x ≥ 0) [6]. We propose to
simulate It exactly near t and apply numerical quadrature to (8) elsewhere to enhance the
computational efficiency, and refer the resulting method to as the modified SOE (mSOE)
scheme.

Summation of exponentials can be utilized to approximate the completely monotone
functions g(x). This assumption covers most non-negative, non-increasing and smooth
functions and is less restrictive than the requirement on the hybrid scheme [20].

Remark 1. For the truncated Brownian semistationary process Yt of the form Yt =
∫ t

0 g(t−
s)σsdWs, the hybrid scheme requires that the kernel g(·) to satisfy the following two con-

ditions: (a) There exists an Lg(x) ∈ C1((0, 1]) satisfying lim
x→0

Lg(tx)
Lg(x) = 1 for any t > 0 and

the derivative L′g satisfying |L′g(x)| ≤ C(1 + x−1) for x ∈ (0, 1] such that

g(x) = xαLg(x), x ∈ (0, 1], α ∈ (−0.5, 0.5)\{0}.

(b) g is differentiable on (0, ∞).

Condition (a) implies that g(·) does not allow for strong singularity near the origin
such that it can be well approximated by a certain power function. However, the rough
fractional kernel cxα with α ∈ [−1,−0.5] fails to satisfy this assumption.

Common examples of completely monotone functions are the exponential kernel ce−λx

with nonnegative parameters c and λ, the rough fractional kernel cxα with c ≥ 0 and α < 0
and the shifted power law-kernel (1 + t)β with β ≤ 0. More flexible kernels can be con-
structed from these building blocks as complete monotonicity is preserved by summation
and products [19, Theorem 1]. The approximation property of the summation of exponen-
tials is guaranteed by the following theorem.

Theorem 2.1 ([5, Theorem 3.4]). Let g(·) be completely monotone and analytic for <(x) > 0,
and let 0 < a < b. Then there exists a uniform approximation ĝ(x) :=

∑n
j=1 ωje

−λjx on the
interval [a, b] such that

lim
n→∞
‖g− ĝ‖1/n

∞ ≤ σ−2.

Here, σ = exp(πK(k)
K′(k)), K(k) = K

′(k′) and K′(k) =
∫ ∞

0
dt√

(k2+t2)(12+t2)
, with k2 + (k′)2 = 1.

The proposed mSOE scheme relies on replacing the kernel G(·) by Ĝ(·), which is de-

5

fined by

Ĝ(t) :=

tH− 1

2 , t ∈ [t0, t1),
N∑

j=1

ωje
−λjt, t ∈ [t1, tn],

(10)

for certain non-negative paired sequence {(ωj, λj)}N
j=1, where λj’s are the interpolation

points (nodes) and ωj’s are the corresponding weights. This scheme is also referred to
as the mSOE-N scheme below. By replacing G(·) with Ĝ in (5), we derive the associated
approximation Î(ti) for Iti ,

Î(ti) :=
√

2H
∫ ti

ti−1

(ti − s)H− 1
2 dWs +

√
2H

N∑
j=1

ωj

∫ ti−1

0
e−λj(ti−s)dWs. (11)

Then the Itô isometry implies

E
[
|I(ti)− Î(ti)|2

]
= 2H

∫ ti−1

0
|G(ti − s)− Ĝ(ti − s)|2ds

= 2H
∫ ti

t1

|G(s)− Ĝ(s)|2ds. (12)

This indicates that we only need to choose non-negative paired sequence {(ωj, λj)}N
j=1

which minimize
∫ ti

t1
|G(s)− Ĝ(s)|2ds in order to obtain a good approximation of I(ti) in

the sense of pointwise mean square error. Next, we describe two known approaches to
obtain the non-negative paired sequence {(ωj, λj)}N

j=1 in (10). Both are essentially based
on Gauss quadrature.

Summation of exponentials: approach A

Approach A in [2] applies m-point Gauss-Jacobi quadrature with weight function x−H− 1
2

to n geometrically spaced intervals [ζi, ζi+1]i=0,··· ,n−1 and uses a Riemann-type approxi-
mation on the interval [0, ζ0]. The resulting approximator ĜA(t) with N + 1 number of
summations is given by

ĜA(t) :=
N∑

j=0

ωje
−λjt t ∈ [t1, tn],

where λ0 = 0 and ω0 = 1
Γ(1

2−H)

∫ ζ0
0 x−H− 1

2 dx. Let N := nm be the prespecified total

number of nodes. The parameters m, n and ζi are computed based on a set of parameters
(α, β, a, b) ∈ (0, ∞) as follows.

m =

⌈
β

A

√
N
⌉

, n =

⌊
A
β

√
N
⌋
(mn ≈ N),

6

A =

(
1
H

+
1

3/2− H

)1/2

,

ζ0 = a exp
(
− α

(3/2− H)A

√
N
)

, ζn = b exp
(α

HA

√
N
)

,

ζi = ζ0

(
ζn

ζ0

)i/n
, i = 0, · · · , n.

The following lemma gives the approximation error of the above Gaussian quadrature,
which is a modification of [2, lemmas 2.8 and 2.9].

Lemma 2.1. Let (ωj)
nm
j=1 be the weights and (λj)

nm
j=1 be the nodes of Gaussian quadrature on the

intervals [ζi, ζi+1]i=0,··· ,n−1 computed on the set of parameters (α, β, 1, 1). Then the following
error estimates hold∣∣∣∣∣

∫ ζ0

0
e−xtµ(dx)−ω0

∣∣∣∣∣ ≤ t
Γ(1

2 − H)(3
2 − H)

exp
(
− α

A

√
N
)

,∣∣∣∣∣∣
∫ ζn

ζ0

e−xtµ(dx)−
nm∑
j=1

ωje
−λjt

∣∣∣∣∣∣ ≤
√

5π3

18
n
(
eαβ − 1

)
tH− 1

2

Γ(1
2 − H)22m+1mH

exp
(

2β

A

√
N log

(
eαβ − 1

))
,

∣∣∣∣∫ ∞

ζn

e−xtµ(dx)
∣∣∣∣ ≤ 1

tΓ(1
2 − H)ζn

H+ 1
2

exp(−ζnt).

Summation of exponentials: approach B

Approach B in [11] approximates the kernel G(t) efficiently on the interval [t1, tn] with
the desired precision ε > 0. It applies n0-point Gauss-Jacobi quadrature on the interval
[0, 2−M] with the weight function x−H− 1

2 where n0 = O(log 1
ε), M = O(log T); ns-point

Gauss-Legendre quadrature on M small intervals [2j, 2j+1], j = −M, · · · ,−1, where ns =
O(log 1

ε), and nl-point Gauss-Legendre quadrature on N + 1 large intervals [2j, 2j+1], j =
0, · · · , N, where nl = O(log 1

ε + log 1
τ), N = O(log log 1

ε + log 1
τ) [11, Theorem 2.1]. The

resulting approximation ĜB(t) reads,

ĜB(t) =
n0∑

k=1

ω0,ke−λ0,kt +
−1∑

j=−M

ns∑
k=1

ωj,ke−λj,ktλ
−H− 1

2
j,k +

N∑
j=0

nl∑
k=1

ωj,ke−λj,ktλ
−H− 1

2
j,k t ∈ [t1, tn],

(13)

where the λ
−H− 1

2
j,k terms could be absorbed into the corresponding ωj,ks so that the approx-

imation is in the form of (10). There holds |G(t)− ĜB(t)| ≤ ε . For further optimization, a
modified Prony’s method is applied on the interval (0, 1) and standard model reduction
method is applied on [1, 2N+1] to reduce the number of exponentials needed.

The approximation error is given below, which is a slight modification of [11, Lemmas
2.2, 2.3 and 2.4].

7

Table 1: Parameters for mSOE scheme based on approach B
with H = 0.07, ε = 0.0008 and N = 20.

j ωj λj j ωj λj

1 0.26118 0.47726 11 1.28121 1.92749
2 0.19002 0.22777 12 1.76098 40.38675
3 0.13840 0.108690 13 2.42043 84.62266
4 0.10717 5.11098 ×10−2 14 3.32681 177.31051
5 0.11366 1.93668 ×10−2 15 4.57262 371.52005
6 0.14757 2.04153 ×10−3 16 6.28495 778.44877
7 0.35898 1 17 8.63850 1631.08960
8 0.49341 2.09531 18 11.87339 3417.63439
9 0.67818 4.390310 19 16.31967 7160.99521

10 0.93214 9.19906 20 22.43096 15004.4875

Lemma 2.2. Let a = 2−M, p = 2N+1 and follow the settings in (13). Then the following error
estimates hold∣∣∣∣∣

∫ a

0
e−xtµ(dx)−

n0∑
k=1

w0,ke−λ0.kt

∣∣∣∣∣ ≤ 4
√

π

Γ(1
2 − H)

a
1
2−Hn

3
2
0

(
eaT

8(n0 − 1)

)2n0

,∣∣∣∣∣∣
∫ p

a
e−xtµ(dx)−

−1∑
j=−M

ns∑
k=1

ωj,ke−λj,ktλ
−H− 1

2
j,k −

N∑
j=0

nl∑
k=1

ωj,ke−λj,ktλ
−H− 1

2
j,k

∣∣∣∣∣∣
≤ 2

3
2 π

Γ(1
2 − H)

(
e

1
e

4

)max(ns,nl)
2(

1
2−H)(N+1) − 2−(

1
2−H)M

2
1
2−H − 1

,∣∣∣∣∣
∫ ∞

p
e−xtµ(dx)

∣∣∣∣∣ ≤ 1

τΓ(1
2 − H)pH+ 1

2
e−τp.

We shall compare Approaches A and B in Section 4, the result shows that Approach
B outperforms Approach A. We present in Table 1 the parameter pairs for H = 0.07 and
N = 20. See [12, Section 3.4] for further discussions about SOE approximations for the
fractional kernel G(t).

2.2 Numerical method based on mSOE scheme

Next we describe a numerical method to simulate (Sti , Vti) for i = 1, · · · , n based on the
mSOE scheme (11). Recall that the integral (6) can be written into a summation of the local
part and the history part

Iti+1 =
√

2H
∫ ti

0
(ti+1 − s)H− 1

2 dWs +
√

2H
∫ ti+1

ti

(ti+1 − s)H− 1
2 dWs

= : IF (ti+1) + IN (ti+1).
(14)

8

The local part IN (ti+1) ∼ N (0, τ2H) can be simulated exactly. The history part IF (ti+1) is
approximated by replacing the kernel G(·) by the mSOE Ĝ(t) (by approach B):

ĪF (ti+1) =
√

2H
N∑

j=1

ωj

∫ ti

0
e−λj(ti+1−s)dWs = :

√
2H

N∑
j=1

ωj Ī
j
F (ti+1).

Then direct computation leads to

Ī j
F (ti+1) = e−λjτ

∫ ti

0
e−λj(ti−s)dWs

= e−λjτ

(∫ ti−1

0
e−λj(ti−s)dWs +

∫ ti

ti−1

e−λj(ti−s)dWs

)

= e−λjτ

(
Ī j
F (ti) +

∫ ti

ti−1

e−λj(ti−s)dWs

)
.

Consequently, we obtain the recurrent formula for each history component

Ī j
F (ti) =

0 i = 1,

e−λjτ

(
Ī j
F (ti−1) +

∫ ti−1

ti−2

e−λj(ti−1−s)dWs

)
i > 1.

(15)

This, together with (14), implies that we need to simulate a centered (N + 2)-dimensional
Gaussian random vector at ti,

Θi :=

(
∆Wti ,

∫ ti

ti−1

e−λ1(ti−s)dWs, · · · ,
∫ ti

ti−1

e−λN(ti−s)dWs, IN (ti)

)
for i = 1, · · · , n.

Here, ∆Wti =: Wti −Wti−1 denotes the increment. Note that Θi is determined by its co-
variance matrix Σ, which is defined

Σ1,1 = τ, Σ1,l = Σl,1 =
1

λl−1

(
1− e−λl−1τ

)
, Σk,l =

1
λk−1 + λl−1

(
1− e−(λk−1+λl−1)τ

)
ΣN+2,1 = Σ1,N+2 =

√
2H

H + 1/2
τH+ 1

2

ΣN+2,l = Σl,N+2 =

√
2H

λH+1/2
l−1

γ(H + 1
2 , λl−1τ)

ΣN+2,N+2 = τ2H

for k, l = 2, · · · , N + 1, where γ(·, ·) refers to the lower incomplete gamma function. We
only need to inplement the Cholesky decomposition once since Σ is independent of i.

9

Finally, we present the two-step numerical scheme for (Sti+1 , Vti+1) for i = 0, · · · , n− 1,

S̄ti+1 = S̄ti exp
(√

V̄ti

(
ρ∆Wti+1 +

√
1− ρ2∆W⊥ti+1

)
− τ

2
V̄ti

)
,

V̄ti+1 = ξ0(ti+1) exp
(

η (ĪF (ti+1) + IN (ti+1))−
η2

2
t2
i+1

)
,

ĪF (ti+1) =
√

2H
N∑

j=1

ωj Ī
j
F (ti+1),

Ī j
F (ti+1) = e−λjτ

(
Ī j
F (ti) +

∫ ti

ti−1

e−λj(ti−s)dWs

)
.

(16)

To simulate { ĪF (ti+1)}n−1
i=1 , this mSOE-N based simulation scheme (16) only requiresO(N3)

offline computation complexity which accounts for the Cholesky decomposition of the co-
variance matrix Σ, O(Nn) computation complexity and O(N) storage.

3 Learning the forward variance curve

This section is concerned with learning the forward variance curve ξ0(t; θ) with θ being
the weight parameters from the feedforward neural network (7) by Neural SDE. Without
loss of generality, assuming S0 = 1, we can rewrite (1)-(2) as

St = 1 +
∫ t

0
Ss exp(Xs)dZs,

Xt =
1
2

log(Vt).
(17)

Upon parameterizing the forward variance curve by (7), the dynamics of the price process
and variance process are also parameterized accordingly, which is given by the following
neural SDE

St(θ) = 1 +
∫ t

0
Ss(θ) exp(Xs(θ))dZs,

Xt(θ) =
1
2

log(Vt(θ)),

Vt(θ) = ξ0(t; θ) exp
(

η I(t)− η2

2
t2H
)

.

(18)

Then we propose to use the Wasserstein-1 distance as the loss function to train this neural
SDE. That is, the learned weight parameters θ∗ are given by

θ∗ := arg min
θ

W1 (ST, ST(θ)) . (19)

Next, we recall the Wasserstein distance. Let (M, d) be a Radon space. The Wasserstein-
p distance for p ∈ [1, ∞) between two probability measures µ and ν on M with finite

10

p-moments is defined by

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)
E(x,y)∼γd(x, y)p

)1/p
,

where Γ(µ, ν) is the set of all couplings of µ and ν. A coupling γ is a joint probability
measure on M×M whose marginals are µ and ν on the first and second factors, respec-
tively. If µ and ν are real-valued, then their Wasserstein distance can be simply computed
by utilising their cumulative distribution functions [24]:

Wp(µ, ν) =

(∫ 1

0
|F−1(z)− G−1(z)|pdz

)1/p

.

In particular, when p = 1, according to the Kantorovich-Robenstein duality [24], Wasserstein-
1 distance can be represented by

W1(µ, ν) = sup
Lip(f)≤1

Ex∼µ[f (x)]−Ey∼ν[f (y)], (20)

where Lip(f) denotes the Lipschitz constant of f .
In the experiment, we work with the empirical distributions on R. If ξ and η are two

empirical measures with m samples X1, · · · , Xm and Y1, · · · , Ym, then the Wasserstein-p
distance is given by

Wp(ξ, η) =

(
1
m

m∑
i=1

|X(i) −Y(i)|p
)1/p

, (21)

where X(i) is the ith smallest value among the m samples. With St(θ∗) being the price
process of the underlying asset after training, the price P0(θ

∗) of a European option with
payoff function h(x) and expiry T is given by

P0(θ
∗) = E[e−rTh(ST(θ

∗))]. (22)

Since the payoff function h(·) is clearly Lipschitz-1 continuous, according to (20), Wasserstein-
1 distance is a natural upper bound for the pricing error of the rBergomi model. Thus, the
choice of the training loss is highly desirable.

Proposition 3.1. Set the interest rate r = 0, the Wasserstein-1 distance is a natural upper bound
for the pricing error of the rBergomi model:

|P0 − P∗0 | = |E [h(ST)]−E [h(ST(θ
∗))]| ≤W1(ST, ST(θ

∗)).

4 Numerical tests

In this section, we illustrate the performance of the proposed mSOE scheme (16) for simu-
lating (1)-(2), and demonstrate the learning of the forward variance curve (7) using neural
SDE (18).

11

4.1 Numerical test for mSOE scheme (16)

First we compare approaches A and B. They only differ in the choice of nodes λj and
weights ωj. To compare their performance in the simulation of the stochastic Volterra
process I(t), one only needs to estimate the discrepancy between G and Ĝ in L2(t1, T)-
norm (12). Thus, as the criterion for comparison, we use err := (

∫ T
t1
(G(t) − Ĝ(t))2dt)

1
2 .

We show in Figure 1(a) the err versus the number of nodes N for approaches A and B
with H = 0.07. We observe that approach B has a better error decay. This behavior is also
observed for other H ∈ (0, 1/2). Thus, we implement approach B in (10), which involves
O(N3) computational cost to obtain the non-negative tuples {(ωj, λj)}N

j=1.

1 5 10 15 20 25 30 35 40

N

1e-05

1e-4

1e-3

1e-2

0.1

1

er
r

Approach A

Approach B

(a) mSOE-N approximation error

10
0

10
1

10
2

10
3

10
4

10
-2

10
-1

W
1
(S

T
, S

T
(

*
))

|P
0
 - P

0
(

*
)|

(b) training dynamics

Figure 1: (a) The performance of the mSOE-N schemes based on approaches A and B with
τ = 0.0005, T = 1 and H = 0.07, and (b) the training dynamics.

Then we calculate the implied volatility curves using the mSOE-N based numerical
schemes with N = 2, 4, 8, 10, 32 using the parameters listed in Table 2. To ensure that the
temporal discretization error and the Monte Carlo simulation error are negligible, we take
the number of temporal steps n = 2000 and the number of samples M = 106. The resulting
implied volatility curves are shown in Figure 2, which are solved via the Newton-Raphson
method. We compare the proposed mSOE scheme with the exact method, i.e., Cholesky
decomposition, and the hybrid scheme. We observe that mSOE-4 scheme can already
accurately approximate the implied volatility curves given by the exact method. This
clearly shows the high efficiency of the proposed mSOE based scheme for simulating the
implied volatility curves.

Table 2: Parameter values
used in the rBergomi model.

S0 ξ0 η H ρ

1 0.2352 1.9 0.07 -0.9

12

-0.5 -0.3 -0.1 0.1 0.3 0.5

0.15

0.2

0.25

0.3

Exact

mSOE-2

mSOE-4

mSOE-8

mSOE-16

mSOE-32

-0.5 -0.3 -0.1 0.1 0.3 0.5

0.15

0.2

0.25

0.3

Exact

Hybrid

mSOE-10

Figure 2: The implied volatility curves σimp computed by the mSOE-N based numerical
scheme (16) with different number of summation terms N. In the plot, k = log(K/S0) is
the log-moneyness and K is the strike price.

Next, we depict in Figure 3 the root mean squared error (RMSE) of the first moment
and second moment of the following Gaussian random variable using the same set of
parameters,

G(t) := η It −
η2

2
t2H ∼ N

(
−η2

2
t2H, η2t2H

)
.

The RMSEs are defined by

RMSE 1st moment =

(n∑
i=1

(
E
[
Ĝ(ti)

]
+

η2

2
t2H
i

)2)1/2

,

RMSE 2nd moment =

 n∑
i=1

(
E
[
Ĝ(ti)

2
]
−
(

η4t4H
i

4
+ η2t2H

i

))2
1/2

,

where Ĝ(t) is the approximation of G(t) under the mSOE-N scheme or the hybrid scheme.
These quantities characterize the fundamental statistical feature of the distribution. We
observe that the mSOE-N based numerical scheme achieves high accuracy for the number
of terms N > 15, again clearly showing the high efficiency of the proposed scheme.

4.2 Numerical performance for learning the forward variance curve

Now we validate (3.1) using three examples of ground truth forward variance curves:

ξ0(t) ≡ 0.2352, (23a)
ξ0(t) = 2|Wt|, (23b)

13

0 10 20 30 40
N

10-3

10-2
R

M
S

E
 1

st
 m

om
en

t
mSOE
Hybrid

0 10 20 30 40
N

10-2

10-1

100

R
M

S
E

 2
n

d
 m

om
en

t mSOE
Hybrid

Figure 3: The RMSEs for the first and second moments generated by the mSOE-N based
numerical scheme (16) and the hybrid scheme.

ξ0(t) = 0.1|WH
t | with H = 0.07. (23c)

The first example (23a) corresponds to a constant forward variance curve. The second
example (23b) takes a scaled sample path of Brownian motion as the forward variance
curve, and the third example (23c) utilises a scaled path of fractional Brownian motion as
the forward variance curve.

tInput

1

· · ·

· · ·

· · ·

100

1

· · ·

· · ·

· · ·

100

1

· · ·

· · ·

· · ·

100

ξ(t; θ) Output

Hidden
layer1

Input
layer

Hidden
layer2

Hidden
layer3

Output
layer

Figure 4: Architecture: 3-layer feedforward neural network.

The initial forward variance curve ξ0 is parameterized by a feed forward neural net-
work, cf. (7), which has 3 hidden layers, width 100, and leaky ReLU activations; see Fig. 4
for a schematic illustration. The weights of each model were carefully initialized in order
to prevent gradient vanishing.

To generate the training data, we use the stock price samples generated by the scheme
(16). The total number of samples used in the experiments is 105. Training of the neural

14

network was performed on the first 81.92% of the dataset and the model’s performance
was evaluated on the remaining 18.08% of the dataset. Each sample is of length 2000,
which is the number of discretized time intervals. The batch size was 4096, which was
picked as large as possible that the GPU memory allowed for. Each model was trained
for 100 epochs. We consider Wasserstein-1 distance as loss metric by applying (21) to the
empirical distributions on batches of data at the final time grid of the samples.

The neural SDEs were trained using Adam [15]. The learning rate was taken to be
10−4, which was then gradually reduced until a good performance was achieved. The
training was performed on a Linux server and a NVIDIA RTX6000 GPU and takes a few
hours for each experiment. Vt(θ) in (18) was solved by the mSOE scheme to reduce the
computational complexity, then St(θ) was solved using the Euler-Maruyama method. The
example code for dataset sampling and network training will be made available at the
Github repository https://github.com/evergreen1002/Neural-option-pricing-for-rBergomi-model.

0.5 1 1.5

K

0

0.1

0.2

0.3

0.4

P
r
ic

e

P
0
()

P
0

0.5 1 1.5

K

0

0.1

0.2

0.3

0.4

P
r
ic

e

P
0
(

*
)

P
0

10
0

10
1

10
2

10
-2

10
-1

W
1
(S

T
, S

T
(

*
))

|P
0
 - P

0
(

*
)|

0.5 1 1.5

K

0

0.1

0.2

0.3

0.4

P
r
ic

e

P
0
()

P
0

0.5 1 1.5

K

0

0.1

0.2

0.3

0.4

P
r
ic

e
P

0
(

*
)

P
0

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

W
1
(S

T
,S

T
(

*
))

|P
0
-P

0
(

*
)|

0.5 1 1.5

K

0

0.1

0.2

0.3

0.4

P
r
ic

e

P
0
()

P
0

0.5 1 1.5

K

0

0.1

0.2

0.3

0.4

P
r
ic

e

P
0
(

*
)

P
0

10
0

10
2

10
-4

10
-3

10
-2

10
-1

W
1
(S

T
, S

T
(

*
))

|P
0
 - P

0
(

*
)|

Figure 5: Left to right: Empirical distribution of terminal stock price before the training,
option price before the training, empirical distribution of terminal stock price after the
training, option price after training, learning curve.

Now we present the numerical results for the learned forward variance curves in Fig-
ure 5. These three rows correspond to three different initial forward variance curves de-
fined in (23a), (23b) and (23c) used for neural network training, respectively. The first two
columns display the empirical distributions ST(θ) and the corresponding European call
option prices P0(θ) for the test set against a number of strikes before training has begun.
The next two columns display ST(θ

∗) and P0(θ
∗) after training. It is observed that ST(θ

∗)
and P0(θ

∗) closely match the exact one on the test set, thereby showing the high accu-
racy of learning the rBergomi model. The last column shows the Wasserstein-1 distance at
time T compared to the maximum error in the option price over each batch during train-
ing. These two quantities are precisely the subjects in (3.1). Only the first 500 iterations

15

https://github.com/evergreen1002/Neural-option-pricing-for-rBergomi-model

were plotted. In all cases, the training loss can be reduced to an acceptable level, so is the
error of pricing, clearly indicating the feasibility of learning within the rBergomi model.
Finally, we investigate whether the training loss can be further reduced after more itera-
tions for the first example (23a). Figure 1(b) shows the training loss against the number
of iterations. Gradient descent is applied with learning rate 10−5. We observe that the
training loss is oscillating near 0.05 even after 100,000 iterations. Indeed, the oscillation
of the loss values aggravates as the iteration further proceeds, indicating the necessity for
early stopping of the training process.

5 Conclusion

In this work, we have proposed a novel neural network based SDE model to learn the for-
ward variance curve for the rough Bergomi model. We propose a new modified summa-
tion of exponentials (mSOE) scheme to improve the efficiency of generating training data
and facilitating the training process. We have utilized the Wasserstein 1-distance as the
loss function to calibrate the dynamics of the underlying assets and the price of the Euro-
pean options simultaneously. Furthermore, several numerical experiments are provided
to demonstrate their performances, which clearly show the feasibility of neural networks
for calibrating these models. Future work includes learning all the unknown functions in
the rBergomi model (as well as other rough volatility models) by the proposed approach,
using the market data instead of the simulated data as in the present work.

Acknowledgements

GL acknowledges the support from GRF (project number: 17317122) and Early Career
Scheme (Project number: 27301921), RGC, Hong Kong.

References

[1] E. Abi Jaber and O. El Euch. Multifactor approximation of rough volatility models.
SIAM Journal on Financial Mathematics, 10(2):309–349, 2019.

[2] C. Bayer and S. Breneis. Markovian approximations of stochastic Volterra equations
with the fractional kernel. Quantitative Finance, 23(1):53–70, 2023.

[3] C. Bayer, P. Friz, and J. Gatheral. Pricing under rough volatility. Quantitative Finance,
16(6):887–904, 2016.

[4] M. Bennedsen, A. Lunde, and M. S. Pakkanen. Hybrid scheme for Brownian semis-
tationary processes. Finance and Stochastics, 21:931–965, 2017.

[5] D. Braess. Nonlinear approximation theory. Springer Science & Business Media, 2012.

[6] L. Coutin and P. Carmona. Fractional Brownian motion and the Markov property.
Electronic Communications in Probability, 3:12, 1998.

16

[7] T. DeLise. Neural options pricing. Preprint, arXiv:2105.13320, 2021.

[8] J. Gatheral, T. Jaisson, and M. Rosenbaum. Volatility is rough. In Commodities, pages
659–690. Chapman and Hall/CRC, 2022.

[9] L. Hodgkinson, C. van der Heide, F. Roosta, and M. W. Mahoney. Stochastic normal-
izing flows. arXiv preprint arXiv:2002.09547, 2020.

[10] J. Jia and A. R. Benson. Neural jump stochastic differential equations. In Advances in
Neural Information Processing Systems, volume 32, 2019.

[11] S. Jiang, J. Zhang, Q. Zhang, and Z. Zhang. Fast evaluation of the Caputo fractional
derivative and its applications to fractional diffusion equations. Communications in
Computational Physics, 21(3):650–678, 2017.

[12] B. Jin and Z. Zhou. Numerical Treatment and Analysis of Time-Fractional Evolution Equa-
tions, volume 214 of Applied Mathematical Sciences. Springer, Cham, 2023.

[13] P. Kidger, J. Foster, X. Li, and T. J. Lyons. Neural SDEs as infinite-dimensional GANs.
In International conference on machine learning, pages 5453–5463. PMLR, 2021.

[14] P. Kidger, J. Foster, X. C. Li, and T. Lyons. Efficient and accurate gradients for neural
SDEs. In Advances in Neural Information Processing Systems, volume 34, pages 18747–
18761, 2021.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd Interna-
tional Conference for Learning Representations, San Diego, 2015.

[16] X. Li, T.-K. L. Wong, R. T. Chen, and D. Duvenaud. Scalable gradients for stochastic
differential equations. In International Conference on Artificial Intelligence and Statistics,
pages 3870–3882. PMLR, 2020.

[17] X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh. Neural SDE: Stabilizing
neural ODE networks with stochastic noise. arXiv preprint arXiv:1906.02355, 2019.

[18] B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian motions, fractional noises
and applications. SIAM Review, 10(4):422–437, 1968.

[19] K. S. Miller and S. G. Samko. Completely monotonic functions. Integral Transforms
and Special Functions, 12(4):389–402, 2001.

[20] S. E. Rømer. Hybrid multifactor scheme for stochastic volterra equations with com-
pletely monotone kernels. Available at SSRN 3706253, 2022.

[21] A. Tong, T. Nguyen-Tang, T. Tran, and J. Choi. Learning fractional white noises in
neural stochastic differential equations. In Advances in Neural Information Processing
Systems, volume 35, pages 37660–37675, 2022.

[22] B. Tzen and M. Raginsky. Neural stochastic differential equations: Deep latent gaus-
sian models in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

17

[23] B. Tzen and M. Raginsky. Theoretical guarantees for sampling and inference in gen-
erative models with latent diffusions. In Conference on Learning Theory, pages 3084–
3114. PMLR, 2019.

[24] C. Villani. Topics in optimal transportation. American Mathematical Soc., Providence,
2021.

[25] D. V. Widder. The Laplace Transform, volume vol. 6 of Princeton Mathematical Series.
Princeton University Press, Princeton, NJ, 1941.

18

	Introduction
	Simulation of the rBergomi model
	Modified SOE based numerical scheme
	Numerical method based on mSOE scheme

	Learning the forward variance curve
	Numerical tests
	Numerical test for mSOE scheme (16)
	Numerical performance for learning the forward variance curve

	Conclusion

