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Abstract

We study an interacting particle method (IPM) for computing the large deviation rate function
of entropy production for diffusion processes, with emphasis on the vanishing-noise limit and high
dimensions. The crucial ingredient to obtain the rate function is the computation of the principal
eigenvalue λ of elliptic, non-self-adjoint operators. We show that this principal eigenvalue can be
approximated in terms of the spectral radius of a discretized evolution operator obtained from an
operator splitting scheme and an Euler–Maruyama scheme with a small time step size, and we show
that this spectral radius can be accessed through a large number of iterations of this discretized
semigroup, suitable for the IPM. The IPM applies naturally to problems in unbounded domains,
scales easily to high dimensions, and adapts to singular behaviors in the vanishing-noise limit. We
show numerical examples in dimensions up to 16. The numerical results show that our numerical
approximation of λ converges to the analytical vanishing-noise limit with a fixed number of particles
and a fixed time step size. Our paper appears to be the first one to obtain numerical results of
principal eigenvalue problems for non-self-adjoint operators in such high dimensions.

Keywords interacting particle methods, principal eigenvalues, large deviation rate functions,
entropy production, vanishing-noise limits, high dimensions.
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1. Introduction

The problem we are interested in concerns the time reversibility of diffusion processes, as

famously studied by Kolmogorov as early as 1937 [39]. He found among other things that,

with V a smooth potential function and b a non-conservative smooth vector field, stochastic

differential equations (SDEs) in R
d of the form

{
dXt = −∇V (Xt) dt+ b(Xt) dt+

√
2ε dBt,

X0 ∼ µ
(1.1)
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are invariant under time reversal only when b = 0 and the density of the initial measure µ

is proportional to exp(−ε−1V ); see Section 2 for precise statements of the assumptions on

V and b we will work with. While time-reversed models have a long history of applications

to fields such as signal processing [48, 55] and electric circuit theories [2, 3], and have been

adopted in recent years as a way to generate high-quality images in computer vision [56, 57],

we will focus on questions from stochastic thermodynamics. When the time reversal of a

diffusion process is still a diffusion process [1, 35], a natural question is how distinguishable

the two processes are, i.e. how irreversible the original diffusion is. One classical way to

quantify irreversibility is to compute an observable called entropy production. In the large-

time limit or the steady-state regime, the entropy production for (1.1) can be computed

through the Clausius-like entropy (Stratonovich) integral

Sε
t =

1

ε

∫ t

0

〈 b(Xs), ◦ dXs〉, (1.2)

which in the language of statistical thermodynamics is the work done by the non-conservative

part of the drift force in (1.1), rescaled by temperature [41, 44]. Here, the definition and

physical interpretation of the entropy production (1.2) for (1.1) rely on the interpretation

as a small-mass approximation (a.k.a. Kramers–Smoluchowski limit); it should be adapted

in a natural way in the presence of momentum variables, which should change sign under

time reversal; see e.g. [20, 37, 44]. We refer the readers to [19] for a discussion of other

decompositions of the drift force and to [37, 54] for a rigorous comparison with other measures

of irreversibility, including the point of view of hypothesis testing of the arrow of time. The

study of these different notions of entropy production—and more precisely of their large

deviations—has driven important theoretical progress in non-equilibrium statistical physics

since the 1990s; see e.g. [11, 22, 23, 29, 41, 44, 64]. One key feature of the theory of entropy

production is that the positivity of the mean entropy production rate is considered as a key

signature of steady non-equilibrium phenomena.

Let Probµ, ε refer to the law for the solution of (1.1) starting from an initial measure µ,

which we assume for simplicity to have a smooth, positive, rapidly decaying density with

respect to the Lebesgue measure on R
d. The large deviation rate function Iε : R → [0,∞]

in this problem is the function that gives the exponential rate of decay in t of fluctuations

of order t in Sε
t ,

Probµ,ε{t−1Sε
t ≈ s} ≍ exp (−tIε(s)) (1.3)

as t → ∞; see Section 2 for a more precise formulation of the large deviation principle. We

are interested in an efficient way of numerically computing this rate function.

Before we discuss numerical considerations, let us briefly explain how the rate function is

related to an eigenvalue computation. The moment-generating function of Sε
t with respect

to Probµ, ε is

χε
t (α) =

∫

Ct

exp(−αSε
t ) dProb

µ, ε, (1.4)
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where α ∈ R and Ct is the space C([0, t];R
d) of continuous paths in R

d over the time interval

[0, t]. Under our assumptions, the following Feynman–Kac representation of the moment-

generating function χε
t (α) holds:

χε
t(α) =

∫

Rd

(exp(tA ε,α)1) (ξ) dµ(ξ) , (1.5)

where the operator A ε,α is a second-order differential operator that is elliptic but not self-

adjoint. Such a representation dates at least back to [41, 44] and relies on Girsanov’s the-

orem and the Feynman–Kac formula; we refer to [7, 54] for rigorous proofs that cover our

hypotheses. With λε,α the principal eigenvalue (the one with the largest real part) of A ε,α,

the identity

lim
t→∞

1

t
logχε

t (α) = λε,α (1.6)

provides a spectral-theoretic point of view on the large-t behavior of the moment-generating

function, which is instrumental in the study of large deviations. Hence, the moment-

generating function is of course convex in α and it is symmetric about α = 1
2
. The spectral-

theoretic point of view provides tools for showing smoothness in α. The Legendre transform

of λε,α in the variable α is the large deviation rate function Iε in (1.3):

Iε(s) = sup
α

(−αs− λε,α) . (1.7)

The symmetry about α = 1
2
gives rise to the Gallavotti–Cohen symmetry Iε(−s) = Iε(s)+s.

In sufficiently regular situations, many statistical properties of the family (Sε
t )t>0 can be

equivalently read off the limiting cumulant-generating function λε,α or off the rate func-

tion Iε(s). For example, the asymptotic mean entropy production per unit time is both

−∂αλε,α|α=0 and the zero of Iε. Again, we refer to [7, 37, 54] for proofs and more thorough

theoretical discussions.

There are several motivations for seeking novel numerical methods for accessing Iε via

λε,α. First, trying to probe the large deviations of Sε
t from direct simulations of (1.1) and

computation of (1.2) is not realistic since these large deviations are events with exponentially

small probabilities. In most cases where rigorous theorems on entropy production are proved,

λε,α is the only available access to the rate function Iε, but admits no closed-form formula.

Second, the assumptions for these theorems are relatively stringent—most significantly by

the non-degeneracy assumption on the noise—and we are looking for ways to explore the

large deviations in situations where no rigorous results are available. We will be particularly

interested in the small-noise regime 0 < ε ≪ 1 since, under additional assumptions at the

critical points of V , [54] provides explicit formulas for the limits λ0,α = limε→0+ λ
ε,α for α in

an interval of the form (−δ, 1 + δ) and I0(s) = limε→0+ I
ε(s) for s in an interval around the

mean entropy production rate, allowing us to compare our numerical results. In the presence

of momentum variables, the vanishing-noise limit has attracted independent interest in the

physics literature since [42], due to its relation to deterministic systems; it still does to this

day [8, 54, 51]. We will come back to this point in Section 2.
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In this paper, we study an interacting particle method (IPM) [13, 18, 25, 33, 46] for

numerically computing λε,α—and thus Iε(s)—at 0 < ε ≪ 1. More precisely, we consider

an α- and ε-dependent, discrete-time semigroup obtained from an operator splitting and an

Euler–Maruyama scheme with a time step size ∆t, and then show that the spectral radius

associated with this discrete-time semigroup has the following two properties:

• on the one hand, it is accessible through large iterates of the semigroup and lends itself

to the IPM, thanks to suitable stability properties [24];

• on the other hand, it provides a good approximation of λα,ε for small ∆t, thanks to

different results from (non-self-adjoint) perturbation theory [5, 38, 63].

We also discuss techniques for setting the measure of initial conditions to obtain faster

approximations of this spectral radius.

To put things into perspective, let us briefly discuss the computational difficulties. The

following three issues pose great challenges to traditional mesh-based numerical methods

such as finite element methods [58] and finite difference methods [9, 43].

1. Unboundedness of the physical domain: Since the stochastic dynamics (1.1) is defined

in all of Rd, truncation of the domain is usually needed in mesh-based methods [34],

and this may introduce numerical errors.

2. High dimensionality : In having in mind applications to stochastic thermodynamics

in which the dimension d of Xt in (1.1) is proportional to the number of particles,

we would like to be able to handle situations where d is large, but most mesh-based

methods suffer from the curse of dimensionality.

3. Singularities in the vanishing-noise limit : With ψε,α the normalized principal eigen-

function, it is known from [26] that ε logψε,α has a nontrivial limit as ε → 0+ under cer-

tain conditions. This implies that ψε,α is asymptotically proportional to exp(−ε−1Ψα)

for some function Ψα and thus admits singularities in the vanishing-noise limit. For

mesh-based methods, finer grids are needed in order to capture the singularity.

On the other hand, the IPM provides an alternative to the computation of λε,α from the

perspective of Feynman–Kac semigroups, which has already been applied to the computation

of ground state energies of Schrödinger operators using Diffusion Monte Carlo [4, 10, 28, 31],

to the computation of effective diffusivity [49, 66, 67, 68] and KPP front speeds [50, 70], and

to non-linear filtering problems [12, 14, 15], to mention only a few. Since the IPM is based

on simulations of an SDE, it naturally applies to unbounded domains and it is independent

of whether the operator whose principal eigenvalue is sought is self-adjoint. In addition, the

IPM is essentially a Monte Carlo scheme for approximating a Feynman–Kac semigroup, and

together with resampling as a way of controlling variance it is expected to be free of the curse

of dimensionality [47]. Also, the IPM scales easily to high dimensions in terms of coding.
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In numerical examples with different values of d up to 16, the numerical approximation

of λε,α converges to its predicted vanishing-noise limit with a fixed number of particles and

a fixed time step size, which shows the scalability and robustness of our method for large d

and small ε. In these examples, the computational time spent grows linearly with respect

to d and does not significantly change with respect to ε when other numerical parameters

are fixed, including the number of particles, time step size, and final time. Moreover, the

empirical density of the particles we obtain at the final time (after resampling) accurately

captures singularities of the vanishing-noise limit, which is compatible with [26]. We point

out here that Feynman–Kac semigroups have a long history in large deviation theory; see

e.g. [16, 17, 40, 65, 69, 62] for theoretical literature and [30, 36, 45, 52, 53, 59] for numerical

literature. However, there are few theoretical results on the properties of the numerical

method and few numerical results of the challenging high-dimensional case in the existing

works.

The rest of this paper is organized as follows. In Section 2, we present the Feynman–Kac

semigroup formulation of the principal eigenvalue problem and the formulation of the large

deviation principle. In Section 3, we introduce the discrete-time semigroup at the heart

of our numerical approximation and present our theoretical results on the corresponding

spectral radius. In Section 4, we present the interacting particle algorithm and techniques

for setting the initial measure. In Section 5, we show numerical examples in dimensions up to

16 and compare them with the analytical vanishing-noise limits to find excellent agreement

with explicit theoretical predictions. Numerical experiments also allow us to probe situations

for which we are not aware of explicit theoretical predictions for the vanishing-noise limit.

Finally, we give some concluding remarks in Section 6.

Notation. Let P(Rd) be the space of all probability measures over Rd. For a measure µ with

finite mass, let (µ, ϕ) =
∫
Rd ϕ dµ for any ϕ ∈ L∞(Rd). We use C0 for the space of continuous

real-valued functions on R
d that vanish at infinity, and given a function W : Rd → [1,+∞),

we use the notation

L∞
W (Rd) =

{
ϕ ∈ L∞

loc(R
d) :

∥∥∥ ϕ
W

∥∥∥
L∞(Rd)

< +∞
}
. (1.8)

We use | · | for the Euclidean norm on R
d and ‖ · ‖ for the operator norm it induces on

d-by-d matrices.

2. Continuous-time Feynman–Kac semigroups and large deviations

This section, together with Section 3, serves to show that the principal eigenvalue λα,ε of

A α,ε in (1.4)–(1.6) can be approximated using a discretized procedure, which will then be

combined with resampling to yield our IPM in Section 4. Before proceeding further, we make

some assumptions on V and b, trying to strike a balance between optimality and readability.
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Assumption 2.1. We assume that (1) V ∈ C∞(Rd); (2) there exists a positive-definite

matrix H0 such that 〈x,H0∇V (x)〉 ≥ |x|2 whenever |x| is large enough; (3) ‖D2V (x)‖ =

o(|∇V (x)|) as |x| → ∞.

Assumption 2.2. We assume that (1) b ∈ (C∞(Rd))d; (2) ‖b‖C1(Rd) < ∞; (3) 〈b,∇V 〉 ≤
c|∇V |2 for some constant 0 < c < 1

2
.

Recall that the formulas (1.5)–(1.6) from the introduction appealed to an elliptic oper-

ator A α,ε as the generator of a semigroup. On a suitable function space, this semigroup

is compact and irreducible and this is what guarantees that the principal eigenvalue λα,ε

of A α,ε appropriately captures the large-t behavior of the moment-generating function χε
t (α);

see e.g. [7, 54]. For the analysis of the present paper, we will instead work with the spectrally

equivalent operator

Aα,εf := exp((−2ε)−1V )A α,ε(exp((2ε)−1V ))

= ε∆f + 〈(1− 2α)b,∇f〉

− 1

4ε
|∇V |2f +

1

2ε
〈b,∇V 〉f − α(1− α)

ε
|b|2f +

1

2
(∆V )f − α(∇ · b)f, (2.1)

which is also associated with a semigroup, which we now take the time to describe. Define

the operator Lα,ε by

Lα,εf = ε∆f + 〈(1− 2α)b,∇f〉, (2.2)

on sufficiently regular functions and let

Uα,ε = − 1

4ε
|∇V |2 + 1

2ε
〈b,∇V 〉 − α(1− α)

ε
|b|2 + 1

2
(∆V )− α(∇ · b). (2.3)

For readability, let us fix α and ε and omit the dependence on α and ε from the notation

for the time being. Consider the SDE with infinitesimal generator L, that is

dXt = (1− 2α)b dt+
√
2ε dBt, (2.4)

where Bt is a d-dimensional Brownian motion, and the evolution operator PU
t defined by

PU
t ϕ(x) = E

[
ϕ(Xt) exp

(∫ t

0

U(Xs)ds

) ∣∣∣X0 = x

]
, (2.5)

where E is the expectation over all realizations of (2.4) and ϕ is a function in a suitable

space. With natural choices of domain and space, A = L+ U is indeed the generator of the

positivity-preserving semigroup (PU
t )t>0 with the same desirable properties as that generated

by A —albeit on a different space. While these properties and their consequences can be

obtained in many different ways, we present a result that foreshadows our upcoming analysis

of the discrete semigroups behind our IPM.
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Theorem 2.3. Let W (x) = eθ|x|
2

and suppose that Assumptions 2.1–2.2 hold. For θ > 0

small enough, there exists a unique measure µ⋆
U ∈ P(Rd) with (µ⋆

U ,W ) < +∞ and a constant

κ > 0 with the following property: for any initial measure µ ∈ P(Rd) with (µ,W ) < +∞,

there exists a constant Cµ > 0 such that

∣∣∣∣
(µ, PU

t ϕ)

(µ, PU
t 1)

− (µ⋆
U , ϕ)

∣∣∣∣ ≤ Cµe
−κt‖ϕ‖L∞

W
(2.6)

for all ϕ ∈ L∞
W (Rd) and t > 0. Moreover,

λ = lim
t→∞

1

t
logE

[
exp

(∫ t

0

U(Xs)ds

) ∣∣∣∣X0 ∼ µ

]
. (2.7)

Proof sketch. We follow Section 2.3 in [24]. Picking θ small enough such that 32θ < ‖H0‖−2

in Assumption 2.1, one can show that the growth bounds in Assumptions 2.1–2.2 imply

thatW is a Lyapunov function. The regularity properties in Assumptions 2.1–2.2 can be used

to show that the semigroup satisfies a Deoblin-type minorization property, an irreducibility

property, and a local regularity property that then suffice to deduce (2.6). Moreover, one

can show that, for any fixed t0 > 0, the spectral radius of PU
t0
—which equals et0λ by the

spectral mapping theorem [21]—admits a positive eigenvector h with ‖h‖L∞

W
= 1, and that

no other eigenvalue admits a positive eigenvector. Taking ϕ = h in (2.6) at times of the form

t = kt0, one can deduce that

t0λ = lim
k→∞

1

k
log(µ, PU

kt01),

and then pass to (2.7) using standard arguments.

We now reintroduce the dependence on α and ε in the notation. We also note that it

follows from standard perturbation-theory arguments that the limiting function α 7→ λα,ε is

real-analytic. Hence, by (1.6) and the Gärtner–Ellis theorem, the following large deviation

principle holds: with Iε the Legendre transform of the function α 7→ λα,ε, we have

− inf
s∈intE

Iε(s) ≤ lim inf
t→∞

1

t
log Probµ,ε

{
1
t
Sε
t ∈ E

}

≤ lim sup
t→∞

1

t
log Probµ,ε

{
1
t
Sε
t ∈ E

}
≤ − inf

s∈clE
Iε(s)

for every Borel set E ⊆ R; again see [7, 54]. It was shown in [54] that, locally and under

additional conditions at the critical points of V , easily accessible formulas can be given in

the subsequent limit ε → 0+, without any rescaling of λα,ε nor Iε. Roughly speaking, this

means that we get easy access to a limiting rate function I0 such that

Probµ,ε{t−1Sε
t ≈ s} ≍ exp

(
−tI0(s)

)
(2.8)
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for t ≫ ε−1 ≫ 1 and s near the mean entropy production rate. These additional conditions

will be met here if we further assume that

detD2V |xj
6= 0 (2.9)

at each of the finitely many critical points {xj}Jj=1 of V , and that

|b(xj + ξ)| = O(|D2V |xj
ξ|) (2.10)

there as well. These extra conditions force the deterministic dynamics obtained by plainly

putting ε = 0 in (1.1) to have only very simple invariant structures. The limiting λ0,α turns

out to be the principal eigenvalue for a quadratic approximation of A at some α-dependent

choice of critical point of V , in such a way that the limiting I0 is the convex envelope

of different rate functions that would arise from linear diffusions approximating (1.1) near

critical points of V .

Suppose that on the contrary, that (2.9)–(2.10) fail, say because V has a whole critical

circle to which b is tangent as in Section 5 of [7]. Then, we expect to see, as ε → 0+,

the principal eigenvalue λα,ε diverge for α /∈ [0, 1]. In such situations, one can consider the

rescaling of [7, 8] to obtain further information on the behaviour of those divergences and

their relations to the deterministic dynamics and Freidlin–Wentzell theory. We will explore

this numerically in Section 5.

3. Numerical discretization using discrete-time semigroups

We again fix α and ε and omit keeping track of them in the notation. To compute the

principal eigenvalue λ, we consider a discretization of the operator semigroup (PU
t )t>0, which

consists of two steps: an operator splitting scheme and an Euler–Maruyama scheme for the

SDE (2.4).

With a time step size ∆t > 0, define an evolution operator P̃U
∆t by

P̃U
∆tϕ(x) = exp(∆tU(x))E [ϕ(X∆t)|X0 = x] , (3.1)

where X∆t is the solution to (2.4) at time ∆t and ϕ is a function in a suitable space. Note

that if we define an operator Pt by

Ptϕ(x) = E [ϕ(Xt)|X0 = x] , (3.2)

then Pt = exp(tL) on a suitable space. Hence, P̃U
∆t = exp(∆tU) exp(∆tL) can be seen as an

approximation of PU
∆t using an operator splitting scheme. One can show using the Krein–

Rutman theorem that, just like in the case of PU
∆t, the spectral radius Λ̃∆t of P̃

U
∆t admits a

positive eigenvector and that no other eigenvalue admits a positive eigenvector. It should be

expected that, for ∆t≪ 1, we have

1

∆t
log Λ̃∆t ≈ λ.

8



We will come back to this point at the end of this section.

We now further discretize P̃U
∆t by considering an Euler–Maruyama scheme for (2.4) with

the time step size ∆t, which reads

{
X̂n+1 = X̂n + (1− 2α)b(X̂n)∆t+

√
2ε∆tGn,

X̂0 ∼ µ,
(3.3)

where Gn is a d-dimensional standard Gaussian random variable. Recall that we are consid-

ering ∆t≪ 1. We define the evolution operator P̂∆t by

P̂∆tϕ(x) = E[ϕ(X̂n+1)|X̂n = x], (3.4)

and define P̂U
∆t by

P̂U
∆tϕ(x) = exp(U(x)∆t)P̂∆tϕ(x). (3.5)

In view of the good convergence properties of the Euler–Mayurama scheme in the total

variation distance [6] and the growth of U inherited from Assumptions 2.1–2.2, we expect

the spectral radius Λ̂∆t of P̂
U
∆t to satisfy

1

∆t
log Λ̂∆t ≈

1

∆t
log Λ̃∆t

for ∆t≪ 1. We define a normalized, discrete-time, dual Feynman–Kac semigroup associated

with P̂U
∆t by

(Φk,∆tµ, ϕ) =
(µ, (P̂U

∆t)
kϕ)

(µ, (P̂U
∆t)

k1)
=

E

[
ϕ(X̂k) exp

(
∆t
∑k−1

j=0 U(X̂j)
) ∣∣∣X̂0 ∼ µ

]

E

[
exp

(
∆t
∑k−1

j=0 U(X̂j)
) ∣∣∣X̂0 ∼ µ

] (3.6)

for any initial measure µ and any bounded measurable function ϕ. The following theorem es-

tablishes, following [24], desirable stability properties of Φk,∆t for the purpose of numerically

accessing the spectral radius Λ̂∆t.

Theorem 3.1. Suppose that Assumptions 2.1–2.2 hold. Then, there exists a measure µ̂⋆
U,∆t ∈

P(Rd) with Λ̂∆t = (µ̂⋆
U,∆t, P̂

U
∆t1) and a constant β̂ ∈ (0, 1) with the following property: for

any initial measure µ ∈ P(Rd), there is a constant Cµ for which

|(Φk,∆tµ, ϕ)− (µ̂⋆
U,∆t, ϕ)| ≤ Cµβ̂

k||ϕ||L∞ (3.7)

for all ϕ ∈ L∞(Rd) and k ≥ 1. Moreover,

log Λ̂∆t = lim
k→∞

1

k
logE

[
exp

(
∆t

k−1∑

j=0

U(X̂j)

)∣∣∣∣∣X̂0 ∼ µ

]
. (3.8)
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Proof sketch. We follow Section 2.2 in [24]. The constant function 1 is a Lyapunov function

for P̂U
∆t. To see this, note that the action of the first operator in the splitting leaves 1

invariant and that the action of the second operator is such that

exp(U∆t)1 ≤
(
sup
|y|>R

exp(∆tU(y))

)
1+

(
sup
|y|≤R

exp(∆tU(y))

)
1{y:|y|≤R}, (3.9)

and then take R → ∞ using the growth bounds in Assumptions 2.1–2.2. The regularity

properties in Assumptions 2.1–2.2 can be used to show that P̂U
∆t satisfies a Deoblin-type

minorization property, an irreducibility property, and a local regularity property that then

suffice to deduce (3.7) for some uniquely determined probability measure µ̂⋆
∆t satisfying

Φ1,∆tµ̂
⋆
∆t = µ̂⋆

∆t. (3.10)

Moreover, one can show that the spectral radius Λ̂∆t for P̂
U
∆t admits a positive eigenvector ĥ

with ‖ĥ‖L∞ = 1, and that no other eigenvalue admits a positive eigenvector. Taking ϕ = ĥ

in (3.7), one can deduce that

log Λ̂∆t = lim
k→∞

1

k
log(µ, (P̂U

∆t)
k
1)

holds. Finally, since (3.10) implies in particular that (Φ1,∆tµ̂
⋆
∆t, ĥ) = (µ̂⋆

∆t, ĥ), it follows from

the eigenvalue equation for ĥ and the definition of Φ1,∆t that Λ̂∆t = (µ̂⋆
U,∆t, P̂

U
∆t1).

The aforementioned intuition that

1

∆t
log Λ̂∆t ≈

1

∆t
log Λ̃∆t ≈ λ.

can indeed be turned into a soft convergence result. This is the content of our next result.

Proposition 3.2. Under Assumptions 2.1–2.2, for every T > 0, we have

lim
n→∞

n log Λ̂Tn−1 = lim
n→∞

n log Λ̃Tn−1 = Tλ.

Proof sketch. Fix T > 0 and set

Π̃n := (P̃U
Tn−1)n and Π̂n := (P̂U

Tn−1)n.

We show in four steps that the spectral radii of Π̃n and Π̂n both converge to that of PU
T as

operators on C0 equipped with the L∞-norm.

Step 1. Operator norm convergence ‖Π̂n − Π̃n‖ → 0. The growth conditions on V in

Assumption 2.1 and the control on b in Assumption 2.2 imply that exp(TU) is bounded

by K := exp(T‖U+‖L∞) and satisfies the following decay property: for every δ > 0,

there exists Rδ such that

sup
|x|>Rδ

exp(TU(x)) < δ.

10



The boundedness in Assumption 2.2 allows for the application of a classical martingale

argument that shows that, for every η > 0, there exists ρη such that

sup
x

P
x

{
sup

t∈[0,T ]

|Xx
t − x| ≥ ρη

}
< η. (3.11)

One can show that |Π̂nϕ(x) − Π̃nϕ(x)| can be made arbitrarily small with large n,

uniformly in x and ϕ with ‖ϕ‖L∞ = 1 as follows. Choose δ and η small enough,

then Rδ and ρη accordingly, and then consider separately the cases |x| > Rδ + ρη and

|x| ≤ Rδ + ρη. The former will be small as is, and as for the latter, take n large to

leverage results for the Euler–Mayurama scheme in total variation norm [6].

Step 2. Strong convergence Π̃n − PU
T

s→ 0. Since we already know that L + U generates a

strongly continuous semigroup on C0, this is a direct consequence of Trotter’s product

formula for the semigroups generated by L and U on that same space [63].

Step 3. Collective compactness of (Π̃n)
∞
n=1. We want to show that

S := {Π̃nϕ : n ∈ N, ϕ ∈ C0, ‖ϕ‖L∞ ≤ 1}

is precompact in C0. To do this we need to show three properties: boundedness,

uniform vanishing at infinity, and equicontinuity.

3a. Pointwise, it follows from the definition of Π̃n and the assumption that ‖ϕ‖L∞ ≤ 1

that

|(Π̃nϕ)(x)| ≤ E

[
exp

(
n−1∑

k=0

T

n
U(XkTn−1)

) ∣∣∣∣∣X0 = x

]
(3.12)

This shows among other things that the family S is bounded in norm by K.

3b. Using (3.11) in conjunction with properties of U discussed in Step 1, we see that

the expectation on the right-hand side of (3.12) is arbitrarily small, simultaneously

for all n and ϕ, as soon as x is outside of a sufficiently large ball. Hence, the

family S does uniformly vanish at infinity.

3c. To show equicontinuity, we consider the differences

Π̃nϕ(x)− Π̃nϕ(y)

= Ex

[
ϕ(XT ) exp

(
n−1∑

k=0

T

n
U(XkTn−1)

)]
− Ey

[
ϕ(YT ) exp

(
n−1∑

k=0

T

n
U(YkTn−1)

)]

with y close to some fixed x—we require |y−x| < 1 to begin. Note that this dif-

ference of expectations can be computed by realizing the two processes (Xt)t∈[0,T ]

and (Yt)t∈[0,T ] on a common probability space as we see fit— this is the classical

coupling method; see e.g. [61] and historical references therein.

11



By continuity, the difference

δ2 := |U(x)− U(y)|

can be made arbitrarily small by taking y close enough to x. In view of the

ultra-Feller property [32], given any τ > 0, the difference

δ3(τ) := ‖P ∗
τ δx − P ∗

τ δy‖TV

can be made arbitrarily small by taking y close enough to x. Hence, once such a τ

is given, we can realize the two processes (Xt)t∈[0,T ] and (Yt)t∈[0,T ] on a common

probability space so that

P
(x,y){Xt 6= Yt for some t ∈ [τ, T ]} ≤ δ3(τ).

All in all, we have

|Π̃nϕ(x)− Π̃nϕ(y)|

≤ E(x,y)

∣∣∣∣∣ϕ(XT ) exp

(
n−1∑

k=0

T

n
U(XkTn−1)

)
− ϕ(YT ) exp

(
n−1∑

k=0

T

n
U(YkTn−1)

)∣∣∣∣∣

≤ 2Kη + 2Kδ3(τ) +KTδ2 + 4Kτ sup
|z−x|<1+ρη

|U(z)|.

This can be made arbitrarily small, uniformly in ϕ and n, as follows. First, we

choose η so that the first term is as small as desired, and then we fix ρη accordingly.

Next, we take τ small enough that the last term is as small as desired. Finally,

once τ is fixed, we can choose a coupling to compute the expectation, and the

second and third terms will be as small as desired as long as y is close enough

to x.

Step 4. Spectral theory. On the one hand, Step 1 and the fact that both sequences of

operators are uniformly bounded by K ensures that | spr(Π̃n) − spr(Π̂n)| → 0 by

classical perturbation theory arguments; see e.g. [38]. On the other hand, thanks to

the spectral analysis of [5] for collectively compact sequences of operators that converge

strongly, Steps 2 and 3 show that | spr(Π̃n)− spr(PU
T )| → 0.

Clearly, if Λ̃Tn−1 is an eigenvalue of P̃U
Tn−1 with a positive eigenvector, then (Λ̃Tn−1)n is an

eigenvalue of Π̃n = (P̃U
Tn−1)n with a positive eigenvector. Hence, the identity spr(Π̃n) =

(Λ̃Tn−1)n follows from the fact that the spectral radius is the only eigenvalue admitting

a positive eigenvector. Similarly, spr(Π̂n) = (Λ̂Tn−1)n. Finally, the fact that spr(PU
T ) =

exp(λT ) is a consequence of the spectral mapping theorem [21], so the proof is completed.
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4. Interacting particle methods

Sections 2 and 3 show that the principal eigenvalue λε,α can be approximated in terms of

the logarithmic spectral radius (3.8) that is accessible through large iterates of a discrete-time

semigroup with good stability properties. This strongly suggests that it can be efficiently

accessed using a discrete-time IPM. Given an ensemble of particles, the IPM proceeds within

each time interval as follows. The particles evolve according to the dynamics of P̂∆t with an

importance weight assigned to each particle, and then to control variance [25] (or to avoid

weight degeneracy [46]) the particles are resampled according to the multinomial distribution

associated with their respective weights. The logarithmic spectral radius (3.8) is accessed

using the particles at each time step. The complete algorithm of the IPM for computing λε,α

is given in Algorithm 1, where we only emphasize the dependence of the final approximation

λ̂ε,α∆t on ε and α. Note that the particles {qn,m}Mm=1 are no longer independent as soon as

n ≥ 1 but still exchangeable.

Algorithm 1 The interacting particle method for computing λε,α

Input: α, noise level ε, velocity field b, potential V , number of particles M , initial

measure µ, final time T , time step size ∆t = T
N
.

1: Generate M independent and µ-distributed particles {q0,m}Mm=1.

2: for n = 1:N do

3: Compute each q̃n,m using the Euler–Maruyama scheme (3.3) with qn−1,m the initial

value.

4: Compute each weight wn−1,m = exp(∆tU(qn−1,m)) according to (2.3).

5: Compute the quantities P n−1 =
∑M

m=1 w
n−1,m and λ̂n−1 = log(P n−1/M).

6: Compute the probabilities pn−1,m = wn−1,m/P n−1 and sample M non-negative inte-

gers (Km)
M
m=1 summing to M according to the multinomial law

Prob{K1 = k1, . . . , KM = kM} =
M !

∏M
m=1 km!

M∏

m=1

(pn−1,m)km.

7: Set (qn,m)Mm=1 to contain Km copies of q̃n,m.

8: end for

9: Compute the approximation

λ̂ε,α∆t =
1

T

N−1∑

n=0

λ̂n

of the principal eigenvalue.

Output: the approximation of the principal eigenvalue λ̂ε,α∆t .

4.1. The empirical measure of particles at the final time

The empirical measure of particles at the final time T (equivalently after the N -th step)

is a random measure that is thought of as an approximation to the Feynman–Kac semigroup
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ΦN,∆tµ, defined in (3.6), and thus to the invariant measure µ̂⋆
U,∆t for N large by (3.7). To

justify this, let us first consider the one-step evolution Φ1,∆tµ. First of all, by the Glivenko–

Cantelli theorem or a variant thereof (see e.g. [27, 60]), the empirical measure

µ̂0,+
U,∆t,M :=

1

M

M∑

m=1

δq0,m

of the particles {q0,m}Mm=1 approximates µ well provided that M is large. Then, on the one

hand, by (3.6) and the definitions in Algorithm 1, the measure Φ1,∆tµ can be approximated

by the weighted empirical measure

µ̂1,−
U,∆t,M := Φ1,∆tµ̂

0
U,∆t,M =

M∑

m=1

p0,mδq̃1,m .

On the other hand, since the multinomial law used in Algorithm 1 satisfies

∑

k1,...,kM

km Prob{K1 = k1, . . . , KM = kM} =Mp0,m,

we have that, for any test function ϕ,

∑

k1,...,kM

(
1

M

M∑

m=1

ϕ(q1,m)

)
Prob{K1 = k1, . . . , KM = kM}

=
∑

k1,...,kM

(
1

M

M∑

m=1

kmϕ(q̃
1,m)

)
Prob{K1 = k1, . . . , KM = kM}

=
M∑

m=1

(
1

M

∑

k1,...,kM

km Prob{K1 = k1, . . . , KM = kM}
)
ϕ(q̃1,m)

=

M∑

m=1

p0,mϕ(q̃1,m).

Hence, the resampled empirical measure µ̂1,+
U,∆t,M of {q1,m}Mm=1 yields, once the randomness in

the resampling process is averaged out, the exact same expectations as the weighted empirical

measure µ̂1,−
U,∆t,M . In particular, this holds when ϕ = P̂U

∆t exp(∆tU), which is relevant at the

next step for carrying on with our approximation of the principal eigenvalue. In fact, it is

expected that, for that purpose and when M is large, the empirical measure µ̂1,+
U,∆t,M is a

numerically sounder choice as it gives more importance to the regions where exp(∆tU) is

large. We refer the readers to e.g. [13] and [46] for a more thorough discussion.

Iterating this argument, the measure ΦN,∆tµ should indeed be well approximated by the

resampled empirical measure µ̂N,+
U,∆t,M of {qN,m}Mm=1. In our numerical examples in Section 5,

as ε → 0+, the asymptotic behavior of the empirical density of particles at T is consistent

with the theory in [26].
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4.2. Choice of the initial measure

The IPM involves the choice of an initial measure µ for the particles. Recall from Theo-

rem 3.1 that

λ̂∆t =
1

∆t
log(µ̂⋆

U,∆t, P̂
U
∆t1),

and that

λ̂∆t = lim
k→∞

1

k∆t
log(µ, (P̂U

∆t)
k
1).

This suggests that we can obtain faster convergence in (3.8) with respect to k if we can set µ

to be close to µ̂⋆
U,∆t in some sense. We introduce here two techniques for choosing the initial

measure µ in Algorithm 1 based on this intuition.

The first technique is the so-called burn-in procedure, in which we start computing λ̂ε,α∆t

only using results from times later than some t > 0, i.e. compute λ̂ε,α∆t using

λ̂ε,α∆t =
1

T − t

N−1∑

n=
⌈

t
∆t

⌉
λ̂n.

This is equivalent to setting the initial measure to be the empirical measure of particles at

t, which should be closer to µ̂⋆
U,∆t than µ in any sense.

The second technique applies when computing λ̂ε,α∆t for ε1 and ε2 with ε1 > ε2. Let µ⋆
U,ε

be the invariant measure in Theorem 2.3 for each ε and p⋆U,ε be the corresponding density.

The results in [26] show that under certain conditions ε log p⋆U,ε has a nontrivial asymptotic

limit as ε → 0+. Hence it is intuitively reasonable that given the invariant measure at ε1 we

can use it as the initial measure for ε2 in order to obtain faster computation of (3.8).

5. Numerical examples

5.1. Computational setup

The following computation is performed on a high-performance computing cluster with

2 Intel Xeon Gold 6226R (16 Core) CPUs and 96GB RAM. We consider the computation

of λε,α for certain values of ε and α. In particular, we choose ε = 0.1, 0.01, 0.001. For each

fixed ε, we let α ∈
[
− 1

10
, 11
10

]
and compute λ̂ε,α for α = − 1

10
+ j

31
12
10

with j = 0, 1, . . . , 31. The

computation of λ̂ε,α for each ε with 32 different values of α is performed at the same time

in parallel on the 32 cores of the CPUs. For the numerical discretization of our method, we

chooseM = 500 000 and ∆t = 2−8 in Algorithm 1. Also, unless specified, the initial measure

of the particles is chosen to be the standard multivariate Gaussian distribution.
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5.2. The principal eigenvalue and the rate function in the vanishing-noise limit

Example 5.1. Consider

V (x1, x2) =
x21 + x22

2
+
x41 + x42

8
,

and

b(x1, x2) = π−1(cos(πx1) sin(πx2),− sin(πx1) cos(πx2)).

Note that V has a global minimum point at (0, 0) and no other critical points. It can be

shown [54] that

λ0,α = lim
ε→0+

λε,α = 1−
√

1 + 4α(1− α). (5.1)

We choose T = 1024. We show the numerical eigenvalue λ̂ε,α∆t in Figure 1a. In addition,

the numerical rate function Îε∆t(s) obtained by the Legendre transform of λ̂ε,α∆t is shown in

Figure 1b. Moreover, the empirical density of particles at T with α ≈ 0.6742 is shown in

Figure 2. It can be seen from Figure 2 that the particles get more localized around the global

minimum point (0, 0) of V as ε→ 0+.

(a) λ̂ε,α
∆t

(b) Îε
∆t(s)

Figure 1: In the context of Example 5.1, we plot our numerical approximation λ̂
ε,α

∆t
of the principal eigen-

value λε,α and the resulting approximation Îε∆t(s) of the rate function Iε(s), compared respectively to the

limit λ0,ε in (5.1) and its Legendre transform I0(s). Note the consistency of the symmetries mentioned in

the Introduction. Also note that the restriction of Îε∆t(s) to certain values of s is due to our restriction of

λ̂
ε,α

∆t
and how it interacts with the derivatives.
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(a) ε = 0.1 (b) ε = 0.01 (c) ε = 0.001

Figure 2: In the context of Example 5.1, we plot the empirical density of particles at T with α ≈ 0.6742. As

ε → 0+, the particles gets more localized around (0, 0).

Example 5.2. Consider

V (x1, x2) = x41 − 2x21 + (1 + a(x1 − 1)2)x22 + x42

with a = 0.4, and

b(x1, x2) = b̃π−1(cos(πx1) sin(πx2),− sin(πx1) cos(πx2))

with b̃ = 1. Note that V has two local minima at (−1, 0) and (1, 0), as well as a saddle point

at (0, 0). It can be shown [54] that

λ0,α = λ̃α(a, b̃) = lim
ε→0+

λε,α = max(λα+, λ
α
−), (5.2)

where

λα+ = −TrX+(α) +
1

2
TrD2V |(1,0), λα− = −TrX−(α) +

1

2
TrD2V |(−1,0),

with X+(α) and X−(α) satisfying the following algebraic Riccati equations

X+(α)
2 − 1− 2α

2
(∇bTX+(α) +X+(α)

T∇b)

− 1

4
D2V |(1,0)D2V |(1,0) +

1

4
(∇bTD2V |(1,0) +D2V |(1,0)∇b)− α(1− α)∇bT∇b = 0,

X−(α)
2 − 1− 2α

2
(∇bTX−(α) +X−(α)

T∇b)

− 1

4
D2V |(−1,0)D

2V |(−1,0) +
1

4
(∇bTD2V |(−1,0) +D2V |(−1,0)∇b)− α(1− α)∇bT∇b = 0.

We choose T = 2048. We use the burn-in procedure, in which we start computing the

eigenvalue from t = 1024. We show λ̂ε,α∆t in Figure 3a and Îε∆t(s) in Figure 3b. The empirical

density of particles at T with α ≈ 0.5968 is shown in Figure 4 and that with α ≈ 1.0613 is

shown in Figure 5. We can see from Figures 4 and 5 that the particles are localized around

different local minimum points of V for different values of α.
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(a) λ̂ε,α
∆t

(b) Îε
∆t(s)

Figure 3: In the context of Example 5.2, we plot our numerical approximation λ̂
ε,α

∆t
of the principal eigen-

value λε,α and the resulting approximation Îε∆t(s) of the rate function Iε(s), compared respectively to the

limit λ0,ε in (5.2) and its Legendre transform I0(s). Note that the maximum in (5.2) causes a discontinuity

of the derivative of the limit of the eigenvalue in α = 0 and α = 1, in turn causing flat regions in the limit

of the rate function.

(a) ε = 0.1 (b) ε = 0.01 (c) ε = 0.001

Figure 4: In the context of Example 5.2, we plot the empirical density of particles at T with α ≈ 0.5968. As

ε → 0+, the particles get more localized around (−1, 0).

(a) ε = 0.1 (b) ε = 0.01 (c) ε = 0.001

Figure 5: In the context of Example 5.2, we plot the empirical density of particles at T with α ≈ 1.0613. As

ε → 0+, the particles get more localized around (1, 0).
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Example 5.3. Consider

V (x1, . . . , x8) =
2∑

j=1

(
x22j−1 + x22j

2
+
x42j−1 + x42j

8

)

+

4∑

j=3

(
x42j−1 − 2x22j−1 + (1 + a(x2j−1 − 1)2)x22j + x42j

)

with a = 0.3, and

b(x1, . . . , x8) = π−1

4⊕

j=1

(̃bj cos(πx2j−1) sin(πx2j),−b̃j sin(πx2j−1) cos(πx2j)),

with b̃1 = 1, b̃2 = 0.5, b̃3 = 1 and b̃4 = 2. It can be shown [54] that

λ0,α = lim
ε→0+

λε,α = 1−
√

1 + 4α(1− α) + 1−
√

1 + α(1− α) + λα3 + λα4 , (5.3)

where λα3 = λ̃α(a, b̃3), λ
α
4 = λ̃α(a, b̃4), with λ̃

α(a, b̃) given in (5.2).

We choose T = 2048. We use the burn-in procedure for ε = 0.1, 0.01, in which we start

computing the eigenvalue from t = 1024. For ε = 0.001, we use the empirical measure of

particles at T obtained at ε = 0.01 as the initial measure. We show λ̂ε,α∆t in Figure 6a and

Îε∆t(s) in Figure 6b. The 2-dimensional marginal empirical densities of particles at T with

α ≈ 0.3645 are shown in Figure 7 and 8.

(a) λ̂ε,α
∆t (b) Îε

∆t(s)

Figure 6: In the context of Example 5.3, we plot our numerical approximation λ̂
ε,α

∆t
of the principal eigen-

value λε,α and the resulting approximation Îε∆t(s) of the rate function Iε(s), compared respectively to the

limit λ0,ε in (5.3) and its Legendre transform I0(s).
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(a) ε = 0.1 (b) ε = 0.01 (c) ε = 0.001

Figure 7: In the context of Example 5.3, we plot the 2D marginal empirical density of (x3, x4) of particles

at T with α ≈ 0.3645.

(a) ε = 0.1 (b) ε = 0.01 (c) ε = 0.001

Figure 8: In the context of Example 5.3, we plot the 2D marginal empirical density of (x7, x8) of particles

at T with α ≈ 0.3645.

Example 5.4. Consider

V (x1, . . . , x16) =
x21 + x22

2
+
x41 + x42

8
+
x23 + x24

2
+
x43 + x44

8

+ x45 − 2x25 + (1 + a1(x5 − 1)2)x26 + x46

+ x47 − 2x27 + (1 + a1(x7 − 1)2)x28 + x48

+ x49 − 2x29 + (1 + a2(x9 − 1)2)x210 + x410

+ x411 − 2x211 + (1 + a2(x11 − 1)2)x212 + x412

+
x213 + x214

2
+
x413 + x414

8

+ x415 − 2x215 + (1 + a3(x15 − 1)2)x216 + x416

with a1 = 0.2, a2 = 0.7, a3 = 0.5, and

b(x1, . . . , x16) = π−1
6⊕

j=1

(̃bj cos(πx2j−1) sin(πx2j),−b̃j sin(πx2j−1) cos(πx2j))
⊕

(0, 0, 0, 0),
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with b̃1 = 1, b̃2 = 0.5, b̃3 = 1, b̃4 = 2, b̃5 = 1, b̃6 = 2. It can be shown [54] that

λ0,α = lim
ε→0+

λε,α = 1−
√

1 + 4α(1− α) + 1−
√

1 + α(1− α) + λα3 + λα4 + λα5 + λα6 , (5.4)

where λα3 = λ̃α(a1, b̃3), λ
α
4 = λ̃α(a1, b̃4), λ

α
5 = λ̃α(a2, b̃5), λ

α
6 = λ̃α(a2, b̃6),, with λ̃

α(a, b̃) given

in (5.2).

We choose T = 2048. We use the burn-in procedure for ε = 0.1, in which we start

computing the eigenvalue from t = 1024. For ε = 0.01, 0.001, we use the empirical measure

of particles at T obtained at ε = 0.1 as the initial measure. We show λ̂ε,α∆t in Figure 9a and

Îε∆t(s) in Figure 9b. The 2-dimensional marginal empirical densities of particles at T with

α ≈ 0.2097 are shown in Figure 10 and 11.

(a) λ̂ε,α
∆t

(b) Îε
∆t(s)

Figure 9: In the context of Example 5.4, we plot our numerical approximation λ̂
ε,α

∆t
of the principal eigen-

value λε,α and the resulting approximation Îε∆t(s) of the rate function Iε(s), compared respectively to the

limit λ0,ε in (5.4) and its Legendre transform I0(s).

(a) ε = 0.1 (b) ε = 0.01 (c) ε = 0.001

Figure 10: In the context of Example 5.4, we plot the 2D marginal empirical density of (x13, x14) of particles

at T with α ≈ 0.2097.
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(a) ε = 0.1 (b) ε = 0.01 (c) ε = 0.001

Figure 11: In the context of Example 5.4, we plot the 2D marginal empirical density of (x15, x16) of particles

at T with α ≈ 0.2097.

From all the above examples with different values of d, we can observe the convergence of

both the numerical principal eigenvalue λ̂ε,α∆t and the numerical rate function Îε∆t(s) to their

respective analytical vanishing-noise limits λ0,ε and I0(s), with a fixed number of particles

and a fixed time step size. Furthermore, the maximum of the 2-dimensional (marginal) em-

pirical density of particles at T is proportional to ε−1. We know from [26] that ε log p⋆U,ε has

a nontrivial asymptotic limit as ε→ 0+ under certain conditions with p⋆U,ε the invariant den-

sity, which shows that p⋆U,ε is asymptotically proportional to exp(−ε−1Φ) for some function Φ

and that the normalizing constant of p⋆U,ε is asymptotically O(ε−d/2). Hence the asymptotic

behavior of the empirical density of particles at T as ε → 0+ is consistent with the theory

in [26]. In addition, we show in Figure 12 the computational time in minutes versus d based

on the computational times of Examples 5.2–5.4 as well as that of a 4-dimensional example

(which we do not show here). The computational setups of these 4 examples have the same

value ofM,∆t, T and only differ in the value of d. Here, the computational time is the max-

imum computational time over all α for each fixed ε. We can see that the computational

time grows linearly with respect to d and does not change significantly as ε varies.

Figure 12: Computational time in minutes versus d.

Finally, we discuss an example where the assumptions (2.9)–(2.10) fail, preventing us
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from appealing to the proof of [54] for convergence in the limit ε → 0+. In such situations,

it is possible for λε,α to diverge as ε→ 0+.

Example 5.5. Consider

V (x1, x2) = −x
2
1 + x22
4

+
x41 + 2x21x

2
2 + x42

8
,

and

b(x1, x2) = (cos(x1) sin(x2),− sin(x1) cos(x2)).

Note that the ∇V (x) = 0 for all x on the circle {(x1, x2) : x21 + x22 = 1}, whereas b acts

nontrivially along that circle. In Figures 13a and 14a, we see that the eigenvalue is of different

orders in ε depending on whether α ∈ [0, 1] or α /∈ [0, 1].

For this example, we use T = 1024. We show λ̂ε,α∆t in Figure 13a and its Legendre

transform Îε∆t(s) in Figure 13b. In particular, the zero of Îε∆t—which is the mean entropy

production rate for that value of ε—seems to diverge as ε → 0+, as expected due to the

inverse power of ε in the definition of the entropy production and the periodic orbit of the

deterministic dynamics along which the work done by b per unit time is nonzero. We also

show ελ̂ε,α∆t in Figure 14a and its Legendre transform εÎε∆t(ε
−1s) in Figure 14b, as studied

in [7, 8]. In particular, a key feature discussed in Section 5 of [7] is emerging as ε → 0+:

a kink in εÎε∆t(ε
−1s) at s = 0, where two flat regions meet at an angle compatible with

the Gallavotti–Cohen symmetry. The example also confirms that in some (but not all)

scenarios, the limits of Iε and εIε(ε−1 · ) provide complementary, nontrivial information on

the fluctuations of Sε
t .

(a) λ̂ε,α
∆t

(b) Îε
∆t(s)

Figure 13: In the context of Example 5.5, we plot our numerical approximation λ̂
ε,α

∆t
of the principal eigen-

value λε,α and the resulting approximation Îε∆t(s) of the rate function Iε(s).
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(a) ελ̂ε,α
∆t

(b) εÎε
∆t(ε

−1s)

Figure 14: In the context of Example 5.5, we plot our numerical approximation ελ̂
ε,α

∆t
of the rescaled principal

eigenvalue ελε,α and the resulting approximation εÎε∆t(ε
−1s) of the rescaled rate function εIε(ε−1s).

6. Conclusion

We study an interacting particle method for the computation of rate functions Iε for

the large deviations of entropy production in the context of diffusion processes by equiva-

lently computing the principal eigenvalue for a family of non-self-adjoint elliptic operators.

We are particularly interested in the high-dimensional and vanishing-noise case, which is

challenging to traditional numerical methods. We show that the principal eigenvalue can

be well approximated in terms of the spectral radius of a discretized semigroup, making it

suitable for an IPM. Moreover, we discuss two techniques for setting the initial measure in

the IPM for faster computation. We present numerical examples in dimensions up to 16.

The numerical results provide evidence that the numerical principal eigenvalue converges to

the analytical vanishing-noise limit with a fixed number of particles and a fixed time step

size. Furthermore, the asymptotic behavior of the empirical density at the final time in the

vanishing-noise limit is consistent with the theory in [26]. Our paper appears to be the first

one to obtain numerical results of principal eigenvalue problems in such high dimensions.

Our method also allows us to probe the rate function Iε in situations where no explicit for-

mulas are available, as well as to explore the gap between the theoretical works on different

scalings for the vanishing-noise limit ε→ 0+.

In the future, it would be interesting to investigate the error estimate of the IPM with

respect to the numerical parameters of the method. Furthermore, the method should also

be used to study the large deviation rate functions in situations that go beyond the scope of

the theoretical works [7, 8, 37, 54], e.g. combining non-linearity of the vector field with the

degeneracy of the noise.
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[46] T. Lelièvre, M. Rousset, and G. Stoltz, Free energy computations: a mathe-

matical perspective, World Scientific, 2010.

[47] L.-H. Lim and J. Weare, Fast randomized iteration: Diffusion Monte Carlo through

the lens of numerical linear algebra, SIAM Rev., 59 (2017), pp. 547–587.

[48] L. Ljung and T. Kailath, Backwards Markovian models for second-order stochastic

processes (corresp.), IEEE Trans. Inform. Theory, 22 (1976), pp. 488–491.

[49] J. Lyu, Z. Wang, J. Xin, and Z. Zhang, Convergence analysis of stochastic

structure-preserving schemes for computing effective diffusivity in random flows, SIAM

J. Numer. Anal., 58 (2020), pp. 3040–3067.

[50] , A convergent interacting particle method and computation of KPP front speeds in

chaotic flows, SIAM J. Numer. Anal., 60 (2022), pp. 1136–1167.

[51] C. Monthus, Large deviations for trajectory observables of diffusion processes in di-

mension d > 1 in the double limit of large time and small diffusion coefficient, J. Stat.

Mech.: Theory Exp., (2024), p. 013205.

[52] T. Nemoto, F. Bouchet, R. L. Jack, and V. Lecomte, Population-dynamics

method with a multicanonical feedback control, Phys. Rev. E, 93 (2016), p. 062123.

28



[53] T. Nemoto, E. G. Hidalgo, and V. Lecomte, Finite-time and finite-size scal-

ings in the evaluation of large-deviation functions: Analytical study using a birth-death

process, Phys. Rev. E, 95 (2017), p. 012102.
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