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EFFICIENT FINITE ELEMENT METHODS FOR SEMICLASSICAL
NONLINEAR SCHRODINGER EQUATIONS WITH RANDOM
POTENTIALS*

PANCHI LIT AND ZHIWEN ZHANGT

Abstract. In this paper, we propose two time-splitting finite element methods to solve the
semiclassical nonlinear Schrodinger equation (NLSE) with random potentials. We then introduce the
multiscale finite element method (MSFEM) to reduce the degrees of freedom in physical space. In
the MsFEM approach, we construct multiscale basis functions by solving optimization problems and
study two time-splitting MsFEMs for the semiclassical NLSE with random potentials. We provide
convergence analysis for the proposed methods and show that they achieve second-order accuracy in
both spatial and temporal spaces and an almost first-order convergence rate in the random space.
In addition, we present a multiscale reduced basis method to reduce the computational cost of
constructing basis functions for solving random NLSEs. Finally, we present several 1D and 2D
numerical examples to confirm the convergence of our methods and investigate wave propagation in
the NLSE with random potentials.

Key words. Semiclassical nonlinear Schrédinger equation; finite element method; multiscale
finite element method; random potential; time-splitting methods.

MSC codes. 35Q55, 66M60, 81Q05, 47H40

1. Introduction. The nonlinear Schrédinger equation (NLSE) is a prototypi-
cal dispersive nonlinear equation that has been extensively used to study the Bose-
Einstein condensation, laser beam propagation in nonlinear optics, particle physics,
semi-conductors, superfluids, etc. In the presence of random potentials, the interac-
tion of nonlinearity and random effect poses challenges to understanding intriguing
phenomena, such as localization and delocalization [20, 25, 40, 48] and the soliton
propagation [24, 33, 45]. Owing to the inherent challenges in obtaining analytical so-
lutions and the limited experimental observations in nonlinear random media, numer-
ical simulations play a crucial role in understanding and investigating the nonlinear
dynamics in such regimes, particularly for long-time behaviors in high-dimensional
physical space. This necessitates high-resolution and efficient numerical methods for
the NLSE with random potentials.

In the past decades, numerous numerical methods have been proposed for the
NLSE with deterministic potentials, and recent comparisons can be found in [4, 6, 29].
For the time-dependent NLSE, the implicit Crank-Nicolson (CN) schemes were ex-
tensively employed to conserve the mass and energy of the system. The CN method
is known for its lower efficiency in handling nonlinearity since iteration methods and
time step conditions are required [2, 38, 46]. To enhance computational efficiency,
several promising approaches have been proposed, including linearized implicit meth-
ods [51, 55], relaxation methods [10, 12] and time-splitting methods [9, 11, 50]. Among
these, time-splitting methods exhibit outstanding performance in terms of efficiency
since linear equations with constant coefficients are solved at each time step. To reach
optimal accuracy, time-splitting type schemes ask for enough smoothness on both the
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2 P. LI AND Z. ZHANG

potential and the initial condition. Such as Strang splitting methods demand the
initial condition to possess H* regularity [11]. The low-regularity time-integrator
methods [35, 41, 54] are proposed to alleviate such constraint. Nevertheless, the low-
regularity time-integrator methods rely on the Fourier discretization in space with
a periodical setup, and their integration with finite difference methods (FDM) and
finite element methods (FEM) has not been established. The spatial Fourier dis-
cretization allows the spectral methods to have exponential convergence for smooth
potentials and competitive efficiency in simulations. With the random potential fur-
ther considered, the spectral discretization with the Monte Carlo (MC) sampling [54]
and quasi-Monte Carlo (¢MC) sampling [53] have been employed for the 1D case.
Nonetheless, spectral methods may not maintain their optimal convergence rate in
cases of non-smooth potentials. This motivates us to develop numerical methods to
efficiently solve NLSEs with random potentials within the framework of FEM in this
work.

To develop efficient FEM methods to solve PDEs, intense research efforts in di-
mensionality reduction methods by constructing the multiscale reduced basis functions
have been invested (see, e.g., [1, 3, 16, 21, 22, 23, 28, 31, 43]). Incorporating the local
microstructures of the differential operator into the basis functions, the multiscale
FEM (MsFEM) can capture the large-scale components of the multiscale solution on
a coarse mesh without the need to resolve all the small-scale features on a fine mesh.
Recently, the localized orthogonal decomposition method [3] has been proposed to
solve the stationary and time-dependent NLSE with deterministic potentials [19, 27],
which could produce eigenvalues and solution with high order accuracy.

Motivated by the MsFEM for elliptic problems with random coefficients [30, 32]
and the linear Schrodinger equation with multiscale and random potentials [15], we
generate the multiscale basis functions by solving a set of equality-constrained qua-
dratic programs. We find that the localized orthogonal normalization constraints of
optimal problems imply a mesh-dependent scale in the basis functions. This scale
in the linear algebraic equation is eliminated naturally. However, when the cubic
nonlinearity is coupled, the balance of such scale in the equation is broken, which
produces an indispensable scale in the numerical solution. In this work, we add a
mesh-dependent factor to the orthogonality constraints to eliminate this scale of basis
functions. We use these new basis functions to discrete the deterministic NLSE that
reduces the degrees of freedom (dofs) for FEM without accuracy lost.

For the time-marching, we present two Strang splitting methods. One of the meth-
ods solves the linear Schrodinger equation using the eigendecomposition method [15]
and the cubic ordinary differential equation at each time step, and it can maintain
the convergence rate even for the discontinuous potential. Meanwhile, we parameter-
ize the random potential with the Karhunen-Loéve (KL) expansion method. Instead
of the traditional MC sampling method, we employ the qMC method to generate
random samples. It is shown that the proposed approaches yield the second-order
accurate solution in both time and space and almost the first-order convergence rate
with respect to the sampling number. Theoretically, we give the convergence analysis
of the L? error estimate of the time-splitting FEM (TS-FEM) for the deterministic
NLES, which is further extended for the estimate of the time-splitting MsFEM (TS-
MsFEM) for the NLSE with random potentials. We verify several theoretical aspects
in numerical experiments. Besides, we propose a multiscale reduced basis method to
decrease the construction of multiscale basis functions for random potentials, which
can further improve the simulation efficiency. By the proposed numerical methods,
we investigate the wave propagation for the NLSE with parameterized random po-
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TS-MSFEM FOR SEMICLASSICAL NLSE WITH RANDOM POTENTIALS 3

tentials in both 1D and 2D physical space. We observe the localized phenomena of
mass density of the linear case, while the significant delocalization of the NLSE with
strong nonlinearity.

The rest of the paper is organized as follows. In section 2, we describe funda-
mental model problems. The FEM and MsFEM with time-splitting methods for the
deterministic NLSE are presented in section 3. Analysis results are presented in sec-
tion 4. Numerical experiments, including 1D and 2D examples, are conducted in
section 5. Conclusions are drawn in section 6.

2. The semiclassical NLSE with random potentials. The fundamental
model considered in this manuscript is

2
on [0 = -5 av bue et NP, meD, wea, te@T]
V=0 = Yin(),

where 0 < € < 1 is an effective Planck constant, D C R%(d = 1,2,3) is a bounded
domain, w € 2 is the random sample with  being the random space, T is the
terminal time, i, () denotes the initial state, v(x,w) is a given random potential,
and A (> 0) is the nonlinearity coefficient. The periodic boundary is considered in this
work. Physically, [1/¢|? denotes the mass density and the system’s total mass mzp =
Jp [in|*da is conserved by (2.1). Note that the wave function 1€ : [0, 7] x D xQ — C,
and the function space Hp(D) = Hp (D, C), in which the functions are periodic over
domain D. The inner product is defined as (v,w) = [, vwde with @ denoting the
complex-conjugate of w, and the L? norm is ||w||? = |[Jw]||?* = (w, w).
The Hamiltonian operator H of the nonlinear system has the form

(2:2) H() = =S AC) +0() +A- ).

Owing to the Hamiltonian operator is not explicitly dependent on time, and the
commutator [H,H] = 0, the energy of the system,

2 A
(23) B = (05,09 = SIVEI + (0 w), [6?) + S 19N,

remains unchanged as time evolves,i.e., d¢E(t) = 0 for all ¢ > 0.

ASSUMPTION 2.1. We assume the potential v(x,w) is bounded in L>°(Q; H*) with
0 < s < 2. More precisely, the bound of ||v(x,w)||c satisfies

2
€
(2'4) H’U(%,M)Hw 5 ﬁ’

where < means bounded by a constant, and H is the size of coarse mesh.

We first consider the deterministic potential, i.e., v(z,w) = v(x). Assume that
there exists a finite time 7" such that ¢ € L°°([0,T]; H*) N L'([0,T]; H?) and by
Sobolev embedding theorem, we have [[¢)¢]|cc < C||¢)¢|| g2 for d < 3. In the sequel,
we will use a uniform constant C' to denote all the controllable constants that are
independent of e for simplicity of notation.

LEMMA 2.1. Let ¢ be the solution of (2.1), and assume ¥¢ € L*([0,T]; H*) N
LY([0,T); H?). If 0pp<(t) € H® with s = 0,1,2 for allt € [0,T), there exists a constant
Ch,c such that

(2.5) 0e || s < Cxjes
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4 P. LI AND Z. ZHANG

where Cy  mainly depends on € and A. In particular, ford =3 and s = 1,2, we have
a compact formulate

Voo + CA|| VST _ CAT(||V20e|| + [|ve||%
||8tvsw€‘| S <|| UH - ” dj ”) Hatvs 1’1/16||6Xp< (H 7/16” W ” )) ’I
where
€l|2
(26) o] < E exp (2L ).

The proof is detailed in Appendix B. Note that for A = 0, the result of this lemma
degenerates to the estimate of the linear Schrodinger equation as in [8, 52].

Next, we assume that v(x,w) is a second-order random field with a mean value
Elv(z,w)] = v(x) and a covariance kernel denoted by C(x,y). In this study, we adopt
the covariance kernel

NIk
_ 2 Y]
(2.7) C(x,y) = 0“exp (— ; %2]> ,

where o is a constant and /; denotes the correlation lengths in each dimension. More-
over, we also assume that the random potential is almost surely bounded. Using the
KL expansion method [34, 37], the random potential takes the form

(2.8) v(z,w) = o(x) + Z VA& (W) (),

where ; (w) represents mean-zero and uncorrelated random variables, and {\;, v;(x)}
are the eigenpairs of the covariance kernel C(x,y). The eigenvalues are sorted in
descending order and the decay rate depends on the regularity of the covariance
kernel [47]. Hence the random potential can be parameterized by the truncated form

(2.9) Vm (@, w) = 0(x) + D VA& (@) (@).
j=1

Once the random potential is parameterized, the wave function v, obeys

2
) e, = —%Awfn F o (@, W)U, + AU, 205, @€ D,we Q,t e (0,T),

(2.10

The residual of |v,,(x,w) — v(x,w)]| relies on the regularity of eigenfunctions and the
decay rate of eigenvalues. We make the following assumption for the parameterized
random potentials.

ASSUMPTION 2.2. 1. In the KL expansion (2.9), assume that there exist
constants C >0 and © > 1 such that \; < Cj=© for all j > 1.
2. The eigenfunctions vj(x) are continuous and there exist constants C > 0 and
0 <n< Sk such that |[vj]| g2 < CAJ" for all j > 1.
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TS-MSFEM FOR SEMICLASSICAL NLSE WITH RANDOM POTENTIALS 5

3. Assume that the parameterized potential v, satisfies

oo

[0 = vmlloe < Cm™, Y (V/Ajll0j]lm2)? < oo,
j=1
for some positive constants C' and x, and p € (0,1].

In [53], the authors provide the L*°([0,7T], H') error between wave functions
to (2.1) and (2.10) for the 1D case. Here we get a similar result for the L? error
between the wave functions for d < 3.

LEMMA 2.2. The error between wave functions to (2.1) and (2.10) satisfies

. . 2||vm — Voo 2T . .
(2.11) o, - w1 < 2= g (Z R ).

Proof. Define v = 1, — ¢° and it satisfies

2
(212) €00 = = TAT + vnd + (v = V)0 + A5 205, — [V )

with the initial condition 1 (t = 0) = 0. For the nonlinear term, we have
U205, — [°P0° =[5, 1200 + ¥Cur, 00 + [0 2oy
Taking the inner product of (2.12) with §v yields
iedy[| 09[> = ((vm — )8, 69) = ((vm — 0)P, 89) + (Y, Pp,, 0) — (P69, 95, 00) ).
We further get

2llvym — Vl|so . 2\ . .
dylfsp)? < Aom = Ul / e |6lda + 22 / Sl 50 dee
€ D € Jp

2||vm = vlloo

IN

2
[llowll + == 19 floo l¥f lloo 001

€

Owing to the L>°([0, T x ©; H*) bound of both ¢ and ¢, , an application of Gronwall
inequality yields

2T |V — V|00 2TA . .
o < ZE00m =0l e (22 e e )

Owing to the assumption |[v,, — v]|ee < Cm™X, this lemma implies that ¥¢, — 1€ as
m — oo.

3. Numerical methods. Consider the regular mesh 7, of D. The standard P;
finite element space on the mesh 7y, is given by Py (7,) = {v € L?(D)| for all K €
Th, |k is a polynomial of total degree < 1}. Then the Hp(D)-confirming finite ele-
ment spaces are Vi, = Pi(T5) N H5(D) and Vi = Pi(Ty) N H5(D). Denote Vj, =
span{¢t,--- ¢ } and Vg = span{o{’,--- ,¢§ }, where Nj and Ny are the cor-
responding number of vertices. The wave function is approximated by 5 (¢t,z) =
Z;Vh Up(t)$l () on the fine mesh, where Up(t) € C,p=1,--- , N, and t € [0, T7].
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6 P. LI AND Z. ZHANG

3.1. TS-FEM for the NLSE. In the case of nontrivial potentials, the numeri-
cal mass density may decay towards zero with an exponential rate when utilizing the
direct Backward Euler method. Time-splitting manners can maintain the mass of the
system. Therefore, we adopt Strang splitting methods for time-stepping. The NLSE
is rewritten to

(3.1) iedpp = (L1 + L2)Y,

and its exact solution has the form ¢¢(t) = S*;,, where S* = exp(—i(Ly + L2)t/e).
To efficiently handle the nonlinear term, we present two alternative approaches, both
of which require solving linear equations:

1. Option 1,
62
(3.2) Li() = =FAC) +v() La() = A P():
2. Option 2,
(3.3) Li() = =FA0) La() = v()+ A 2.

When computing the commutator [£1, Lo] = L£1Ls — LoL1, the regularity of potential
v € C?(D) is required for Option 2, whereas Option 1 does not need this requirement.
From t,, to t,,+1, the Strang splitting yields
(3.4)
i At i At At
YT = Ly = exp (‘Zzﬁz()) © exp (‘Z£1> °xp (‘Zzﬁz(-)> v
€ € €

This formulation can be written as
VAN
(35) vt e (<2204 Lol ) w4 R,

By the Taylor expansion, we have |R}|| = O (Ae—f) Furthermore, we define the

n-fold composition

(3.6) Yo" = LMy = L(AE, ) o+ 0 L(AL, ) hin

n times

Next, we introduce the classical finite element discretization for the operator L.
Define the weak form

(3.7) ie(0<, ¢) = a(y*,¢), Vo € Hp(D),

where a(¢¢, ¢) is determined by the option of £;. For example, setting £ = —%A—i—v,
we have a(v€, ¢) = g(vwe, Vo) + (vip¢, ¢) and the Galerkin equations

62
(3.8) ie Yy dilp(y,05) = 5 D Up(t)(@),0) + D Up(t) (vsy, )

with g =1,--- , Ni. The corresponding matrix form is

(3.9) ieM"d,U(t) = (ish + Vh> U(t),
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TS-MSFEM FOR SEMICLASSICAL NLSE WITH RANDOM POTENTIALS 7

where U(t) is a vector with U(t) = (Uy(t),---,Un, (t))", M" = [M}] is the mass
matrix with M;Lq = ( 27(%;), Sh = [S{jq] is the stiff matrix with S;}q = (V(ﬁﬁ,VQﬁg),
and V" = [V] is the potential matrix with V,J, = (vgh, ¢h).

We now present the formal TS-FEM methods for the deterministic NSLE. The
first one is the discretized counterpart of Option 1:

. IAAt
U™ = exp (—Z2E|U”|2> U,
. iA _
(3.10) U" ! = Pexp (-”A) (P10,
€
Un+1 = exp (_ i)‘zAtlﬁn-&-lF) Un—i—l’
€

where (Mh)*l(gSh + V") = PAP~! with A being a diagonal matrix. We call it SI
in the remaining of this paper. Owing to the application of the eigendecomposition
method [15], the error in time is mainly contributed by the time-splitting manner.
Meanwhile, this scheme does not require time step size At = o(e), although the full
linear semiclassical Schrodinger equation must be solved.

Option 2 has been extensively used in previous works, such as [7, 9]. In the FEM
framework, it solves the NLES in the following procedures:

YAN A
" — exp (—gew " AU”)) U,

[jn—&-l _ Un € Un+1 + ﬁn
11 M| ——— | =5 | ————
YA/ ~ ~
U™ = exp <Z26(v+ )\Un+12)> ontt,

This method requires the mesh size h = O(e) and time step size At = O(e) [9], and
we call it SIT in the remaining of this paper.

Denote L the discretized counterpart of £, and similarly, L; and Ly their respec-
tive discretized versions. From t, to ¢,41, the discretized solution in both time and
space can be determined by the recurrence

A A
(3.12) Ut = L(ALU™U™ = Ly (; Li(At) Ly (; U")) ur.

Denote ;™" = Z;v:hl Upp, and for simplicity we employ a formal notation for the
n-fold composition

(3.13) " = L) = L(AL ) o--- 0 L(AL, ) i),

n times

where 99 = Rpti, with R, being the Ritz projection operator.

3.2. MsFEM for the deterministic NLSE. Instead of the FEM, we construct
the multiscale basis functions to reduce dofs in computations. The P; FEM basis
functions on both the coarse mesh 7y and fine mesh 7T, are required. To describe
the localized property of multiscale basis functions, here we define a series of nodal

This manuscript is for review purposes only.



263

264

265

266

268

269
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patches {D,} associated with x, € Ny as

Dy(x,) :=supp{¢p} = U{K € Ty | x, € K},
DEIZU{KgTH|KﬂD5717£®}, KZ].,Q,-".

The multiscale basis functions are obtained by solving the optimization problems

(314) 6y =g min_ a(6.0).
(3.15) s.t./ ¢l dx = A(H)Syq, V1< q< Ni,
D

where a(¢, ¢) = %(V(b, Vo) + (vo, $), and A(H) = 1 in the previous work [13, 14, 15,
30, 36]. Note that the localized constraint is not considered in the optimal problems,
thus we obtain the global basis functions.

In this work, we set \(H) = (1,¢{1{), and it can be computed explicitly. Since
Py basis functions are used, we have A(H) = H for 1D. To explain this setup, we
introduce the weighted Clément-type quasi-interpolation operator [28]

(3.16) Iy : Hp(D) = Vi, [ Iu(f):= ZE{’ZZ;H;%-

The high-resolution finite element space Vj, = Vg @& W}, where W, is the kernel space
of I'y. And for all f € HL N H?, it holds [39]

(3.17) 1f = T () < H?|| £l =

In the MSFEM space, the wave function ¢ is approximated with

N A
(3.18) vi(x) = ) Updp.

p

T

Il
<

It can be projected onto the coarse mesh by Iy,

Ny U , Ny o
IHW)—Z(Z (,¢§§ 5=2?§%’¢£’-

p=1 p=1

If 9¢ is continuous at x,, the above formula indicates that at node x,,

c A(H)U,
Ve(xp) a, I]){)

Let A(H) = 1, we can see that it holds ¥¢(x,) ~ Up/(l,qﬁf) in the MsFEM space.

Take an assumption that zj;p = (1, qﬁf )¢p, where qu is independent of the mesh size
H. Then, (3.18) can be rewritten to

NH NH

(3.19) U () Y () (1,0 )by = > ()b

p=1 p=1

This manuscript is for review purposes only.
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TS-MSFEM FOR SEMICLASSICAL NLSE WITH RANDOM POTENTIALS 9

Note that ¢, is still the multiscale basis function at z,. We consider the following
two equations

NH NH
(3.20) i€ Z(éf’zn bq) iU, = Z(Hgﬁp, ¢q)Up
p=1 p=1
and
Nm R No
(3.21) i€ (0p, 0g)diUp =Y (Hbp, bg)Up.-
p=1 p=1

If A = 0, the two equations have the same solution with a given initial condition,
while for A # 0, the factor (1, (bf ) in the basis functions cannot be eliminated in the
two sides of (3.21), and the two equations have different solutions. This issue can be
addressed by the setup A(H) = (1, $[).

Solving the optimal problems (3.15) on the fine mesh, we get

Ny
¢p:ZC1S7¢Zv pzlvaNH
s=1

Define the MSFEM space Vs = span{é1,- -, dny }, and it holds true that Vs C V4.
Hence the solution of optimal problems defines a linear transformation C : Vi, — V6.
On the other hand, the solution on the fine mesh can be reconstructed utilizing this
linear mapping, which is essential in the formulation of the cubic nonlinear matrix.
Note that the factor A(H) is a rescaling factor, and it doesn’t change the basis function
space. Thus we have the following propositions.

PROPOSITION 3.1 ([52], Lemma 3.2). For all ¢ € V5 and w € Wy, a(¢p,w) = 0
and Vi, = Vs ® W,

Proof. As the same procedures in [52], we directly obtain a(f,w) = 0,Vf €
Vs, w € Wy, For any f € V},, define

S (f, )
>

k P
7= 2. gm)

Pp-

p=1
Then f* € Vs and (fff*,gbf) =0forp=1,---,Ng. Thus f — f* € W} and we
get the decomposition Vj, = Vs ® Wi, 0

Due to Vj, = Vs ®Wp, W), is also the kernel space of linear map C. Furthermore,
combining an iterative Caccioppoli-type argument [32, 36, 42, 44] and some refined
assumption for the potential, and the multiscale finite element basis functions have
the following exponential decaying property.

PROPOSITION 3.2 ([52], Theorem 3.2). Under the resolution condition of the mesh
size and potential, there exist positive constant C' and § € (0,1) independent of H,
such that

(3.22) IVopllL2(o\Dyy < CBYV oy,

forallp=1,--- Npg.
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By the multiscale basis functions, the weak form of the full NLSE reads as

Nu Np N, Nu Np N,
(3.23) e (ZZdtU c qu,ch(bh) = (ZZU csws,zc v¢(;>

p=1s=1 p=1s=1
Ny Np 2 Nu Nu Np
22 Upepda| 2D Upeya ) cio
p=1s=1 p=1s=1
foralll=1,---, Ng. The stiff matrix and mass matrix constructed by the multiscale

basis functions satisfy M™* = CTM"C and S™* = CTS"C. For the nonlinear term,
the solution on the fine mesh is reconstructed by C U, and we then get the similar form
N™s = CTN"C. The construction of N* suffers from heavy computation, especially
for high-dimensional problems. And the application of time-splitting methods can
avoid this issue. Thus we only need to solve linear equations at each time step,
achieving high efficiency.

According to (3.18) and (3.19), the numerical solution on the coarse mesh can be

N,
denoted by {U,(t )}p 1, while on the fine mesh denoted by {ZNH U,(t)e } hl. For

the sake of clarity, in the sequel, we denote the v, the classical FEM solutlon and
g and 9%, the numerical solution constructed by the multiscale basis functions on
the coarse mesh and fine mesh, respectively.

4. Convergence analysis.

4.1. Convergence analysis of the time-splitting FEM. In this part, the SI
is mainly considered and the L? error will be estimated. We start the convergence
analysis from the temporal error estimate at the initial time step.

LEMMA 4.1. If 1, € H*, the error at the initial time step is bounded in the L?
norm by

A3
[ (AL) — || = |5 pin — LIAL) Y| < CllwinIIH4?7
where C 1s a constant.
Proof. According to (3.5), we have

€
m

At YAN YAN
P! = exp (-Zﬁz(ﬂ)) - Z751 126 Lo (3 ))

iAt At? iAt iAt
= (-5 (2t + 0150 ) - e - S atui ) v
At YAV At
= exp (_z£1 - l—L‘g( )) exp (—F(Q,Cl + Ls) ) (A
where I depends on the form of L£5. Use the expansion
At3 At? At®
exp (—SF(2L'1 + 52)2) =1-—TQ2L + L£2)2+0 ( )
€ € €8
and the dominant reminder has the form

A 3
Ry = ——tr(zz:1 + L5)?

11’1'
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Since the exact solution at t = At is given by

iAl
€

wE(At)=S“¢fn=eXp< <£1+z2<w;>>)

There exists a constant such that

O
€ € € At3
[ (At) = | < Cllopf, || o
In turn, we prove the stability of the Strang splitting operator. Due to exp (—Z£1)
is unitary, for any fi, fo € H?, we have
Lyt 1Lyt 1Lt
exp <e) J1—exp <e) J2|| = ||exp (e (f1 = f2)|| = Ilf1 = foll-

Define F () = —iLo(1)1, the splitting solution for Lo is solved by the equation
(4.1) ey — F(y) = 0.
The nonlinear flow solved from this equation has the form

1 t
(4.2) Yip=19+ = / F(Y*y)ds.

€.Jo
Assume that F is Lipschitz with a Lipschitz constant M, and repeat the proof in [11].
For all fi, fo € L?, there exists a constant that depends on F such that for all
0<r<1

V7R =YTRll < = fll+ ¢ [ IFO7 ) = FO7 ) s

M T
<= gl + 2 [ IV - Yo pelds
0

An application of the Gronwall lemma leads to

(43) =Yl < exo (20) I - £l
In particular, for F() = A|[y|*y we get

AT
(1.4 161 - £)fal < exp (227 ) 152 - fol

Besides, for the nonlinear flow (4.2), we have the following lemma.

LEMMA 4.2. Let ¢ € H?; if F(¢) = A¢|*4, there exists a constant C' such that
forall0 <7< 1

by 2
(@5 1ol < oo (2T e

If F(v) = MNY|*% + v, there exists a constant C such that for v € H? and for all
0<r<1

2 + Ay|)?
(4.6) 1Yl < exp (T(IIUIIH j leloo)> 1652

This manuscript is for review purposes only.
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Proof. Consider F (1)) = A1)|?¢ + vip. For the nonlinear flow (4.2), we have

- 1 (7 s Voo + AMYIZ [T ers
Y70l < Wl b [ 1P 0)ts < il + P20 ey s

Then the application of Gronwall inequality yields

: (ol + Mvl2)
776l < exp (T A

[P oo-

Similarly, for the H? norm, we directly have

[ollez + MYl [T s
—= Y
€ 0

Y70l < (9]l m= + Pl m2ds,

which also leads to

2 4+ M|vl?
HYTw”H? < exp (T(HU”H : |’¢)||oo)> ||¢HH2

Let v =0 and we get (4.5). This completes the proof. |

For the semi-discretized time-splitting methods, we have the convergence theorem
of temporal accuracy.

THEOREM 4.3. Let 15, € H*, T > 0 and At € (0,¢). For nAt < T, there eists

a constant C such that
T\ At?
(@) 167 = 5"l < Ol (141 ) S

Proof. Similar to the proof in [11, 17]. The triangle inequality yields

n—1
£ i — S™ Ay <D LTSI gy — LPITESUTDA |

Jj=0

Due to S? being the Lie formula for all ¢t < T and ¥, € H*, S*)y, belongs to H* and
is uniformly bounded in this space, thus for all j such that jAt < T, we have

A3
e

1£578 s, — SUFDE Yy | = ||(£ = §21) 572 4| < Clfthin s
Combine with (4.4) and we get

MAAtL

€

1L — ™Ay || < nf (exp ( ))H*l (L — 585784, |
j=0

Since 0 < At < ¢, for all j > 0, we have

(exp (MiAt))j < (1 +COA:)j < 1+Cj%.
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Consequently, we arrive at

n—1 .
MMAt\\n—i—-1 A3
n,, _ QnAt,. . =y
17 = "4l < 3 (exp (=225)) 7 Cllunllin =
<Ol 225 (140t -5 - 02Y) < Tl (14 1) 22
> in|| H4 3 =~ n—yj B > in||H4 B 3
It concludes the proof of this theorem. 0

Next, we give the convergence of the full TS-FEM method. Consider the problem
1€0) = Lo)*

with the initial condition v;, and the periodical boundary condition. The solution
has the form

(4.8) Y (x,t) = exp (—;iﬁg) Yin-

If L5 consists of potential and nonlinear term, the regularity of ¢¢(¢, ) depends on
the regularity of both the potential v and ,, otherwise it only depends on .

Assume that the numerical solution 9§ is given by (3.13) and ¥(t,) = S"ty,
is the solution of (2.1). We write

(4.9) R = (tn) = L") — S™ i = (LY — L%in) + (L"¢in — S i)

The first term denotes the error attributable to the space discretization and the second
term is the splitting error of temporal discretization.
We first estimate the spatial error accommodation from ¢t = 0 to t = At,

w;l —°(At) = Ly (Azt, ) o L1(At)Ls (AQt, ) 0'1/12 — L(At)in.

Let ¢ = L2(5t,+) 0 1in, and consider the problem

2
(4.10) €Dt = —%Auf e

with the initial condition (¢t = 0) = ¢y and the periodical boundary condition. The
corresponding weak form is

62

(4.11) ie(@u (¥ = ¥7), ¢") = 5 (V" = ¥5), Vo) + (0¥ — ¥7), ¢"), Yo" € Vi

Let ©¢ — 45, = (¢ — Rpp®) + 6, where 0 = Ry — 15, and Rj,¢¢ denotes the Ritz
projection. According to (4.11), we get

(4.12) ie(@( — Ruv) + 6], 6") = 5 (V0,V6") + (0(s* — Rnv),8") + (00, 6").

Take ¢" = 6 in the above equation,

2
i€(010,0) = ~ie(0,(* — Rnb*). 0) + S VOIP + (0" — Rut).0) + (10,0),

This manuscript is for review purposes only.



411

412
413

414

415
416

418

419
420
421

432
433

434

14 P. LI AND Z. ZHANG

and we have
ied,||0)|? = i€(0,0,0) + ie(:0,0) = 2ieR (0 (v — Rpb©), 0) + 2iS(v(¢p© — Rpyp©), ),
which induces
2
(4.13) dellOll < 2010 (v = Rav )| + —llollooll¥ — Bny©]|.
Integrating from 0 to t yields
K € € 2 ! € €
@14 1001 < 10OV +2 [ 100" = RVt + 2l [ 107 = Ruat.
Assume [|0(0)]| = ||t — Rnthinll = [[thin — Ruthinl| = 0. Since |Radpp¢ — 9pp¢|| <
Ch2||0u¢|| g2, we have

Cth?

3 < CC)\’EHL2,

Ch2 t
(4.15) |10(t)|| < Cth?||0,° || > + T/ 19| zr2ds < O cth? +
0

where t < At, and C) ¢ is the leading order term with respect to e L.
Let 1,1 be the numerical solution of (4.10) with t = At, we can obtain

I —we (a0 = | exp (”ﬂ“‘”) B — exp (Atﬁz(w) b

MMA
< cep (2520 oo,

where 1[)1 = exp (—%) exp (—%) ¥in. This indicates the spatial error accu-
mulation in a one-time step. We next estimate the error accumulation in both time

and space from t =0 to T.

THEOREM 4.4. Assume that ;" = L™y, and ¢(nAt) = S"py, are the nu-
merical solution and ezact solution of the NLSE. Assume dyp¢ € H? for all t € [0,T]
and Vi, € H*, then fora given T > 0, there exists a constant hg such that h < hg and
for all At < e with nAt < T, and the L? error estimate satisfies

on T\ At?
(4.16) 5™ — e (nAL)|| < CCyh* + CT (1 + 6) —

where the constant C' is independent of € and T .

Proof. The error can be split into

U = (nA) = L™y — 8"y = (L™ — L) + (L™ — 5™ i)
The first term on the right-hand side satisfies

IEmh — £l < || 30 L (LR — Ra)£7 | + 11 (R — D™l
j=1

Due to £; conserving the H2 norm of the solution and Lemma 4.2, we have L™, €
H? and ||(Rp, — I) L] < CR?||L™ i || gr2. Meanwhile,

Iy |l < 1Ly = LAY + [IL(A)Y°|| < COx Ath? + [[°]).
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Similar to the Theorem 3.1 in [5], we denote the bound of the numerical solution by

m n—m €| < ]
lénn?)énHL Rnl ¥ ” =ar

Recall (4.14)-(4.15), owing to At < ¢, then there exists a constant C' independent of
e such that

E L"™ (LR, — RyL)L' Min | < mexp (CTa7) max (LR — RaL) L7 4pin|
, SJsn
j=1

AM At AM At

<nexp (CTa%) exp ( ) C’C’A,EAth2 < exp (C’Ta%) exp ( ) CC’A’EThQ.

Thus we arrive at

Hanin - Lnd]m” S CC/\,eh27

where C' is independent of € but depends on T and A. Note that the order of |[¢¢|| g2
with respect to €1 is lower than C) ., and it is ignored in this results.
Furthermore, combine with Theorem 4.3, and we get the desired estimate

95" = & (A < L i = L7in]| + 1L in — 5™ 4|
T\ AP
< OO\ b2+ CT (1 + ) 22

€ €

This declares the (4.16). ad
Remark 4.5. Take a further simplification

€n

We temporarily use ;" to denote the FEM solution on the coarse mesh with mesh
size H, the counterpart result of Theorem 4.4 on the coarse space is

(4.17) 5" — ¥ (nAt)|| < CC\ H? + A2

CT?
o

Here we obtain the L? error estimate of the TS-FEM for the deterministic NLSE.

Next, the convergence analysis of the MSFEM in space, accompanied by the qMC

method, will be further assessed. Note that the convergence analysis of the TS-FEM
with the gMC method is similar, thus we will not discuss it in the subsequent section.

4.2. Convergence analysis of the TS-MsFEM for NLSE with random
potentials. In this part, we first give the convergence analysis of the TS-MsFEM
for the NLSE with the deterministic potential. Secondly, employing the qMC method
in the random space, we further obtain the error estimate of the TS-MsFEM for the
NLSE with random potentials.

4.2.1. TS-MsFEM for the deterministic NLSE. For SI, we solve the linear
Schrédinger equation by the MsFEM, and the corresponding convergence analysis has
been given in [52]. We therefore have the following estimate.

This manuscript is for review purposes only.
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16 P. LI AND Z. ZHANG

LEMMA 4.6. Let ¢3" = LI )i be the numerical solution solved in Vs by SI,
and < (t,) = Sy, be the exact solution of the NLSE. Let At € (0,¢), and assume
Oppe € L? for all t € (0,T), and 13, € H*. We have the estimate

en e CTH? CT?
(4.18) 05" = 9 ()| < —5— + AL,

where the constant C' is independent of €.

Proof. For the linear Schrodinger equation, the spatial error of multiscale solution
and exact solution has the bound [52]

CH2 CH2 It ego
95 =¥l < =5 lleded|| < |atwm||exp(”f|>‘

€2 €

At the second step of SI, we have

CH? 2AAL eI CH?
I ) < e (220 ) < S

€ €

When the eigendocomposition method is applied, the solution can be solved exactly
in time for linear problems. The accumulation of the spatial error at each time step
satisfies

[ Lms¥g" = LY < | Linsthyy” = LIgp" || + | L1 — L7
AMAt\ CH? AM At cn e AMAt\ CH?
<exp Hexp | ——— | ™" =" S exp | — :

2¢ €2 €2

Meanwhile, by the Strang splitting method, repeat the procedures in Theorem 4.3,
and we get the estimate as (4.18). |

Remark 4.7. In comparison to Remark 4.5, the MsFEM exhibits a superior bound
on e, as it requires only the bound ||9;¢¢||. In contrast, the application of the classical
FEM requires the bound of [|0;%¢| g2, which implies a high-order dependence on e.
Consequently, the weak dependence of MsFEM on € demonstrates its superiority in
handling multiscale problems effectively.

4.2.2. MsFEM for the NLSE with random potentials. To carry out the
convergence analysis for the qMC method, the regularity of the wave function with
respect to random variables is required. Since the random potential is truncated by the
m-order KL expansion, we denote &(w) = (&1 (w), -+, Em(w)T. Let v = (v1,-++ ,Vm)
be the multi-index with v; being the nonnegative integer, where |v| = 27:1 vj.
Then 0”15, denotes the mixed derivative of vf, with respect to all random variables
specified by the multi-index v.

LEMMA 4.8. For any w € Q and multi-index |v| < oo, and for allt € (0,T), there
exists a constant C(T, \ ¢, |v|) depends on T, )\, ¢, |v| such that the partial derivative
of Y&, (t, x,w) satisfies the priori estimate

(4.19) 10"l 2 < C(T A € W) T[T/ A losllm=)

J

The proof of this lemma is given in the appendix.
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We are interested in the expectation of linear functionals of the numerical solu-
tion in applications of uncertainty quantification. Here for the NLSE with random
potentials, we will estimate the expected value E[G (¢S, (-,w)] of the random variable
G, (-,w)). Let G(-) be a continuous linear functional on L?(D), then there exists a
constant Cg such that

|G(u)| < Cgllull

for all u € L?(D). Consider the integral
(1.20) ()= [ Feue
£€l0,1]™

where F(&) = G(¢5,(+,€)). To approximate this integral, both the MC and ¢MC can
be used. In our methods, it is approximated over the unit cube by randomly shifted
lattice rules

Qumn(A; F) = ZF(frac( ))

where z € IN™ is the generating vector and A € [0,1]™. Here N denotes the number
of random samples.

LEMMA 4.9. For the integral (4.20), given m, N € IN with N < 1030, weights
¥ = (Yu)ucn, @ randomly shifted lattice rule with N points in m dimensional random
space could be constructed by a component-by-component such that for all a € ( ,1]

VEAIn(F) = Qun (5 F)| < 9CCy m(a) N 7122,
where

1/2a 1/2

Com(@)=[ > ][ el Z H Ajllvs 132

P#uC{1:m} JjEu uC{1l:m} JjEu

Proof. The proof of the lemma is the same as in [15]. Here C'(v) = C(t, A, €, |V])
is calculated in Lemma 4.8. And

(4.21) o(a) =2 (%) ¢ (a - ;) ’

where 7, = 22=1((z) is the Riemann zeta function and C* = ||G||. The details of
these estimates can be found in [18, 26]. 0

Employing the gMC sampling, the estimate between the wave functions of (2.1)
and the truncated NLSE (2.10) satisfies the following lemma.

LEMMA 4.10. Under the Assumption 2.2, there exists a constant C such that

42 JBAIEGO] - QORI < € (M 4 ).

where 0 < x < (3 —n)© -1, r=1-106 for 0 < < 1. Note that the constant C is

independent of m and n but depends on T.
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Proof. Since G is a linear functional, we have

[EGW)] = Qun[G(5)]| < [EIG(W)] = I (V)] + Hm (¢°) = Qm N[G(47)]]
= [E[G(¢)] = BIG (5l + Hm (¥°) = Qv [G(¢5)]]-

The first term satisfies

[BIG()] ~ EIG(w5)]| < B9 - 9wl < ¢,

where C depends on the time 7. Let a = 1/(2 — 2§) for 0 < § < 1, according to
Lemma 4.9, we then get

EA(|EG(Y)] — Qm.n[G(WE)]]
<EA[|E[G ()] = Ln (V)] + B2 [ 1 (¥) — Q. N[G(5,)]I]
gcm:X +CC2, N>, 0

Employ the gMC method in the random space, for the numerical solution 3"
solved by MsFEM on the coarse mesh, then we have the following error estimate.

THEOREM 4.11. Let ¢y, € HY(D), ¢ € L>([0,T]; H*(D)) n L*([0,T]; H*(D)),
and parameterized potentials satisfy the Assumption 2.2. Consider E[G(v<(t,))] is
approzimated by Qum n(GW5",)). Apply the random shifted lattice rule QN to
G(y(tn)). Then for any fired T > 0, there exists a constant Hy such that H < Hy
and for all At < € with nAt < T, we have the root-mean-square error as

(4.23)
2 2 m—X
VEAIEGW (t)] — Qun G5 2 < € (H e

where 0 < x < (3 —m)© -1, andr =1-6 for 0 < § < . Here C is independent of

m and N but depends on A and T', and C,, ,,, depends on T, X and e.
Proof. We split the error (4.23) into
BIG (W (tn))] = Q. [G (W5 )] SIEG (U (En))] — Qum, N [G (15, (tn))]
+ 1@ N [G (7, ()] = Qu NG ()]

o),

€

The second term can be estimated by

€,n € en H2 Atz
9065(62)) — G0 < Collvalta) = il < CCo (g + 5 )

where the constant C' depends on A and T, and is independent of m and N. Combine
with Lemma 4.10, we get the (4.23). This completes this proof. d

Remark 4.12. Theorem 4.11 gives the L? estimate of TS-MsFEM for the NLSE
with random potentials. For the employment of the TS-FEM, repeat the above pro-
cedures and we can get a similar result.

In the proposed methods, when accounting for random potentials, constructing
multiscale basis functions demands substantial computational cost as the number of
samples grows. To improve the simulation efficiency, we propose a multiscale reduced
basis method consisting of offline and online stages. In the offline stage, we utilize the
proper orthogonal decomposition (POD) method to derive a small set of multiscale
reduced basis functions of random space. Using these random basis functions, we
simplify the optimal problems in the online stage to construct basis functions. This
method is detailed in Appendix A.
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5. Numerical experiments. In this part, we will present numerical experi-
ments in both 1D and 2D physical space. The convergence rates of TS-FEM and
TS-MsFEM are first verified. For the NLSE with the random potential, we compare
the convergence rate in the random space. In addition, the delocalization of mass
distribution due to disordered potentials and the cubic nonlinearity is investigated.

5.1. Numerical accuracy of TS-FEMs. Set ¢i,(x) = (107)%25 exp(—202?)
for the 1D case, and ¥, (21, 2) = (10/7)%25 exp(—5(x1 — 0.5)2 — 5(x3 — 0.5)) for the
2D case. To begin with, we choose the harmonic potential v(z) = 0.52%, and verify
the second-order accuracy of the TS-FEM with respect to the temporal step size At
and spatial mesh size h. Here we fix the terminal time T = 1.0, € = 1—16 and nonlinear
parameter A = 0.1. The reference solution vy is computed on the fine mesh with
h = 2%—28 and At = 1.0e-06. The L? absolute error and H' absolute error are recorded

in Table 1.

Table 1: Numerical convergence of TS-FEMs in space and time.

h % 225—”6 52T”2 % order

SI L? error | 1.96e-02 | 5.22¢-03 | 1.26e-03 | 2.54e-04 | 2.09
H' error | 1.19e-01 | 3.36e-02 | 8.31e-03 | 1.68e-04 | 2.04

STI L? error | 3.04e-02 | 8.07e-03 | 1.95e-03 | 3.92e-04 | 2.09
H! error | 3.52e-01 | 9.95e-02 | 2.44e-02 | 4.92¢-03 | 2.05

At 4.0e-02 2.0e-02 1.0e-02 5.0e-03 | order

ST L? error | 4.53e-04 | 1.13e-04 | 2.81e-05 | 7.03e-06 | 2.00
H' error | 2.09e-03 | 5.20e-04 | 1.30e-04 | 3.24e-05 | 2.00

STI L? error | 7.16e-03 | 1.87e-03 | 4.71e-04 | 1.18¢-04 | 1.98
H! error | 1.12e-01 | 2.91e-02 | 7.26e-03 | 1.81e-03 | 1.99

For the 2D case, we employ the multiscale potential

(5.1) v(x1,22) = cos (;leg + % + mi?) ,

over D = [0,1]? with 64 x 64 spatial nodes. Here we set A = 1.0 and multiscale
coeflicient € = %. We compare the numerical solution with the different At for ST and
SII. By the means of the numerical tests shown in Figure 1, SI allows a bigger time

step size than SII.

(a) SI, At = 1.0e-02 (b) SI, At = 1.0e-03. (c) SII, At = 1.0e-03.

Fig. 1: Numerical solution computed by the two TS-FEMs with different At.
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20 P. LI AND Z. ZHANG

5.2. Numerical experiments of TS-MsFEMs. Here the multiscale solution
has two forms: % on the coarse mesh and ¢, on the fine mesh. We first employ
the harmonic potential. We vary the values of H and record the error between the
numerical solution and the reference solution in Table 2. The parameters of this
simulation are: A = 0.1, ¢ = %, T = 1.0, At =1.0e-03 and the fine mesh size

h = 4(2)%. It is shown that SI achieves the second-order convergence rate in both the

coarse and fine spaces. The superconvergence is exhibited in coarse space for SII.

Table 2: Numerical convergence rate of the TS-MsFEMs for the NLSE with harmonic
potential in space.

H ||¢fr1h _¢fcf|| Hi/)fqh _'(/};cfHHl ||¢fv —wﬁcfH ||¢§{ _¢§of||H1
2h 4.95e-05 4.69e-04 3.47e-05 3.31e-04
4h 1.68e-04 1.60e-03 1.18e-04 1.13e-03
SI 8h 6.44e-04 6.11e-03 4.52e-04 4.32e-03
16h 2.56e-03 2.43e-02 1.80e-03 1.72e-02
order 1.90 1.90 1.90 1.90
2h 1.79¢e-05 1.73e-04 5.43e-12 1.88e-10
4h 6.10e-05 5.86e-04 7.85e-11 1.63e-09
SII 8h 2.33e-04 2.24e-03 5.68e-09 1.02e-07
16h 9.24e-04 8.89e-03 4.49e-07 8.24e-06
order 1.90 1.90 5.52 5.22

Furthermore, to demonstrate the advantage of Option 1, we consider the discon-
tinuous potential as shown in Figure 2. The second-order spatial convergence rate of
SI is maintained, while the convergence rate of SII degenerates.

1
2 —~ 0 — 0
8 8
2 -1 . = M
<0 3 Py -O-L* error <0 P -O-L* error
0 Ee) % H' error 9 -2 s H' error
4 - O(H?) ---O(H)
-2 0 2 -2.5 -2 -1.5 -2.5 -2 -1.5
z logyo(H) logyo(H)
(a) v(x). (b) SI. (c) SII.

Fig. 2: Numerical convergence rate of SI and SII for the discontinuous potential. In
the plots, the L? error and H' error on the coarse mesh are depicted.

For the 2D case, we consider the discontinuous checkboard potential

(cos (27rxl) + 1) <cos <27r$2> + 1> , {0< 21,20 <05} U{0.5 < xp,20 < 1},

€2 €2

Vo =
(cos (27rz1) + 1> <cos <27rx2> + 1> , otherwise,
€1 €1

where v = v; + vy with v; = |21 — 0.52 + |22 — 0.5)%, ¢, = é and ey = é. In the
simulations, we set h = ﬁ, €= %, A = 1.0, At =1.0e-04 and T' = 1.0. We employ
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SI (Figure 3) and SII (Figure 4) for time evolving. We vary the coarse mesh size
with H = 4h and H = 8h of the MSFEM, and present the corresponding spatial error
distribution. Here the reference solution is calculated using the FEM with a mesh
size of h. In both Figure 3 and Figure 4, a substantial error is evident for the MsFEM
with the mesh size ratio H = 8h. However, the numerical solution computed by the
MSsFEM still outperforms the results computed by the FEM with the same mesh size.
Furthermore, this simulation highlights the superior performance of SI when dealing
with discontinuous potentials.

(b) Spatial error distribution of MSFEM with H = 8h and H = 4h.

Fig. 3: Numerical solution and the corresponding spatial error distribution computed
by SI, in which the FEM and MsFEM are used for spatial discretization.

5.3. Numerical simulations of NLSE with random potentials. For the
1D case, we consider the random potential

(5.2) v(z,w) = onin(jx)jiﬂﬁj(w),
j=1

where o controls the strength of randomness, and §;(w)’s are mean-zero and i.i.d
random variables uniformly distributed in [—\/g, \/§] It is extended to 2D as

(5.3) v(x1, T2, w) = UZSin(jxl)sin(sz)jiﬁfj(w).

For comparison, we employ the MC method and MC method to generate the samples
¢;j(w) in the simulations. And we measure the states of the system by the expectation
of mass density

1
B¢l = & Z [ (wi) [,
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(b) Error distribution in space of MsFEM with H = 8h and H = 4h.

Fig. 4: Numerical solution and the corresponding spatial error distribution computed
by SII, in which the FEM and MsFEM are used for spatial discretization.

where N denotes the number of MC or gqMC samples. To observe the evolution in
the mass distribution of the system, we introduce the definition

(5.4) A = ( [ i)

which is extensively used to indicate the Anderson localization of the Schrodinger
equation with random potentials.

5.3.1. Comparison of FEM and MsFEM. Weset c =1.0,=0and m=5
in (5.2), and the number of gMC samples to be 500. The multiscale parameter is
€= é, and the computational domain is D = [-2,2]. For the TS-FEMs, the solution
is computed on the fine mesh with h = %, and we set H = 6h for the TS-MsFEMs.
The terminal time is set to be T'= 10. As shown in Figure 5, we show the evolution
of A(t) and B(|1f ,[*) at T = 10. The localization of linear Schrodinger equation

and weak delocalization of NLSE can be observed by both A(t) and E(W;I7h|2).

5.3.2. Convergence of M C sampling and qMC sampling. The MC method
and qMC method have different convergence rates. Hence we check the numerical
convergence rate of the MC method and qMC method. To eliminate the perturbation
of a small sample size, we adopt the random potential

(5.5) v(z,w)=10+0) sin(jz)jiﬁgj (W),

Jj=1

in which the parameters are: 0 = 1.0, 8 = 2.0, m = 5. The other simulation settings
are: A=0.1,e= %, D=[-mn], h= 2% H=06h, T =10 and At =1.0e-03. In this
experiment, we use 50000 samples to compute the reference solution and record the
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1 0.3
—FEM SI
A ----FEM SII
08 \ . [ R | MsFEM SI
NIZg == - 02) |\ MsFEM SII |
06 1 < ; i
= o \
= =
0.4 —FEMSI | F 01} / \ |
---.FEM SII /
0.2 MsFEM SI |
--—MsFEM SIT Mo \w
0 : : : : 0
0 2 4 6 8 10 -2 -1 0 1 2
t z

(b) Nonlinear case with A = 1.0.

Fig. 5: Numerical results computed by FEM and MsFEM with different time-splitting
methods for the NLSE with A =0 and A = 1.0.

L? error of the density ||E(|¢¢,ul%) — E(|¥¢.|?)|| as the sampling number varies with

ref

N =100, 200, 400, 800, 1600 and 3200 for both MC method and gMC method. The
result is shown in Figure 6.

t —e—MC (SI) —e—qMC (
- +- MC (SII) - o- qMC (
—O(N%) —O(N)

2 25 3 35
log; (V)

Fig. 6: Numerical convergence rates of the MC and qMC methods.
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5.3.3. Investigation of wave propagation. For the 1D case, we vary A and
record the evolution of A(t) to observe the wave propagation phenomena. As well
as we depict E(|¢§{,h|2) at terminal time. Here 500 qMC samples are generated to
approximate the random potential. The parameters of simulations are: D = [—27, 27],
o =1.0, 8 =0.0 and m = 5. For the MSFEM, we fix h = Gg% and H = 10h. To
observe the long-time behavior, we set the terminal time to be T' = 20. We vary
the nonlinear coefficient A = 0, 1, 10, 20, and the results are shown in Figure 7.

A(t) increases as time evolves for nonlinear cases, while it floats within a range of

81 : : :
. —A= A=10
N S N q— A=20
67; \,—-—f""‘
ok
<40
O'iA : : :
0 5 10 15 20
t T

Fig. 7: The evolution of A(t) and density of expectation at T" = 20, as the nonlinear
coefficient A varies. Results computed by the ST and MsFEM.

1
2 (0.51,0.57) for the linear case during the time interval ¢t = 10 to ¢ = 20.
3 Next, we consider the 2D equation. The settings in our numerical simulations are:
1 h= 6%1, €= i, H =4h,3=0,m=>5and 0 =5. As shown in Figure 8 and Figure 9,
5 the localization and delocalization of mass distribution are observed for linear and
nonlinear cases, respectively.
0.62 12
0.6 ‘ 1r
S =
0.58 W 0.8
0.56 ‘ ] 0.6 ‘ ‘ ‘ ‘
0 2 4 6 8 10 0 2 4 6 8 10
t t
Fig. 8 The evolution of A(t) for 2D linear case and nonlinear case with A = 20.
Results are computed by SI and MsFEM.
656
657 6. Conclusion. In this work, we present two time-splitting finite element meth-
658 ods (TS-FEMs) for the cubic nonlinear Schrédinger equation (NLSE). We introduce
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E(|954*)

Fig. 9: The localization and delocalization of mass distribution of the 2D linear
Schrédinger equation and NLSE with random potentials, respectively.

the multiscale finite element method (MSFEM) to reduce the spatial degrees of free-
dom. The multiscale basis functions are constructed by solving a set of optimal prob-
lems with local orthogonal normalization constraints. We find that a mesh-dependent
scale is involved in the basis functions because of the localized orthogonal normaliza-
tion constraints, which produce an indispensable scale in the numerical solution. We
revised the optimal problems to address this issue in this work. For time evolving, we
present two Strang time-splitting manners in which one can maintain the convergence
rate for the NLSE with discontinuous potentials. Accounting for the random poten-
tial, we employ the quasi-Monte Carlo sampling method in the random space. Thus
our approaches yield the numerical solution with second-order accuracy in both time
and space, and an almost first-order convergence rate in the random space. We pro-
vide a theoretical convergence of the L? error estimate, corroborating the convergence
through numerical experiments. In addition, we present a multiscale reduced basis
method that reduces the computational burden of constructing the multiscale basis
functions for random potentials. By the proposed methods, the long-time wave prop-
agation of the NLSE with parameterized random potentials in 1D and 2D physical
space is investigated efficiently. The localization of the linear case and delocalization
of the nonlinear case are observed. In summary, the proposed TS-MsFEMs offer a
valuable approach for simulating the NLSE with random potentials, achieving good
accuracy and high efficiency.

Declaration of interest. The authors report no conflict of interest.

Appendix A. A multiscale reduced basis method. As a supplement,
here we present an approach to reduce the computational effort of construction basis
functions for random potentials. This approach is motivated by the method proposed
in [15], which consists of offline and online stages. In the offline stage, let {v(z, wq)}qQ:1
be the samples of potential with () the number of samples. At the node x,, CS =
rel Zqul ¢p(,w,) is the sample mean of basis functions, and ¢, (@, w,) = ¢, (2, wg) (S
is the fluctuation. Employ the POD method to {qu(a:,wq)}(?zl build a reduced basis
functions {¢}(x), -+, (" (®)} with m, < Q. In the online stage, the multiscale basis
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function at x, has the form
(A.1) dp(@.w) =) (WG (x),

in which {c};"% are unknowns. Due to the wave function being represented by

Ny mp

(A.2) Yy (z,t,w) = ché(tv W)C;l;(m)a

p=1 [=0

the dofs in the Galerkin formulation is Z;v:Hl (mp + 1). To reduce the dofs of the

Galerkin formulation, we compute {c}},"% in (A.1) by solving the following reduced
optimal problems

(A.3) min a(¢p, ¢p),
(A.4) bt/ Gpdy dx = A(H)dpg, V1< q< Np.
D

Owing to the value of m, could be small [15], the computation cost of constructing
the multiscale basis functions can be saved, and the dofs in the Galerkin formulation
is still Ny in the online stage. In addition, we adopt parallel implementations with
12 cores in the following tests.

To substantiate the improvement of the reduced MSFEM basis method, we carry
out two numerical tests. We fix m, =3 forp=1,---, Ny, and generate 1000 samples
by the gMC method with 200 samples allocated for the offline stage and the remaining
800 samples used in the online stage. TheSI is employed for time evolving.

Here the experiment of the nonlinear case in 5.3.1 is conducted. We compare the
numerical solution computed by the FEM, MsFEM, and the MsFEM with the POD
reduction method as in Figure 10.

0.6

—FEM
0.3 - - - MsFEM

MsFEM(POD}"C

©
N

—FEM / \

- - - MsFEM 0.1 A \\M
MsFEM(POD) o

0 2 4 6 8 10 -2 0 2
t T

Fig. 10: Numerical comparison of FEM, MsFEM and the MsFEM with POD reduction
methods.

Furthermore, we vary the qMC samples and record the corresponding time costs
in Table 3. Note that the time costs of MsFEM with the POD reduction are attributed
to both the offline and online stages of the computations. As illustrated in Table 3, a
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711 considerable enhancement in simulation efficiency is achieved through the application
712 of MSFEM, with additional improvements attained in the integration of the POD
reduction method.

Table 3: Comparison of time costs (second) for the FEM, MsFEM, and the MsFEM
with POD reduction methods.

Sample number | FEM | MsFEM | MsFEM (POD) (offline)
1000 2116 152 107 (35)
2000 4205 308 243 (35)
4000 8376 620 501 (34)
8000 16633 1239 1020 (40)
16000 33469 2466 2137 (43)

713

714 We repeat the experiment of NLSE with A = 20 as in 5.3.3. The corresponding

715 numerical results are shown in Figure 11. The MsFEM combined with the POD

716 reduction method takes approximately 14978 seconds (4.16 hours), with 1064 seconds

717 spent on the offline stage. In contrast, the MsFEM without incorporating the POD
method takes 20,061 seconds (5.57 hours).

8 , , . 0.1
6 {\\M L oos
= 006
|
2 0.04
——MsFEM
—— MSFEM - - - MsFEM(POD)  MeFEM(POD)
0 ‘ ‘ ‘ 002 — ‘ ‘
0 5 10 15 20 5 0 5
t x

Fig. 11: Numerical comparison of MsFEM method and the MsFEM with the POD
reduction method for the 1D NLSE with A = 20.

718

719 Appendix B. The proof of Lemma 2.1.

720 Proof. We first study the regularity of 1 in space. Since the energy is a constant
- 62 €12 €2 A €14

721 B(t) = S IVYII" + (v, [9°%) + Sl19°lILs = Eo < o0

722 with A > 0, we directly get

62 € € A €
723 5 VY I = Eo — (v, [¢]*) — L 12+ < Eo + ollec,

which means

=~
v

¢

€

725 [Vl <
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Meanwhile, we also have

Eo + [[v]loo

(B.1) 9|74 < 3

Owing to the Hamiltonian H is not explicitly dependent on time, and [H?, H] = 0,
the following average value of mechanics quantity is independent of time, i.e.,

(B.2) (H*,¢) = By

with d;E; = 0. Explicitly, we have

4
(7_[2we’ 7;[}6) :%(A2we,¢e) + (U21/}E,1/)6) + /\2(|¢e|4¢5’ we)
— (A, ) + 2\ (W[ Pyl 9°) — A (A [Pye, ¥°).
We then get

4
SAGE + oyl + A2 3o
By + € (Avgt, vF) — 2A0|0 P05, U) + A (Al P, )
<y — & (Vour, Vi) + 20 ulloc [ o + 302 0% [V
By + Cllolloe + el Volloe + 270l [6°]1 44 + 3CT0 |2,

Hence, there exists a constant C' that depends on ||v||ec, [|VV|cos Eo, E1, and ||t o
such that

C c

(B.3) V2ol < = 9l < 35

Furthermore, if ¢ € H*, we also have [H*,H] = 0 for s < 4. Repeat the above
procedures and we can get

c
(B.4) I9°9) < =

Next, we study the bound of ||0;1¢|| s with 0 < s < 2. Taking the time derivative
for (2.1) yields

2 —
(B.5) 1€ )¢ = f%AaﬂlJe + 00 + 2\|[Y20p¢ + A(¥)20p0°.

Take inner product of this equation with 0;%¢ and we get
(B.6)

ieds (0p°, 04)°) = A/D(atwelfe)z — (O *)?da = 4i>\/D RO ) I(Bpyp“p€)da.
Thus we have
ed[|0y°]1> < 2X10, 9 e [1* < 2M[19°]1Z (19 1?,

which indicates

20T ||| ?
(8.7 o < o exp (2L )
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754 For the initial condition, we have

€ 1 A 9 C

755 il < 5[V ~(Vin, Yin) + =|tiallzs < —.
Hatme = 2 valn” + P (’meawm) + € ||w1nHL =
756 We therefore get
C 2\||ve)|2. T
757 (B.8) 0] < — exp (”i”) .
758 Take inner product of the equation (B.5) with 9 A€, and we have
759 ede||[ VO ||? = S{2(Vvdp, VO©) + AN(Y 0p V¢, Vor©)
760 + AN VYE, VOy1h©) 4 AN 0 Ve, Vah©) 4 2X((1°)?, (Vor©)?) ).
761 By the inequalities
762 100V VO 1 < ([ Lo 06 (| s [V Lo [ VO
d d 1.4 .

7o <Cllvles (Glovut+ (1= § ) lowl ) 12wl ¥ Vo]
764 <CllYeN s (1079 || + [|0ew ) V20 [V Oy |
765 and
766 ()2 (VOw)? | 1a < [0 [[ L IV,
767 we get

765 ede]| 0, VY| L2l Vlloc[8:9° || + CXIVZYEN (10:V e[| + [10e° (1) + 2X[[19° |7 [ VOrw| ]

769 Then we arrive at

2[[Vvl|so C\||V2y© CAT||V2ye 20T ||y go
o |8 S( [Vollee | CAIV2Y |> ||at¢eexp< 1920l , 22Tl )
€ € € €
CA Cx
771 §6—4exp 3 .

772 Let d = 3, and the above result can be replaced with

2[|Vlloo

€

773 (B.9) [0: Ve[| <

CT || V2y¢ 20T || ||
ot (CTITVY, DI

€

774 By the similar procedures, we have

5 edd|0 VY < (IV0lloo |0t [110:V 24| + 211 V0lloo | 0: V4[]0 V¢ |+

776 ON[V3e|| 35 (19, Vope| 5 (| e[|~ 5|85 V205< |+
_6 € 279% ele eln1—< €
777 CNVP0e |77 [[9<]| o 7 186 V< | 8 [|0p0< ]|~ 8 |0,V 20¢ |+
s CAIVZGe||2 & 0,720 || 248 190 25 0,720 | + OX [0 319, V>4
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in which we use the inequalities

IV 0 V2| o < 1 o | V20| o 19 | o 10V 20|

< O V3|55 10,V | 5 (|0 ||~ 5 [ 0:V2y<]
IV VY0 0, V2| Lo < || V<76 (|00 || o]0 V24€|

e L et DA RS e A v
1V 0V DV pr < ([0 Lol Ve | o 10, V< 6|0 V2|

el e (Eana AT Eand ATH LA P A R

and
1) (0:V29) | Lr < [[9° 112 110:V29<|.
Then we get
(B.10)
3.5,€1€ €2 e|1—4 T 2,/,€ T €2
18, V20|| < CAIV2ye| IIGNGw |3 [|0spe|I'~3 exp (CA V=4 H:CA Iy IIOO),

where ¢ = max{2 + ¢, -5}, Let d = 3 and we get the compact form

CAIVZ ||
€

CAT||V2y¢|| + CAT|| < |2
(B.11)  [[8;V*e|| < [V24c][ + CAT ¢ Ioo>_

€

H@VWpr(

Due to € < 1, the order of ||0;¢¢| g= with respect to e directly depends on the
estimate ||0,V*¢°||. Thus, there exists a constant C} . that depends on A and e such
that ||0y¢°||m= < Cx . This completes the proof. |

Appendix C. The proof of Lemma 4.8.

Proof. Let |v| = 1, and we take the derivative with respect to &;(w) of (2.10).
Denote 01m = 0,1y, and Ojvy, = O¢, vy, and we get

2

€0y (0j¢hm) = *%A(ajwm) + (05vm) s + U5 (858m) + A(2|15, 205 00m + (15,) 2000
We have

ede[|0j¥mll < 2[105vm oo + 29513 105m I,

edel[VOjthmll < 2[IV050m oo + 2[1050m |0 IV 5]l + 20 VUm0l 054m [+
16|05, |0 1080mll 4 | Ve, | o+ 22105, 126V 000,

edy | V200l < 2/V200m 0o + 4V vm oo V5, | + 20105 0m lloo V205 |1+
2V 0mloc105m | + 41 Vomlloc V05 0mll + 85 oo V245, [l 11 0j%0m | 14+
SAIVY5, 761059 | o + 16ANp oo VU5 1o V05l s + 2X 145, |12 V20 00m .
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806  Owing to

S P PO O T N
1 L [(d d
sos < Ol allomle (§19050m 1+ (1= ) 10seml).

e 84d 1-a (d d

00 IVl < CIV* 0l B ol F (150500 + (1= ) 1050l )
4 enl—d Pl _d
O N L P N e T s R ORM [ M RT
a0 eni—d [d d

si < T (G190l + (1-§) 100,

812 and

4
8

1 1 1,d 1_
R | PR TN PRl o T X R R PO E
1 L 1 d 1 d
s14 < Clmlaliomle ((5+5) 192050ml + (5 - §) 10501

815 We can construct
Cl CV2
816 ede||0jtmllmz < 5 105vmllaz + 105 %mll -

817 Then we get for all ¢ € (0,7

Cit Cat
s o5l < S osmlir exw (5 ) < €N DV sl

819 where C(t, A\, €, |v|) depends on ¢, A, € but is independent of dimensions.
820 Then for |v| > 2, by the Leibniz rule we have

2
821 €D, 0"V, = —%A(aw;) +3 (Z) O RS, + Ny (:) O HE, |2OM e,

pv pn=v
2 —
822 = —%A(a"wm + Um0, + A2J5 2075, + (r,) 205, +
. v v— € v v—u v—p— € € €
823 O My, O* A Y HTTIE DR TS
) Z(#) “wm+z(u>z<n> Ym0 m Iy
\u’if:\’él n=v nv—p
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824  Repeat the above procedures, and we get

525 ede| @yl < 2] Y 187 Fum ool 0¥ W5, |+ 2X 10 3 107 W5, 1+

lv—p|=1

826 2/\2(;) > (”n“) (e P R P e P

n=v nv—p
827 edy|[VO Uy, [| < 2([VUm [|oo |0” thm || + 2AC([[V5, ([ 2410”7, | s + VO Y5, )
828 2] D (VO om0 + 107 vm o[ VO, )+

lv—pl=1

820 ‘MZ(Z) 2 (VZ“) (1102~ 1 045 | o 05 | o+

n=v nIv—p
S0 0 VO e 10745 e + 1074 st o 04465 | 20| 705, 0.
831 and
$12 edi|[ V20 5| < 20120 10" Yl + [ V0m ]V o ) + 8AI VS5 13 10 im0
533+ BNVl V25 |24 10 im 4 + L6M IS ool Vi85 2 | V0 5, 2+
st 2u] Y [I920 o oo 005, | + 2V o VO 5, |+

lv—p|=1
835 ||5”*"vm||oo||V23“¢§nll} + 2X|95, 5 V20" ||+
v v — —p— € € €
56 6AC ) ( ) > ( ") 0¥ == 2 10% 05 12| 045 2,
% n
n=v nIv—p
837 in which we use the inequality generalized from Proposition 3.6 in [49] as

838 IV2 fghll < ClIfllzz2llgll 22 1| 22,
839 VAVl < Clifl a2 lgl 2]l a2

840 Thus we get

841 edi||0¥ s, [l g2 < Cs]|10% Y5, g2 + Calv] Z 10¥ B vm || g2 ||O* s, || 2+
lv—pl=1

s ACs Y (Z) > (V_“> 107, 2104455 2 10745, =

n=v nv—p L

843 An application of the Gronwall inequality yields

CT CTV v— €
s 10wl <o (SE) (ST S ot 0% s

lv—p|=1
AC5T v v — v—p— € € €

s LY (1) X (U5 E) el e n e )

€ 7 n

B=v nIv—p
846 Use the induction argument and we get
0
847 |0 |2 < C(t A € W) [T/ Al lar2)™
J
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