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1. Introduction. The nonlinear Schrödinger equation (NLSE) is a prototypi-19

cal dispersive nonlinear equation that has been extensively used to study the Bose-20

Einstein condensation, laser beam propagation in nonlinear optics, particle physics,21

semi-conductors, superfluids, etc. In the presence of random potentials, the interac-22

tion of nonlinearity and random effect poses challenges to understanding intriguing23

phenomena, such as localization and delocalization [20, 25, 40, 48] and the soliton24

propagation [24, 33, 45]. Owing to the inherent challenges in obtaining analytical so-25

lutions and the limited experimental observations in nonlinear random media, numer-26

ical simulations play a crucial role in understanding and investigating the nonlinear27

dynamics in such regimes, particularly for long-time behaviors in high-dimensional28

physical space. This necessitates high-resolution and efficient numerical methods for29

the NLSE with random potentials.30

In the past decades, numerous numerical methods have been proposed for the31

NLSE with deterministic potentials, and recent comparisons can be found in [4, 6, 29].32

For the time-dependent NLSE, the implicit Crank-Nicolson (CN) schemes were ex-33

tensively employed to conserve the mass and energy of the system. The CN method34

is known for its lower efficiency in handling nonlinearity since iteration methods and35

time step conditions are required [2, 38, 46]. To enhance computational efficiency,36

several promising approaches have been proposed, including linearized implicit meth-37

ods [51, 55], relaxation methods [10, 12] and time-splitting methods [9, 11, 50]. Among38

these, time-splitting methods exhibit outstanding performance in terms of efficiency39

since linear equations with constant coefficients are solved at each time step. To reach40

optimal accuracy, time-splitting type schemes ask for enough smoothness on both the41
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2 P. LI AND Z. ZHANG

potential and the initial condition. Such as Strang splitting methods demand the42

initial condition to possess H4 regularity [11]. The low-regularity time-integrator43

methods [35, 41, 54] are proposed to alleviate such constraint. Nevertheless, the low-44

regularity time-integrator methods rely on the Fourier discretization in space with45

a periodical setup, and their integration with finite difference methods (FDM) and46

finite element methods (FEM) has not been established. The spatial Fourier dis-47

cretization allows the spectral methods to have exponential convergence for smooth48

potentials and competitive efficiency in simulations. With the random potential fur-49

ther considered, the spectral discretization with the Monte Carlo (MC) sampling [54]50

and quasi-Monte Carlo (qMC) sampling [53] have been employed for the 1D case.51

Nonetheless, spectral methods may not maintain their optimal convergence rate in52

cases of non-smooth potentials. This motivates us to develop numerical methods to53

efficiently solve NLSEs with random potentials within the framework of FEM in this54

work.55

To develop efficient FEM methods to solve PDEs, intense research efforts in di-56

mensionality reduction methods by constructing the multiscale reduced basis functions57

have been invested (see, e.g., [1, 3, 16, 21, 22, 23, 28, 31, 43]). Incorporating the local58

microstructures of the differential operator into the basis functions, the multiscale59

FEM (MsFEM) can capture the large-scale components of the multiscale solution on60

a coarse mesh without the need to resolve all the small-scale features on a fine mesh.61

Recently, the localized orthogonal decomposition method [3] has been proposed to62

solve the stationary and time-dependent NLSE with deterministic potentials [19, 27],63

which could produce eigenvalues and solution with high order accuracy.64

Motivated by the MsFEM for elliptic problems with random coefficients [30, 32]65

and the linear Schrödinger equation with multiscale and random potentials [15], we66

generate the multiscale basis functions by solving a set of equality-constrained qua-67

dratic programs. We find that the localized orthogonal normalization constraints of68

optimal problems imply a mesh-dependent scale in the basis functions. This scale69

in the linear algebraic equation is eliminated naturally. However, when the cubic70

nonlinearity is coupled, the balance of such scale in the equation is broken, which71

produces an indispensable scale in the numerical solution. In this work, we add a72

mesh-dependent factor to the orthogonality constraints to eliminate this scale of basis73

functions. We use these new basis functions to discrete the deterministic NLSE that74

reduces the degrees of freedom (dofs) for FEM without accuracy lost.75

For the time-marching, we present two Strang splitting methods. One of the meth-76

ods solves the linear Schrödinger equation using the eigendecomposition method [15]77

and the cubic ordinary differential equation at each time step, and it can maintain78

the convergence rate even for the discontinuous potential. Meanwhile, we parameter-79

ize the random potential with the Karhunen-Loève (KL) expansion method. Instead80

of the traditional MC sampling method, we employ the qMC method to generate81

random samples. It is shown that the proposed approaches yield the second-order82

accurate solution in both time and space and almost the first-order convergence rate83

with respect to the sampling number. Theoretically, we give the convergence analysis84

of the L2 error estimate of the time-splitting FEM (TS-FEM) for the deterministic85

NLES, which is further extended for the estimate of the time-splitting MsFEM (TS-86

MsFEM) for the NLSE with random potentials. We verify several theoretical aspects87

in numerical experiments. Besides, we propose a multiscale reduced basis method to88

decrease the construction of multiscale basis functions for random potentials, which89

can further improve the simulation efficiency. By the proposed numerical methods,90

we investigate the wave propagation for the NLSE with parameterized random po-91
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tentials in both 1D and 2D physical space. We observe the localized phenomena of92

mass density of the linear case, while the significant delocalization of the NLSE with93

strong nonlinearity.94

The rest of the paper is organized as follows. In section 2, we describe funda-95

mental model problems. The FEM and MsFEM with time-splitting methods for the96

deterministic NLSE are presented in section 3. Analysis results are presented in sec-97

tion 4. Numerical experiments, including 1D and 2D examples, are conducted in98

section 5. Conclusions are drawn in section 6.99

2. The semiclassical NLSE with random potentials. The fundamental100

model considered in this manuscript is101

(2.1)

iϵ∂tψϵ = −ϵ
2

2
∆ψϵ + v(x, ω)ψϵ + λ|ψϵ|2ψϵ, x ∈ D, ω ∈ Ω, t ∈ (0, T ],

ψϵ|t=0 = ψin(x),

102

where 0 < ϵ ≪ 1 is an effective Planck constant, D ⊂ Rd(d = 1, 2, 3) is a bounded103

domain, ω ∈ Ω is the random sample with Ω being the random space, T is the104

terminal time, ψin(x) denotes the initial state, v(x,ω) is a given random potential,105

and λ (≥ 0) is the nonlinearity coefficient. The periodic boundary is considered in this106

work. Physically, |ψϵ|2 denotes the mass density and the system’s total mass mT =107 ∫
D |ψin|2dx is conserved by (2.1). Note that the wave function ψϵ : [0, T ]×D×Ω → C,108

and the function space H1
P (D) = H1

P (D,C), in which the functions are periodic over109

domain D. The inner product is defined as (v, w) =
∫
D vwdx with w denoting the110

complex-conjugate of w, and the L2 norm is ∥w∥2 = ∥|w|∥2 = (w,w).111

The Hamiltonian operator H of the nonlinear system has the form112

(2.2) H(·) = −ϵ
2

2
∆(·) + v(·) + λ| · |2(·).113

Owing to the Hamiltonian operator is not explicitly dependent on time, and the114

commutator [H,H] = 0, the energy of the system,115

(2.3) E(t) = (Hψϵ, ψϵ) =
ϵ2

2
∥∇ψϵ∥2 + (v(x,ω), |ψϵ|2) + λ

2
∥ψϵ∥4L4 ,116

remains unchanged as time evolves,i.e., dtE(t) = 0 for all t > 0.117

Assumption 2.1. We assume the potential v(x, ω) is bounded in L∞(Ω;Hs) with118

0 ≤ s ≤ 2. More precisely, the bound of ∥v(x, ω)∥∞ satisfies119

(2.4) ∥v(x, ω)∥∞ ≲
ϵ2

H2
,120

where ≲ means bounded by a constant, and H is the size of coarse mesh.121

We first consider the deterministic potential, i.e., v(x, ω) = v(x). Assume that122

there exists a finite time T such that ψϵ ∈ L∞([0, T ];H4) ∩ L1([0, T ];H2) and by123

Sobolev embedding theorem, we have ∥ψϵ∥∞ ≤ C∥ψϵ∥H2 for d ≤ 3. In the sequel,124

we will use a uniform constant C to denote all the controllable constants that are125

independent of ϵ for simplicity of notation.126

Lemma 2.1. Let ψϵ be the solution of (2.1), and assume ψϵ ∈ L∞([0, T ];H4) ∩127

L1([0, T ];H2). If ∂tψ
ϵ(t) ∈ Hs with s = 0, 1, 2 for all t ∈ [0, T ], there exists a constant128

Cλ,ϵ such that129

(2.5) ∥∂tψϵ∥Hs ≤ Cλ,ϵ,130
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where Cλ,ϵ mainly depends on ϵ and λ. In particular, for d = 3 and s = 1, 2, we have131

a compact formulate132

∥∂t∇sψϵ∥ ≤
(
∥∇v∥∞ + Cλ∥∇s+1ψϵ∥

ϵ

)
∥∂t∇s−1ψϵ∥ exp

(
CλT (∥∇2ψϵ∥+ ∥ψϵ∥2∞)

ϵ

)
,133

where134

(2.6) ∥∂tψϵ∥ ≤ C

ϵ
exp

(
2λT∥ψϵ∥2∞

ϵ

)
.135

136

The proof is detailed in Appendix B. Note that for λ = 0, the result of this lemma137

degenerates to the estimate of the linear Schrödinger equation as in [8, 52].138

Next, we assume that v(x, ω) is a second-order random field with a mean value139

E[v(x, ω)] = v(x) and a covariance kernel denoted by C(x,y). In this study, we adopt140

the covariance kernel141

(2.7) C(x,y) = σ2 exp

(
−

d∑
i=1

|xi − yj |2

2l2i

)
,142

where σ is a constant and li denotes the correlation lengths in each dimension. More-143

over, we also assume that the random potential is almost surely bounded. Using the144

KL expansion method [34, 37], the random potential takes the form145

(2.8) v(x,ω) = v̄(x) +

∞∑
j=1

√
λjξj(ω)vj(x),146

where ξi(ω) represents mean-zero and uncorrelated random variables, and {λi, vi(x)}147

are the eigenpairs of the covariance kernel C(x,y). The eigenvalues are sorted in148

descending order and the decay rate depends on the regularity of the covariance149

kernel [47]. Hence the random potential can be parameterized by the truncated form150

151

(2.9) vm(x,ω) = v̄(x) +

m∑
j=1

√
λjξj(ω)vj(x).152

Once the random potential is parameterized, the wave function ψϵ
m obeys153

(2.10)

iϵ∂tψϵ
m = −ϵ

2

2
∆ψϵ

m + vm(x,ω)ψϵ
m + λ|ψϵ

m|2ψϵ
m, x ∈ D, ω ∈ Ω, t ∈ (0, T ],

ψϵ
m(t = 0) = ψin.

154

The residual of |vm(x,ω)− v(x,ω)| relies on the regularity of eigenfunctions and the155

decay rate of eigenvalues. We make the following assumption for the parameterized156

random potentials.157

Assumption 2.2. 1. In the KL expansion (2.9), assume that there exist158

constants C > 0 and Θ > 1 such that λj ≤ Cj−Θ for all j ≥ 1.159

2. The eigenfunctions vj(x) are continuous and there exist constants C > 0 and160

0 ≤ η ≤ Θ−1
2Θ such that ∥vj∥H2 ≤ Cλ−η

j for all j ≥ 1.161
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3. Assume that the parameterized potential vm satisfies162

∥v − vm∥∞ ≤ Cm−χ,

∞∑
j=1

(
√
λj∥vj∥H2)p <∞,163

for some positive constants C and χ, and p ∈ (0, 1].164

In [53], the authors provide the L∞([0, T ], H1) error between wave functions165

to (2.1) and (2.10) for the 1D case. Here we get a similar result for the L2 error166

between the wave functions for d ≤ 3.167

Lemma 2.2. The error between wave functions to (2.1) and (2.10) satisfies168

(2.11) ∥ψϵ
m − ψϵ∥ ≤ 2∥vm − v∥∞

ϵ
exp

(
2Tλ

ϵ
∥ψϵ∥∞∥ψϵ

m∥∞
)
.169

Proof. Define δψ = ψϵ
m − ψϵ and it satisfies170

(2.12) iϵ∂tδψ = −ϵ
2

2
∆δψ + vmδψ + (vm − v)ψϵ + λ(|ψϵ

m|2ψϵ
m − |ψϵ|2ψϵ)171

with the initial condition δψ(t = 0) = 0. For the nonlinear term, we have

|ψϵ
m|2ψϵ

m − |ψϵ|2ψϵ = |ψϵ
m|2δψ + ψϵψϵ

mδψ̄ + |ψϵ|2δψ.

Taking the inner product of (2.12) with δψ yields172

iϵdt∥δψ∥2 =
(
(vm−v)ψϵ, δψ

)
−
(
(vm−v)ψ̄ϵ, δψ̄

)
+λ
(
(ψϵδψ̄, ψ̄ϵ

mδψ)− (ψ̄ϵδψ, ψϵ
mδψ̄)

)
.173

We further get174

dt∥δψ∥2 ≤ 2∥vm − v∥∞
ϵ

∫
D
|ψϵ||δψ|dx+

2λ

ϵ

∫
D
|ψϵδψ||ψϵ

mδψ|dx175

≤ 2∥vm − v∥∞
ϵ

∥ψϵ∥∥δψ∥+ 2λ

ϵ
∥ψϵ∥∞∥ψϵ

m∥∞∥δψ∥2.176

Owing to the L∞([0, T ]×Ω;Hs) bound of both ψϵ and ψϵ
m, an application of Gronwall177

inequality yields178

∥δψ∥ ≤ 2T∥vm − v∥∞
ϵ

exp

(
2Tλ

ϵ
∥ψϵ∥∞∥ψϵ

m∥∞
)
.179

Owing to the assumption ∥vm − v∥∞ ≤ Cm−χ, this lemma implies that ψϵ
m → ψϵ as180

m→ ∞.181

3. Numerical methods. Consider the regular mesh Th of D. The standard P1182

finite element space on the mesh Th is given by P1(Th) = {v ∈ L2(D̄)| for all K ∈183

Th, v|K is a polynomial of total degree ≤ 1}. Then the H1
P (D)-confirming finite ele-184

ment spaces are Vh = P1(Th) ∩ H1
P (D) and VH = P1(TH) ∩ H1

P (D). Denote Vh =185

span{ϕh1 , · · · , ϕhNh
} and VH = span{ϕH1 , · · · , ϕHNH

}, where Nh and NH are the cor-186

responding number of vertices. The wave function is approximated by ψϵ
h(t,x) =187 ∑Nh

p Up(t)ϕ
h
p(x) on the fine mesh, where Up(t) ∈ C, p = 1, · · · , Nh and t ∈ [0, T ].188
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3.1. TS-FEM for the NLSE. In the case of nontrivial potentials, the numeri-189

cal mass density may decay towards zero with an exponential rate when utilizing the190

direct Backward Euler method. Time-splitting manners can maintain the mass of the191

system. Therefore, we adopt Strang splitting methods for time-stepping. The NLSE192

is rewritten to193

iϵ∂tψ
ϵ = (L1 + L2)ψ

ϵ,(3.1)194

and its exact solution has the form ψϵ(t) = Stψin, where S
t = exp(−i(L1 + L2)t/ϵ).195

To efficiently handle the nonlinear term, we present two alternative approaches, both196

of which require solving linear equations:197

1. Option 1,198

(3.2) L1(·) = −ϵ
2

2
∆(·) + v(·), L2(·) = λ| · |2(·).199

2. Option 2,200

(3.3) L1(·) = −ϵ
2

2
∆(·), L2(·) = v(·) + λ| · |2(·).201

When computing the commutator [L1,L2] = L1L2−L2L1, the regularity of potential202

v ∈ C2(D) is required for Option 2, whereas Option 1 does not need this requirement.203

From tn to tn+1, the Strang splitting yields204

(3.4)

ψϵ,n+1 := Lψϵ,n = exp

(
− i∆t

2ϵ
L2(·)

)
◦ exp

(
− i∆t

ϵ
L1

)
exp

(
− i∆t

2ϵ
L2(·)

)
◦ ψϵ,n.205

This formulation can be written as206

ψϵ,n+1 = exp

(
− i∆t

ϵ
(L1 + L2(ψ

ϵ,n))

)
ψϵ,n +Rn

1 .(3.5)207

By the Taylor expansion, we have ∥Rn
1∥ = O

(
∆t3

ϵ3

)
. Furthermore, we define the208

n-fold composition209

(3.6) ψϵ,n = Lnψin = L(∆t, ·) ◦ · · · ◦ L(∆t, ·)︸ ︷︷ ︸
n times

ψin210

Next, we introduce the classical finite element discretization for the operator L1.211

Define the weak form212

(3.7) iϵ(∂tψ
ϵ, ϕ) = a(ψϵ, ϕ), ∀ϕ ∈ H1

P (D),213

where a(ψϵ, ϕ) is determined by the option of L1. For example, setting L1 = − ϵ2

2 ∆+v,214

we have a(ψϵ, ϕ) = ϵ2

2 (∇ψ
ϵ,∇ϕ) + (vψϵ, ϕ) and the Galerkin equations215

(3.8) iϵ
∑
p

dtUp(ϕ
h
p , ϕ

h
q ) =

ϵ2

2

∑
p

Up(t)(ϕ
h
p , ϕ

h
q ) +

∑
p

Up(t)(vϕ
h
p , ϕ

h
q )216

with q = 1, · · · , Nh. The corresponding matrix form is217

(3.9) iϵMhdtU(t) =

(
ϵ2

2
Sh + V h

)
U(t),218
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where U(t) is a vector with U(t) = (U1(t), · · · , UNh
(t))T , Mh = [Mh

pq] is the mass219

matrix with Mh
pq = (ϕhp , ϕ

h
q ), S

h = [Sh
pq] is the stiff matrix with Sh

pq = (∇ϕhp ,∇ϕhq ),220

and V h = [V h
pq] is the potential matrix with V h

pq = (vϕhp , ϕ
h
q ).221

We now present the formal TS-FEM methods for the deterministic NSLE. The222

first one is the discretized counterpart of Option 1:223

Ũn = exp

(
− iλ∆t

2ϵ
|Un|2

)
Un,224

Ũn+1 = P exp

(
− i∆t

ϵ
Λ

)
(P−1Ũn),(3.10)225

Un+1 = exp

(
− iλ∆t

2ϵ
|Ũn+1|2

)
Ũn+1,226

where (Mh)−1( ϵ
2

2 S
h + V h) = PΛP−1 with Λ being a diagonal matrix. We call it SI227

in the remaining of this paper. Owing to the application of the eigendecomposition228

method [15], the error in time is mainly contributed by the time-splitting manner.229

Meanwhile, this scheme does not require time step size ∆t = o(ϵ), although the full230

linear semiclassical Schrödinger equation must be solved.231

Option 2 has been extensively used in previous works, such as [7, 9]. In the FEM232

framework, it solves the NLES in the following procedures:233

Ũn = exp

(
− i∆t

2ϵ
(v + λ|Un|2)

)
Un,234

iMh

(
Ũn+1 − Ũn

∆t

)
=
ϵ

2
Sh

(
Ũn+1 + Ũn

2

)
,(3.11)235

Un+1 = exp

(
− i∆t

2ϵ
(v + λ|Ũn+1|2)

)
Ũn+1.236

This method requires the mesh size h = O(ϵ) and time step size ∆t = O(ϵ) [9], and237

we call it SII in the remaining of this paper.238

Denote L the discretized counterpart of L, and similarly, L1 and L2 their respec-239

tive discretized versions. From tn to tn+1, the discretized solution in both time and240

space can be determined by the recurrence241

(3.12) Un+1 = L(∆t, Un)Un = L2

(
∆t

2
, L1(∆t)L2

(
∆t

2
, Un

))
Un.242

Denote ψϵ,n
h =

∑Nh

p=1 U
n
p ϕ

h
p , and for simplicity we employ a formal notation for the243

n-fold composition244

(3.13) ψϵ,n
h = Lnψ0

h = L(∆t, ·) ◦ · · · ◦ L(∆t, ·)︸ ︷︷ ︸
n times

ψ0
h,245

where ψ0
h = Rhψin with Rh being the Ritz projection operator.246

3.2. MsFEM for the deterministic NLSE. Instead of the FEM, we construct247

the multiscale basis functions to reduce dofs in computations. The P1 FEM basis248

functions on both the coarse mesh TH and fine mesh Th are required. To describe249

the localized property of multiscale basis functions, here we define a series of nodal250

This manuscript is for review purposes only.



8 P. LI AND Z. ZHANG

patches {Dℓ} associated with xp ∈ NH as251

D0(xp) := supp{ϕp} = ∪{K ∈ TH | xp ∈ K},252

Dℓ := ∪{K ∈ TH | K ∩Dℓ−1 ̸= ∅}, ℓ = 1, 2, · · · .253

The multiscale basis functions are obtained by solving the optimization problems254

ϕp =arg min
ϕ∈H1

P (D)
a(ϕ, ϕ),(3.14)255

s.t.

∫
D
ϕϕHq dx = λ(H)δpq, ∀1 ≤ q ≤ NH ,(3.15)256

where a(ϕ, ϕ) = ϵ2

2 (∇ϕ,∇ϕ)+ (vϕ, ϕ), and λ(H) = 1 in the previous work [13, 14, 15,257

30, 36]. Note that the localized constraint is not considered in the optimal problems,258

thus we obtain the global basis functions.259

In this work, we set λ(H) = (1, ϕHq ), and it can be computed explicitly. Since260

P1 basis functions are used, we have λ(H) = H for 1D. To explain this setup, we261

introduce the weighted Clément-type quasi-interpolation operator [28]262

(3.16) IH : H1
P (D) → VH , f 7→ IH(f) :=

∑
p

(f, ϕHp )

(1, ϕHp )
ϕHp .263

The high-resolution finite element space Vh = VH ⊕Wh, where Wh is the kernel space264

of IH . And for all f ∈ H1
P ∩H2, it holds [39]265

(3.17) ∥f − IH(f)∥ ≤ H2∥f∥H2 .266

In the MsFEM space, the wave function ψϵ is approximated with267

(3.18) ψϵ(x) ≈
NH∑
p=1

Ûpϕp.268

It can be projected onto the coarse mesh by IH ,269

IH(ψϵ) =

NH∑
p=1

(
∑NH

q=1 Ûqϕq, ϕ
H
p )

(1, ϕHp )
ϕHp =

NH∑
p=1

λ(H)Ûp

(1, ϕHp )
ϕHp .270

If ψϵ is continuous at xp, the above formula indicates that at node xp,

ψϵ(xp) ≈
λ(H)Ûp

(1, ϕHp )
.

Let λ(H) = 1, we can see that it holds ψϵ(xp) ≈ Ûp/(1, ϕ
H
p ) in the MsFEM space.271

Take an assumption that ϕ̂p = (1, ϕHp )ϕp, where ϕ̂p is independent of the mesh size272

H. Then, (3.18) can be rewritten to273

(3.19) ψϵ(x) ≈
NH∑
p=1

ψϵ(xp)(1, ϕ
H
p )ϕp =

NH∑
p=1

ψϵ(xp)ϕ̂p.274
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Note that ϕ̂p is still the multiscale basis function at xp. We consider the following275

two equations276

(3.20) iϵ

NH∑
p=1

(ϕp, ϕq)dtÛp =

NH∑
p=1

(Hϕp, ϕq)Ûp277

and278

(3.21) iϵ

NH∑
p=1

(ϕ̂p, ϕ̂q)dtÛp =

NH∑
p=1

(Hϕ̂p, ϕ̂q)Ûp.279

If λ = 0, the two equations have the same solution with a given initial condition,280

while for λ ̸= 0, the factor (1, ϕHp ) in the basis functions cannot be eliminated in the281

two sides of (3.21), and the two equations have different solutions. This issue can be282

addressed by the setup λ(H) = (1, ϕHp ).283

Solving the optimal problems (3.15) on the fine mesh, we get284

ϕp =

Nh∑
s=1

cspϕ
h
s , p = 1, · · · , NH .285

Define the MsFEM space Vms = span{ϕ1, · · · , ϕNH
}, and it holds true that Vms ⊂ Vh.286

Hence the solution of optimal problems defines a linear transformation C : Vh 7→ Vms.287

On the other hand, the solution on the fine mesh can be reconstructed utilizing this288

linear mapping, which is essential in the formulation of the cubic nonlinear matrix.289

Note that the factor λ(H) is a rescaling factor, and it doesn’t change the basis function290

space. Thus we have the following propositions.291

Proposition 3.1 ([52], Lemma 3.2). For all ϕ ∈ Vms and w ∈ Wh, a(ϕ,w) = 0292

and Vh = Vms ⊕Wh.293

Proof. As the same procedures in [52], we directly obtain a(f, w) = 0,∀f ∈
Vms, w ∈Wh. For any f ∈ Vh, define

f∗ =

NH∑
p=1

(f, ϕHp )

(1, ϕHp )
ϕp.

Then f∗ ∈ Vms and (f − f∗, ϕHp ) = 0 for p = 1, · · · , NH . Thus f − f∗ ∈ Wh and we294

get the decomposition Vh = Vms ⊕Wh.295

Due to Vh = Vms⊕Wh, Wh is also the kernel space of linear map C. Furthermore,296

combining an iterative Caccioppoli-type argument [32, 36, 42, 44] and some refined297

assumption for the potential, and the multiscale finite element basis functions have298

the following exponential decaying property.299

Proposition 3.2 ([52], Theorem 3.2). Under the resolution condition of the mesh300

size and potential, there exist positive constant C and β ∈ (0, 1) independent of H,301

such that302

(3.22) ∥∇ϕp∥L2(D\Dℓ) ≤ Cβℓ∥∇ϕp∥,303

for all p = 1, · · · , NH .304
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By the multiscale basis functions, the weak form of the full NLSE reads as305

(3.23) iϵ

(
NH∑
p=1

Nh∑
s=1

dtÛpc
s
pϕ

h
s ,

Nh∑
s=1

cslϕ
h
s

)
=
ϵ2

2

(
NH∑
p=1

Nh∑
s=1

Ûpc
s
p∇ϕhs ,

Nh∑
s=1

csl∇ϕhs

)
306

+ λ

∣∣∣∣∣
NH∑
p=1

Nh∑
s=1

Ûpc
s
pϕ

h
s

∣∣∣∣∣
2 NH∑
p=1

Nh∑
s=1

Ûpc
s
pϕ

h
s ,

Nh∑
s=1

cslϕ
h
s

307

for all l = 1, · · · , NH . The stiff matrix and mass matrix constructed by the multiscale308

basis functions satisfy Mms = CTMhC and Sms = CTShC. For the nonlinear term,309

the solution on the fine mesh is reconstructed by CÛ , and we then get the similar form310

Nms = CTNhC. The construction of Nh suffers from heavy computation, especially311

for high-dimensional problems. And the application of time-splitting methods can312

avoid this issue. Thus we only need to solve linear equations at each time step,313

achieving high efficiency.314

According to (3.18) and (3.19), the numerical solution on the coarse mesh can be315

denoted by {Ûp(t)}NH
p=1, while on the fine mesh denoted by

{∑NH

p=1 Ûp(t)c
s
p

}Nh

s=1
. For316

the sake of clarity, in the sequel, we denote the ψϵ
h the classical FEM solution, and317

ψϵ
H and ψϵ

H,h the numerical solution constructed by the multiscale basis functions on318

the coarse mesh and fine mesh, respectively.319

4. Convergence analysis.320

4.1. Convergence analysis of the time-splitting FEM. In this part, the SI321

is mainly considered and the L2 error will be estimated. We start the convergence322

analysis from the temporal error estimate at the initial time step.323

Lemma 4.1. If ψin ∈ H4, the error at the initial time step is bounded in the L2

norm by

∥ψϵ(∆t)− ψϵ,1∥ = ∥S∆tψin − L(∆t)ψin∥ ≤ C∥ψin∥H4

∆t3

ϵ3
,

where C is a constant.324

Proof. According to (3.5), we have325

ψϵ,1 = exp

(
− i∆t

2ϵ
L2(ψ̂)−

i∆t

ϵ
L1 −

i∆t

2ϵ
L2(ψ

ϵ
in)

)
ψϵ
in326

= exp

(
− i∆t

2ϵ

(
L2(ψ

ϵ
in) +O(

∆t2

ϵ2
)

)
− i∆t

ϵ
L1 −

i∆t

2ϵ
L2(ψ

ϵ
in)

)
ψϵ
in327

= exp

(
− i∆t

ϵ
L1 −

i∆t

ϵ
L2(ψ

ϵ
in)

)
exp

(
−∆t3

ϵ3
Γ(2L1 + L2)

2

)
ψϵ
in,328

where Γ depends on the form of L2. Use the expansion329

exp

(
−∆t3

ϵ3
Γ(2L1 + L2)

2

)
= I − ∆t3

ϵ3
Γ(2L1 + L2)

2 +O
(
∆t6

ϵ6

)
330

and the dominant reminder has the form

R0
1 = −∆t3

ϵ3
Γ(2L1 + L2)

2ψϵ
in.
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Since the exact solution at t = ∆t is given by331

ψϵ(∆t) = S∆tψϵ
in = exp

(
− i∆t

ϵ
(L1 + L2(ψ

ϵ
in))

)
ψϵ
in.332

There exists a constant such that333

∥ψϵ(∆t)− ψϵ,1∥ ≤ C∥ψϵ
in∥H4

∆t3

ϵ3
.334

In turn, we prove the stability of the Strang splitting operator. Due to exp
(
− iL1t

ϵ

)
335

is unitary, for any f1, f2 ∈ H2, we have336 ∥∥∥∥exp(− iL1t

ϵ

)
f1 − exp

(
− iL1t

ϵ

)
f2

∥∥∥∥ =

∥∥∥∥exp(− iL1t

ϵ

)
(f1 − f2)

∥∥∥∥ = ∥f1 − f2∥.337

Define F (ψ) = −iL2(ψ)ψ, the splitting solution for L2 is solved by the equation338

(4.1) ϵ∂tψ − F (ψ) = 0.339

The nonlinear flow solved from this equation has the form340

(4.2) Y tψ = ψ +
1

ϵ

∫ t

0

F (Y sψ)ds.341

Assume that F is Lipschitz with a Lipschitz constantM , and repeat the proof in [11].342

For all f1, f2 ∈ L2, there exists a constant that depends on F such that for all343

0 ≤ τ ≤ 1344

∥Y τf1 − Y τf2∥ ≤ ∥f1 − f2∥+
1

ϵ

∫ τ

0

∥F (Y sf1)− F (Y sf2)∥ds345

≤ ∥f1 − f2∥+
M

ϵ

∫ τ

0

∥Y sf1 − Y sf2∥ds.346

An application of the Gronwall lemma leads to347

(4.3) ∥Y τf1 − Y τf2∥ ≤ exp

(
Mτ

ϵ

)
∥f1 − f2∥.348

In particular, for F (ψ) = λ|ψ|2ψ we get349

(4.4) ∥L(τ)f1 − L(τ)f2∥ ≤ exp

(
Mλτ

ϵ

)
∥f1 − f2∥.350

Besides, for the nonlinear flow (4.2), we have the following lemma.351

Lemma 4.2. Let ψ ∈ H2; if F (ψ) = λ|ψ|2ψ, there exists a constant C such that352

for all 0 ≤ τ ≤ 1353

(4.5) ∥Y τψ∥H2 ≤ exp

(
λτ∥ψ∥2∞

ϵ

)
∥ψ∥H2 .354

If F (ψ) = λ|ψ|2ψ + vψ, there exists a constant C such that for v ∈ H2 and for all355

0 ≤ τ ≤ 1356

(4.6) ∥Y τψ∥H2 ≤ exp

(
τ(∥v∥H2 + λ∥ψ∥2∞)

ϵ

)
∥ψ∥H2 .357

358
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Proof. Consider F (ψ) = λ|ψ|2ψ + vψ. For the nonlinear flow (4.2), we have359

∥Y τψ∥∞ ≤ ∥ψ∥∞ +
1

ϵ

∫ τ

0

∥F (Y sψ)∥∞ds ≤ ∥ψ∥∞ +
∥v∥∞ + λ∥ψ∥2∞

ϵ

∫ τ

0

∥Y sψ∥∞ds.360

Then the application of Gronwall inequality yields361

∥Y τψ∥∞ ≤ exp

(
τ(∥v∥∞ + λ∥ψ∥2∞)

ϵ

)
∥ψ∥∞.362

Similarly, for the H2 norm, we directly have363

∥Y τψ∥H2 ≤ ∥ψ∥H2 +
∥v∥H2 + λ∥ψ∥2∞

ϵ

∫ τ

0

∥Y sψ∥H2ds,364

which also leads to365

∥Y τψ∥H2 ≤ exp

(
τ(∥v∥H2 + λ∥ψ∥2∞)

ϵ

)
∥ψ∥H2 .366

Let v = 0 and we get (4.5). This completes the proof.367

For the semi-discretized time-splitting methods, we have the convergence theorem368

of temporal accuracy.369

Theorem 4.3. Let ψin ∈ H4, T > 0 and ∆t ∈ (0, ϵ). For n∆t ≤ T , there exists370

a constant C such that371

(4.7) ∥Lnψin − Sn∆tψin∥ ≤ CT∥ψin∥H4

(
1 +

T

ϵ

)
∆t2

ϵ3
.372

373

Proof. Similar to the proof in [11, 17]. The triangle inequality yields374

∥Lnψin − Sn∆tψin∥ ≤
n−1∑
j=0

∥Ln−jSj∆tψin − Ln−j−1S(j+1)∆tψin∥.375

Due to St being the Lie formula for all t ≤ T and ψin ∈ H4, Stψin belongs to H4 and
is uniformly bounded in this space, thus for all j such that j∆t ≤ T , we have

∥LSj∆tψin − S(j+1)∆tψin∥ = ∥(L − S∆t)Sj∆tψin∥ ≤ C∥ψin∥H4

∆t3

ϵ3
.

Combine with (4.4) and we get376

∥Lnψin − Sn∆tψin∥ ≤
n−1∑
j=0

(
exp

(Mλ∆t

ϵ

))n−j−1

∥(L − S∆t)Sj∆tψin∥.377

Since 0 < ∆t < ϵ, for all j ≥ 0, we have378 (
exp

(Mλ∆t

ϵ

))j
≤
(
1 + C0

∆t

ϵ

)j

≤ 1 + Cj
∆t

ϵ
.379
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Consequently, we arrive at380

∥Lnψin − Sn∆tψin∥ ≤
n−1∑
j=0

(
exp

(Mλ∆t

ϵ

))n−j−1

C∥ψin∥H4

∆t3

ϵ3
381

≤C∥ψin∥H4

∆t3

ϵ3

n−1∑
j=0

(
1 + C(n− j − 1)

∆t

ϵ

)
≤ CT∥ψin∥H4

(
1 +

T

ϵ

)
∆t2

ϵ3
.382

It concludes the proof of this theorem.383

Next, we give the convergence of the full TS-FEM method. Consider the problem

iϵ∂tψ
ϵ = L2ψ

ϵ

with the initial condition ψin and the periodical boundary condition. The solution384

has the form385

(4.8) ψϵ(x, t) = exp

(
− it

2ϵ
L2

)
ψin.386

If L2 consists of potential and nonlinear term, the regularity of ψϵ(t,x) depends on387

the regularity of both the potential v and ψin, otherwise it only depends on ψin.388

Assume that the numerical solution ψϵ
h is given by (3.13) and ψϵ(tn) = Sn∆tψin389

is the solution of (2.1). We write390

(4.9) ψϵ,n
h − ψϵ(tn) = Lnψ0

h − Sn∆tψin = (Lnψ0
h − Lnψin) + (Lnψin − Sn∆tψin).391

The first term denotes the error attributable to the space discretization and the second392

term is the splitting error of temporal discretization.393

We first estimate the spatial error accommodation from t = 0 to t = ∆t,394

ψϵ,1
h − ψϵ(∆t) = L2

(
∆t

2
, ·
)
◦ L1(∆t)L2

(
∆t

2
, ·
)
◦ ψ0

h − L(∆t)ψin.395

Let ψ̂0 = L2(
∆t
2 , ·) ◦ ψin, and consider the problem396

(4.10) iϵ∂tψ
ϵ = −ϵ

2

2
∆ψϵ + vψϵ

397

with the initial condition ψϵ(t = 0) = ψ̂0 and the periodical boundary condition. The398

corresponding weak form is399

iϵ(∂t(ψ
ϵ − ψϵ

h), ϕ
h) =

ϵ2

2
(∇(ψϵ − ψϵ

h),∇ϕh) + (v(ψϵ − ψϵ
h), ϕ

h), ∀ϕh ∈ Vh.(4.11)400

Let ψϵ − ψϵ
h = (ψϵ − Rhψ

ϵ) + θ, where θ = Rhψ
ϵ − ψϵ

h and Rhψ
ϵ denotes the Ritz401

projection. According to (4.11), we get402

(4.12) iϵ(∂t[(ψ
ϵ −Rhψ

ϵ) + θ], ϕh) =
ϵ2

2
(∇θ,∇ϕh) + (v(ψϵ −Rhψ

ϵ), ϕh) + (vθ, ϕh).403

Take ϕh = θ in the above equation,404

iϵ(∂tθ, θ) = −iϵ(∂t(ψϵ −Rhψ
ϵ), θ) +

ϵ2

2
∥∇θ∥2 + (v(ψϵ −Rhψ

ϵ), θ) + (vθ, θ),405
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and we have406

iϵdt∥θ∥2 = iϵ(∂tθ, θ) + iϵ(∂tθ̄, θ̄) = 2iϵℜ(∂t(ψϵ −Rhψ
ϵ), θ) + 2iℑ(v(ψϵ −Rhψ

ϵ), θ),407

which induces408

(4.13) dt∥θ∥ ≤ 2∥∂t(ψϵ −Rhψ
ϵ)∥+ 2

ϵ
∥v∥∞∥ψϵ −Rhψ

ϵ∥.409

Integrating from 0 to t yields410

(4.14) ∥θ(t)∥ ≤ ∥θ(0)∥+ 2

∫ t

0

∥∂t(ψϵ −Rhψ
ϵ)∥dt+ 2

ϵ
∥v∥∞

∫ t

0

∥ψϵ −Rhψ
ϵ∥dt.411

Assume ∥θ(0)∥ = ∥ψ̂in − Rhψ̂in∥ = ∥ψin − Rhψin∥ = 0. Since ∥Rh∂tψ
ϵ − ∂tψ

ϵ∥ ≤412

Ch2∥∂tψϵ∥H2 , we have413

(4.15) ∥θ(t)∥ ≤ Cth2∥∂tψϵ∥H2 +
Ch2

ϵ

∫ t

0

∥ψϵ∥H2ds ≤ Cλ,ϵth
2 +

Cth2

ϵ3
≤ CCλ,ϵth

2,414

where t ≤ ∆t, and Cλ,ϵ is the leading order term with respect to ϵ−1.415

Let ψ̂h,1 be the numerical solution of (4.10) with t = ∆t, we can obtain416

∥ψϵ,1
h − ψϵ(∆t)∥ =

∥∥∥∥∥exp
(
− i∆tL2(ψ̂h,1)

2ϵ

)
ψ̂h,1 − exp

(
− i∆tL2(ψ̂1)

2ϵ

)
ψ̂1

∥∥∥∥∥417

≤ C exp

(
Mλ∆t

2ϵ

)
∥θ(t)∥,418

where ψ̂1 = exp
(
− iϵ∆tL1

ϵ

)
exp

(
− iϵ∆tL2

2ϵ

)
ψin. This indicates the spatial error accu-419

mulation in a one-time step. We next estimate the error accumulation in both time420

and space from t = 0 to T .421

Theorem 4.4. Assume that ψϵ,n
h = Lnψin and ψϵ(n∆t) = Sn∆tψin are the nu-422

merical solution and exact solution of the NLSE. Assume ∂tψ
ϵ ∈ H2 for all t ∈ [0, T ]423

and ψin ∈ H4, then fora given T > 0, there exists a constant h0 such that h ≤ h0 and424

for all ∆t < ϵ with n∆t ≤ T , and the L2 error estimate satisfies425

(4.16) ∥ψϵ,n
h − ψϵ(n∆t)∥ ≤ CCλ,ϵh

2 + CT

(
1 +

T

ϵ

)
∆t2

ϵ3
,426

where the constant C is independent of ϵ and T .427

Proof. The error can be split into428

ψϵ,n
h − ψϵ(n∆t) = Lnψ0

h − Sn∆tψin = (Lnψ0
h − Lnψin) + (Lnψin − Sn∆tψin).429

The first term on the right-hand side satisfies430

∥Lnψ0
h − Lnψin∥ ≤

∥∥∥ n∑
j=1

Ln−j(LRh −RhL)Lj−1ψin

∥∥∥+ ∥(Rh − I)Lnψin∥.431

Due to L1 conserving the H2 norm of the solution and Lemma 4.2, we have Lnψin ∈432

H2 and ∥(Rh − I)Lnψin∥ ≤ Ch2∥Lnψin∥H2 . Meanwhile,433

∥Lψϵ∥ ≤ ∥Lψϵ − L(∆t)ψϵ∥+ ∥L(∆t)ψϵ∥ ≤ CCλ,ϵ∆th
2 + ∥ψϵ∥.434
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Similar to the Theorem 3.1 in [5], we denote the bound of the numerical solution by

max
1≤m≤n

∥LmRhLn−mψϵ∥ ≤ aL.

Recall (4.14)-(4.15), owing to ∆t < ϵ, then there exists a constant C independent of435

ϵ such that436 ∥∥∥∥∥∥
n∑

j=1

Ln−j(LRh −RhL)Lj−1ψin

∥∥∥∥∥∥ ≤ n exp
(
CTa2L

)
max
1≤j≤n

∥(LRh −RhL)Lj−1ψin∥437

≤n exp
(
CTa2L

)
exp

(
λM∆t

ϵ

)
CCλ,ϵ∆th

2 ≤ exp
(
CTa2L

)
exp

(
λM∆t

ϵ

)
CCλ,ϵTh

2.438

Thus we arrive at439

∥Lnψin − Lnψin∥ ≤ CCλ,ϵh
2,440

where C is independent of ϵ but depends on T and λ. Note that the order of ∥ψϵ∥H2441

with respect to ϵ−1 is lower than Cλ,ϵ, and it is ignored in this results.442

Furthermore, combine with Theorem 4.3, and we get the desired estimate443

∥ψϵ,n
h − ψϵ(n∆t)∥ ≤ ∥Lnψin − Lnψin∥+ ∥Lnψin − Sn∆tψin∥444

≤ CCλ,ϵh
2 + CT

(
1 +

T

ϵ

)
∆t2

ϵ3
.445

This declares the (4.16).446

Remark 4.5. Take a further simplification447

C

ϵ3

(
1 +

T

ϵ

)
≤ CT

ϵ4
.448

We temporarily use ψϵ,n
H to denote the FEM solution on the coarse mesh with mesh449

size H, the counterpart result of Theorem 4.4 on the coarse space is450

(4.17) ∥ψϵ,n
H − ψϵ(n∆t)∥ ≤ CCλ,ϵH

2 +
CT 2

ϵ4
∆t2.451

452

Here we obtain the L2 error estimate of the TS-FEM for the deterministic NLSE.453

Next, the convergence analysis of the MsFEM in space, accompanied by the qMC454

method, will be further assessed. Note that the convergence analysis of the TS-FEM455

with the qMC method is similar, thus we will not discuss it in the subsequent section.456

4.2. Convergence analysis of the TS-MsFEM for NLSE with random457

potentials. In this part, we first give the convergence analysis of the TS-MsFEM458

for the NLSE with the deterministic potential. Secondly, employing the qMC method459

in the random space, we further obtain the error estimate of the TS-MsFEM for the460

NLSE with random potentials.461

4.2.1. TS-MsFEM for the deterministic NLSE. For SI, we solve the linear462

Schrödinger equation by the MsFEM, and the corresponding convergence analysis has463

been given in [52]. We therefore have the following estimate.464
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Lemma 4.6. Let ψϵ,n
H = Ln

msψin be the numerical solution solved in Vms by SI,465

and ψϵ(tn) = Sn∆tψin be the exact solution of the NLSE. Let ∆t ∈ (0, ϵ), and assume466

∂tψ
ϵ ∈ L2 for all t ∈ (0, T ], and ψin ∈ H4. We have the estimate467

(4.18) ∥ψϵ,n
H − ψϵ(tn)∥ ≤ CTH2

ϵ3
+
CT 2

ϵ4
∆t2,468

where the constant C is independent of ϵ.469

Proof. For the linear Schrödinger equation, the spatial error of multiscale solution470

and exact solution has the bound [52]471

∥ψϵ
H − ψϵ∥ ≤ CH2

ϵ2
∥ϵ∂tψϵ∥ ≤ CH2

ϵ
∥∂tψin∥ exp

(
2λt∥ψϵ∥2∞

ϵ

)
.472

At the second step of SI, we have473

∥ψϵ
H − ψϵ∥ ≤ CH2

ϵ2
exp

(
2λ∆t∥ψϵ∥2∞

ϵ

)
≤ CH2

ϵ2
.474

When the eigendocomposition method is applied, the solution can be solved exactly475

in time for linear problems. The accumulation of the spatial error at each time step476

satisfies477

∥Lmsψ
ϵ,n
H − Lψϵ,n∥ ≤ ∥Lmsψ

ϵ,n
H − LIHψϵ,n∥+ ∥LIHψϵ,n − Lψϵ,n∥478

≤ exp

(
λM∆t

2ϵ

)
CH2

ϵ2
+ exp

(
λM∆t

ϵ

)
∥IHψϵ,n − ψϵ,n∥ ≤ exp

(
λM∆t

ϵ

)
CH2

ϵ2
.479

Meanwhile, by the Strang splitting method, repeat the procedures in Theorem 4.3,480

and we get the estimate as (4.18).481

Remark 4.7. In comparison to Remark 4.5, the MsFEM exhibits a superior bound482

on ϵ, as it requires only the bound ∥∂tψϵ∥. In contrast, the application of the classical483

FEM requires the bound of ∥∂tψϵ∥H2 , which implies a high-order dependence on ϵ.484

Consequently, the weak dependence of MsFEM on ϵ demonstrates its superiority in485

handling multiscale problems effectively.486

4.2.2. MsFEM for the NLSE with random potentials. To carry out the487

convergence analysis for the qMC method, the regularity of the wave function with488

respect to random variables is required. Since the random potential is truncated by the489

m-order KL expansion, we denote ξ(ω) = (ξ1(ω), · · · , ξm(ω))T . Let ν = (ν1, · · · , νm)490

be the multi-index with νj being the nonnegative integer, where |ν| =
∑m

j=1 νj .491

Then ∂νψϵ
m denotes the mixed derivative of ψϵ

m with respect to all random variables492

specified by the multi-index ν.493

Lemma 4.8. For any ω ∈ Ω and multi-index |ν| <∞, and for all t ∈ (0, T ], there494

exists a constant C(T, λ, ϵ, |ν|) depends on T, λ, ϵ, |ν| such that the partial derivative495

of ψϵ
m(t,x, ω) satisfies the priori estimate496

(4.19) ∥∂νψm∥H2 ≤ C(T, λ, ϵ, |ν|)
∏
j

(
√
λj∥vj∥H2)νj .497

498

The proof of this lemma is given in the appendix.499
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We are interested in the expectation of linear functionals of the numerical solu-500

tion in applications of uncertainty quantification. Here for the NLSE with random501

potentials, we will estimate the expected value E[G(ψϵ
m(·, ω)] of the random variable502

G(ψϵ
m(·, ω)). Let G(·) be a continuous linear functional on L2(D), then there exists a503

constant CG such that504

|G(u)| ≤ CG∥u∥505

for all u ∈ L2(D). Consider the integral506

(4.20) Im(F ) =

∫
ξ∈[0,1]m

F (ξ)dξ,507

where F (ξ) = G(ψϵ
m(·, ξ)). To approximate this integral, both the MC and qMC can508

be used. In our methods, it is approximated over the unit cube by randomly shifted509

lattice rules510

Qm,n(∆;F ) =
1

N

N∑
i=1

F

(
frac

(
iz

N
+∆

))
,511

where z ∈ Nm is the generating vector and ∆ ∈ [0, 1]m. Here N denotes the number512

of random samples.513

Lemma 4.9. For the integral (4.20), given m,N ∈ N with N ≤ 1030, weights514

γ = (γu)u⊂N, a randomly shifted lattice rule with N points in m dimensional random515

space could be constructed by a component-by-component such that for all α ∈ ( 12 , 1]516 √
E∆|Im(F )−Qm,N (·;F )| ≤ 9C∗Cγ,m(α)N−1/2α,517

where518

Cγ,m(α) =

 ∑
∅̸=u⊆{1:m}

γαu
∏
j∈u

ϱ(α)

1/2α ∑
u⊆{1:m}

(C(ν))2

γu

∏
j∈u

λj∥vj∥2H2

1/2

.519

520

Proof. The proof of the lemma is the same as in [15]. Here C(ν) = C(t, λ, ϵ, |ν|)521

is calculated in Lemma 4.8. And522

(4.21) ϱ(α) = 2

( √
2π

π2−2η∗(1−η∗)η∗

)α

ζ

(
α+

1

2

)
,523

where η∗ = 2α−1
4α , ζ(x) is the Riemann zeta function and C∗ = ∥G∥. The details of524

these estimates can be found in [18, 26].525

Employing the qMC sampling, the estimate between the wave functions of (2.1)526

and the truncated NLSE (2.10) satisfies the following lemma.527

Lemma 4.10. Under the Assumption 2.2, there exists a constant C such that528

(4.22)
√
E∆[|E[G(ψϵ)]−Qm,N [G(ψϵ

m)]|2] ≤ C

(
m−χ

ϵ
+ Cγ,mN

−r

)
,529

where 0 ≤ χ ≤ ( 12 − η)Θ − 1
2 , r = 1 − δ for 0 < δ < 1

2 . Note that the constant C is530

independent of m and n but depends on T .531
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Proof. Since G is a linear functional, we have532

|E[G(ψϵ)]−Qm,N [G(ψϵ
m)]| ≤ |E[G(ψϵ)]− Im(ψϵ)|+ |Im(ψϵ)−Qm,N [G(ψϵ

m)]|533

= |E[G(ψϵ)]− E[G(ψϵ
m)]|+ |Im(ψϵ)−Qm,N [G(ψϵ

m)]|.534

The first term satisfies535

|E[G(ψϵ)]− E[G(ψϵ
m)]| ≤ E[|G(ψϵ)− G(ψϵ

m)|] ≤ C
m−χ

ϵ
,536

where C depends on the time T . Let α = 1/(2 − 2δ) for 0 < δ < 1
2 , according to537

Lemma 4.9, we then get538

E∆[|E[G(ψϵ)]−Qm,N [G(ψϵ
m)]|2]539

≤E∆[|E[G(ψϵ)]− Im(ψϵ)|2] + E∆[|Im(ψϵ)−Qm,N [G(ψϵ
m)]|2]540

≤Cm
−2χ

ϵ2
+ CC2

γ,mN
2−2δ.541

Employ the qMC method in the random space, for the numerical solution ψϵ,m
H542

solved by MsFEM on the coarse mesh, then we have the following error estimate.543

Theorem 4.11. Let ψin ∈ H4(D), ψϵ ∈ L∞([0, T ];H4(D)) ∩ L1([0, T ];H2(D)),544

and parameterized potentials satisfy the Assumption 2.2. Consider E[G(ψϵ(tn))] is545

approximated by Qm,N (·;G(ψϵ,n
H,m)). Apply the random shifted lattice rule Qm,N to546

G(ψϵ(tn)). Then for any fixed T > 0, there exists a constant H0 such that H ≤ H0547

and for all ∆t < ϵ with n∆t ≤ T , we have the root-mean-square error as548

(4.23)√
E∆[|E[G(ψϵ(tn))]−Qm,N [G(ψϵ,n

H,m)]|2] ≤ C

(
H2

ϵ3
+

∆t2

ϵ4
+
m−χ

ϵ
+ Cγ,mN

−r

)
,549

where 0 ≤ χ ≤ ( 12 − η)Θ− 1
2 , and r = 1− δ for 0 < δ < 1

2 . Here C is independent of550

m and N but depends on λ and T , and Cγ,m depends on T , λ and ϵ.551

Proof. We split the error (4.23) into552

|E[G(ψϵ(tn))]−Qm,N [G(ψϵ,n
H,m)]| ≤|E[G(ψϵ(tn))]−Qm,N [G(ψϵ

m(tn))]|553

+ |Qm,N [G(ψϵ
m(tn))]]−Qm,N [G(ψϵ,n

H,m)]|.554

The second term can be estimated by555

|G(ψϵ
m(tn))− G(ψϵ,n

H,m)| ≤ CG∥ψϵ
m(tn)− ψϵ,n

H,m∥ ≤ CCG

(
H2

ϵ3
+

∆t2

ϵ4

)
,556

where the constant C depends on λ and T , and is independent of m and N . Combine557

with Lemma 4.10, we get the (4.23). This completes this proof.558

Remark 4.12. Theorem 4.11 gives the L2 estimate of TS-MsFEM for the NLSE559

with random potentials. For the employment of the TS-FEM, repeat the above pro-560

cedures and we can get a similar result.561

In the proposed methods, when accounting for random potentials, constructing562

multiscale basis functions demands substantial computational cost as the number of563

samples grows. To improve the simulation efficiency, we propose a multiscale reduced564

basis method consisting of offline and online stages. In the offline stage, we utilize the565

proper orthogonal decomposition (POD) method to derive a small set of multiscale566

reduced basis functions of random space. Using these random basis functions, we567

simplify the optimal problems in the online stage to construct basis functions. This568

method is detailed in Appendix A.569
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5. Numerical experiments. In this part, we will present numerical experi-570

ments in both 1D and 2D physical space. The convergence rates of TS-FEM and571

TS-MsFEM are first verified. For the NLSE with the random potential, we compare572

the convergence rate in the random space. In addition, the delocalization of mass573

distribution due to disordered potentials and the cubic nonlinearity is investigated.574

5.1. Numerical accuracy of TS-FEMs. Set ψin(x) = (10π)0.25 exp(−20x2)575

for the 1D case, and ψin(x1, x2) = (10/π)0.25 exp(−5(x1−0.5)2−5(x2−0.5)2) for the576

2D case. To begin with, we choose the harmonic potential v(x) = 0.5x2, and verify577

the second-order accuracy of the TS-FEM with respect to the temporal step size ∆t578

and spatial mesh size h. Here we fix the terminal time T = 1.0, ϵ = 1
16 and nonlinear579

parameter λ = 0.1. The reference solution ψϵ
ref is computed on the fine mesh with580

h = 2π
2048 and ∆t = 1.0e-06. The L2 absolute error and H1 absolute error are recorded581

in Table 1.

Table 1: Numerical convergence of TS-FEMs in space and time.

h 2π
128

2π
256

2π
512

2π
1024 order

SI
L2 error 1.96e-02 5.22e-03 1.26e-03 2.54e-04 2.09
H1 error 1.19e-01 3.36e-02 8.31e-03 1.68e-04 2.04

SII
L2 error 3.04e-02 8.07e-03 1.95e-03 3.92e-04 2.09
H1 error 3.52e-01 9.95e-02 2.44e-02 4.92e-03 2.05

∆t 4.0e-02 2.0e-02 1.0e-02 5.0e-03 order

SI
L2 error 4.53e-04 1.13e-04 2.81e-05 7.03e-06 2.00
H1 error 2.09e-03 5.20e-04 1.30e-04 3.24e-05 2.00

SII
L2 error 7.16e-03 1.87e-03 4.71e-04 1.18e-04 1.98
H1 error 1.12e-01 2.91e-02 7.26e-03 1.81e-03 1.99

582

For the 2D case, we employ the multiscale potential583

(5.1) v(x1, x2) = cos
(
x1x2 +

x1
ϵ

+
x1x2
ϵ2

)
,584

over D = [0, 1]2 with 64 × 64 spatial nodes. Here we set λ = 1.0 and multiscale585

coefficient ϵ = 1
8 . We compare the numerical solution with the different ∆t for SI and586

SII. By the means of the numerical tests shown in Figure 1, SI allows a bigger time587

step size than SII.

(a) SI, ∆t = 1.0e-02 (b) SI, ∆t = 1.0e-03. (c) SII, ∆t = 1.0e-03.

Fig. 1: Numerical solution computed by the two TS-FEMs with different ∆t.

588
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5.2. Numerical experiments of TS-MsFEMs. Here the multiscale solution589

has two forms: ψϵ
H on the coarse mesh and ψϵ

H,h on the fine mesh. We first employ590

the harmonic potential. We vary the values of H and record the error between the591

numerical solution and the reference solution in Table 2. The parameters of this592

simulation are: λ = 0.1, ϵ = 1
16 , T = 1.0, ∆t =1.0e-03 and the fine mesh size593

h = 2π
4096 . It is shown that SI achieves the second-order convergence rate in both the594

coarse and fine spaces. The superconvergence is exhibited in coarse space for SII.

Table 2: Numerical convergence rate of the TS-MsFEMs for the NLSE with harmonic
potential in space.

H ∥ψϵ
H,h − ψϵ

ref∥ ∥ψϵ
H,h − ψϵ

ref∥H1 ∥ψϵ
H − ψϵ

ref∥ ∥ψϵ
H − ψϵ

ref∥H1

SI

2h 4.95e-05 4.69e-04 3.47e-05 3.31e-04
4h 1.68e-04 1.60e-03 1.18e-04 1.13e-03
8h 6.44e-04 6.11e-03 4.52e-04 4.32e-03
16h 2.56e-03 2.43e-02 1.80e-03 1.72e-02
order 1.90 1.90 1.90 1.90

SII

2h 1.79e-05 1.73e-04 5.43e-12 1.88e-10
4h 6.10e-05 5.86e-04 7.85e-11 1.63e-09
8h 2.33e-04 2.24e-03 5.68e-09 1.02e-07
16h 9.24e-04 8.89e-03 4.49e-07 8.24e-06
order 1.90 1.90 5.52 5.22

595

Furthermore, to demonstrate the advantage of Option 1, we consider the discon-596

tinuous potential as shown in Figure 2. The second-order spatial convergence rate of597

SI is maintained, while the convergence rate of SII degenerates.

-2 0 2

0

1

2

(a) v(x).

-2.5 -2 -1.5

-4

-3

-2

-1

0

1

(b) SI.

-2.5 -2 -1.5

-2

-1

0

(c) SII.

Fig. 2: Numerical convergence rate of SI and SII for the discontinuous potential. In
the plots, the L2 error and H1 error on the coarse mesh are depicted.

598

For the 2D case, we consider the discontinuous checkboard potential599

v2 =


(
cos

(
2π
x1
ϵ2

)
+ 1

)(
cos

(
2π
x2
ϵ2

)
+ 1

)
, {0 ≤ x1, x2 ≤ 0.5} ∪ {0.5 ≤ x1, x2 ≤ 1},(

cos

(
2π
x1
ϵ1

)
+ 1

)(
cos

(
2π
x2
ϵ1

)
+ 1

)
, otherwise,

600

where v = v1 + v2 with v1 = |x1 − 0.5|2 + |x2 − 0.5|2, ϵ1 = 1
8 and ϵ2 = 1

6 . In the601

simulations, we set h = 1
128 , ϵ =

1
4 , λ = 1.0, ∆t =1.0e-04 and T = 1.0. We employ602
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SI (Figure 3) and SII (Figure 4) for time evolving. We vary the coarse mesh size603

with H = 4h and H = 8h of the MsFEM, and present the corresponding spatial error604

distribution. Here the reference solution is calculated using the FEM with a mesh605

size of h. In both Figure 3 and Figure 4, a substantial error is evident for the MsFEM606

with the mesh size ratio H = 8h. However, the numerical solution computed by the607

MsFEM still outperforms the results computed by the FEM with the same mesh size.608

Furthermore, this simulation highlights the superior performance of SI when dealing609

with discontinuous potentials.

(a) Numerical solution computed by FEM, MsFEM with H = 8h and MsFEM with H = 4h.

(b) Spatial error distribution of MsFEM with H = 8h and H = 4h.

Fig. 3: Numerical solution and the corresponding spatial error distribution computed
by SI, in which the FEM and MsFEM are used for spatial discretization.

610

5.3. Numerical simulations of NLSE with random potentials. For the611

1D case, we consider the random potential612

(5.2) v(x, ω) = σ

m∑
j=1

sin(jx)
1

jβ
ξj(ω),613

where σ controls the strength of randomness, and ξj(ω)’s are mean-zero and i.i.d614

random variables uniformly distributed in [−
√
3,
√
3]. It is extended to 2D as615

(5.3) v(x1, x2, ω) = σ

m∑
j=1

sin(jx1) sin(jx2)
1

jβ
ξj(ω).616

For comparison, we employ the MC method and qMC method to generate the samples617

ξj(ω) in the simulations. And we measure the states of the system by the expectation618

of mass density619

E(|ψϵ
H,h|2) =

1

N

∑
i

|ψϵ
H,h(ωi)|2,620
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(a) Numerical solution computed by FEM, MsFEM with H = 8h and MsFEM with H = 4h.

(b) Error distribution in space of MsFEM with H = 8h and H = 4h.

Fig. 4: Numerical solution and the corresponding spatial error distribution computed
by SII, in which the FEM and MsFEM are used for spatial discretization.

where N denotes the number of MC or qMC samples. To observe the evolution in621

the mass distribution of the system, we introduce the definition622

(5.4) A(t) = E

(∫
D
|x|2|ψϵ|2dx

)
,623

which is extensively used to indicate the Anderson localization of the Schrödinger624

equation with random potentials.625

5.3.1. Comparison of FEM and MsFEM. We set σ = 1.0, β = 0 and m = 5626

in (5.2), and the number of qMC samples to be 500. The multiscale parameter is627

ϵ = 1
8 , and the computational domain is D = [−2, 2]. For the TS-FEMs, the solution628

is computed on the fine mesh with h = 2π
600 , and we set H = 6h for the TS-MsFEMs.629

The terminal time is set to be T = 10. As shown in Figure 5, we show the evolution630

of A(t) and E(|ψϵ
H,h|2) at T = 10. The localization of linear Schrödinger equation631

and weak delocalization of NLSE can be observed by both A(t) and E(|ψϵ
H,h|2).632

5.3.2. Convergence of MC sampling and qMC sampling. The MCmethod633

and qMC method have different convergence rates. Hence we check the numerical634

convergence rate of the MC method and qMC method. To eliminate the perturbation635

of a small sample size, we adopt the random potential636

(5.5) v(x, ω) = 1.0 + σ

m∑
j=1

sin(jx)
1

jβ
ξj(ω),637

in which the parameters are: σ = 1.0, β = 2.0, m = 5. The other simulation settings638

are: λ = 0.1, ϵ = 1
8 , D = [−π, π], h = 2π

600 , H = 6h, T = 1.0 and ∆t =1.0e-03. In this639

experiment, we use 50000 samples to compute the reference solution and record the640
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(a) Linear case.
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(b) Nonlinear case with λ = 1.0.

Fig. 5: Numerical results computed by FEM and MsFEM with different time-splitting
methods for the NLSE with λ = 0 and λ = 1.0.

L2 error of the density ∥E(|ψϵ
num|2)−E(|ψϵ

ref |2)∥ as the sampling number varies with641

N = 100, 200, 400, 800, 1600 and 3200 for both MC method and qMC method. The642

result is shown in Figure 6.

2 2.5 3 3.5
-4

-3.5

-3

-2.5

-2

Fig. 6: Numerical convergence rates of the MC and qMC methods.

643
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5.3.3. Investigation of wave propagation. For the 1D case, we vary λ and644

record the evolution of A(t) to observe the wave propagation phenomena. As well645

as we depict E(|ψϵ
H,h|2) at terminal time. Here 500 qMC samples are generated to646

approximate the random potential. The parameters of simulations are: D = [−2π, 2π],647

σ = 1.0, β = 0.0 and m = 5. For the MsFEM, we fix h = 4π
6000 and H = 10h. To648

observe the long-time behavior, we set the terminal time to be T = 20. We vary649

the nonlinear coefficient λ = 0, 1, 10, 20, and the results are shown in Figure 7.650

A(t) increases as time evolves for nonlinear cases, while it floats within a range of

0 5 10 15 20
0

2

4

6

8

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

Fig. 7: The evolution of A(t) and density of expectation at T = 20, as the nonlinear
coefficient λ varies. Results computed by the SI and MsFEM.

651
(0.51, 0.57) for the linear case during the time interval t = 10 to t = 20.652

Next, we consider the 2D equation. The settings in our numerical simulations are:653

h = 1
64 , ϵ =

1
4 , H = 4h, β = 0, m = 5 and σ = 5. As shown in Figure 8 and Figure 9,654

the localization and delocalization of mass distribution are observed for linear and655

nonlinear cases, respectively.

0 2 4 6 8 10
0.56

0.58

0.6

0.62

0 2 4 6 8 10

0.6

0.8

1

1.2

Fig. 8: The evolution of A(t) for 2D linear case and nonlinear case with λ = 20.
Results are computed by SI and MsFEM.

656

6. Conclusion. In this work, we present two time-splitting finite element meth-657

ods (TS-FEMs) for the cubic nonlinear Schrödinger equation (NLSE). We introduce658
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Fig. 9: The localization and delocalization of mass distribution of the 2D linear
Schrödinger equation and NLSE with random potentials, respectively.

the multiscale finite element method (MsFEM) to reduce the spatial degrees of free-659

dom. The multiscale basis functions are constructed by solving a set of optimal prob-660

lems with local orthogonal normalization constraints. We find that a mesh-dependent661

scale is involved in the basis functions because of the localized orthogonal normaliza-662

tion constraints, which produce an indispensable scale in the numerical solution. We663

revised the optimal problems to address this issue in this work. For time evolving, we664

present two Strang time-splitting manners in which one can maintain the convergence665

rate for the NLSE with discontinuous potentials. Accounting for the random poten-666

tial, we employ the quasi-Monte Carlo sampling method in the random space. Thus667

our approaches yield the numerical solution with second-order accuracy in both time668

and space, and an almost first-order convergence rate in the random space. We pro-669

vide a theoretical convergence of the L2 error estimate, corroborating the convergence670

through numerical experiments. In addition, we present a multiscale reduced basis671

method that reduces the computational burden of constructing the multiscale basis672

functions for random potentials. By the proposed methods, the long-time wave prop-673

agation of the NLSE with parameterized random potentials in 1D and 2D physical674

space is investigated efficiently. The localization of the linear case and delocalization675

of the nonlinear case are observed. In summary, the proposed TS-MsFEMs offer a676

valuable approach for simulating the NLSE with random potentials, achieving good677

accuracy and high efficiency.678

Declaration of interest. The authors report no conflict of interest.679

Appendix A. A multiscale reduced basis method. As a supplement,680

here we present an approach to reduce the computational effort of construction basis681

functions for random potentials. This approach is motivated by the method proposed682

in [15], which consists of offline and online stages. In the offline stage, let {v(x, ωq)}Qq=1683

be the samples of potential with Q the number of samples. At the node xp, ζ
0
p =684

1
Q

∑Q
q=1 ϕp(x, ωq) is the sample mean of basis functions, and ϕ̃p(x, ωq) = ϕp(x, ωq)−ζ0p685

is the fluctuation. Employ the POD method to {ϕ̃p(x, ωq)}Qq=1 build a reduced basis686

functions {ζ1p(x), · · · , ζ
mp
p (x)} with mp ≪ Q. In the online stage, the multiscale basis687
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function at xp has the form688

(A.1) ϕp(x, ω) =

mp∑
l=0

clp(ω)ζ
l
p(x),689

in which {clp}
mp

l=0 are unknowns. Due to the wave function being represented by690

(A.2) ψϵ
H(x, t, ω) =

NH∑
p=1

mp∑
l=0

clp(t, ω)ζ
l
p(x),691

the dofs in the Galerkin formulation is
∑NH

p=1(mp + 1). To reduce the dofs of the692

Galerkin formulation, we compute {clp}
mp

l=0 in (A.1) by solving the following reduced693

optimal problems694

min a(ϕp, ϕp),(A.3)695

s.t.

∫
D
ϕpϕ

H
q dx = λ(H)δpq, ∀1 ≤ q ≤ NH .(A.4)696

Owing to the value of mp could be small [15], the computation cost of constructing697

the multiscale basis functions can be saved, and the dofs in the Galerkin formulation698

is still NH in the online stage. In addition, we adopt parallel implementations with699

12 cores in the following tests.700

To substantiate the improvement of the reduced MsFEM basis method, we carry701

out two numerical tests. We fix mp = 3 for p = 1, · · · , NH , and generate 1000 samples702

by the qMC method with 200 samples allocated for the offline stage and the remaining703

800 samples used in the online stage. TheSI is employed for time evolving.704

Here the experiment of the nonlinear case in 5.3.1 is conducted. We compare the705

numerical solution computed by the FEM, MsFEM, and the MsFEM with the POD706

reduction method as in Figure 10.
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Fig. 10: Numerical comparison of FEM, MsFEM and the MsFEM with POD reduction
methods.

707

Furthermore, we vary the qMC samples and record the corresponding time costs708

in Table 3. Note that the time costs of MsFEM with the POD reduction are attributed709

to both the offline and online stages of the computations. As illustrated in Table 3, a710
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considerable enhancement in simulation efficiency is achieved through the application711

of MsFEM, with additional improvements attained in the integration of the POD712

reduction method.

Table 3: Comparison of time costs (second) for the FEM, MsFEM, and the MsFEM
with POD reduction methods.

Sample number FEM MsFEM MsFEM (POD) (offline)
1000 2116 152 107 (35)
2000 4205 308 243 (35)
4000 8376 620 501 (34)
8000 16633 1239 1020 (40)
16000 33469 2466 2137 (43)

713

We repeat the experiment of NLSE with λ = 20 as in 5.3.3. The corresponding714

numerical results are shown in Figure 11. The MsFEM combined with the POD715

reduction method takes approximately 14978 seconds (4.16 hours), with 1064 seconds716

spent on the offline stage. In contrast, the MsFEM without incorporating the POD717

method takes 20,061 seconds (5.57 hours).
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Fig. 11: Numerical comparison of MsFEM method and the MsFEM with the POD
reduction method for the 1D NLSE with λ = 20.

718

Appendix B. The proof of Lemma 2.1.719

Proof. We first study the regularity of ψϵ in space. Since the energy is a constant720

E(t) =
ϵ2

2
∥∇ψϵ∥2 + (v, |ψϵ|2) + λ

2
∥ψϵ∥4L4 = E0 <∞721

with λ ≥ 0, we directly get722

ϵ2

2
∥∇ψϵ∥2 = E0 − (v, |ψϵ|2)− λ

2
∥ψϵ∥4L4 ≤ E0 + ∥v∥∞,723

which means724

∥∇ψϵ∥ ≤ C

ϵ
.725

This manuscript is for review purposes only.



28 P. LI AND Z. ZHANG

Meanwhile, we also have726

(B.1) ∥ψϵ∥4L4 ≤ E0 + ∥v∥∞
λ

.727

Owing to the Hamiltonian H is not explicitly dependent on time, and [H2,H] = 0,728

the following average value of mechanics quantity is independent of time, i.e.,729

(B.2) (H2ψϵ, ψϵ) = E1730

with dtE1 = 0. Explicitly, we have731

(H2ψϵ, ψϵ) =
ϵ4

4
(∆2ψϵ, ψϵ) + (v2ψϵ, ψϵ) + λ2(|ψϵ|4ψϵ, ψϵ)732

− ϵ2(∆vψϵ, ψϵ) + 2λ(v|ψϵ|2ψϵ, ψϵ)− λϵ2(∆|ψϵ|2ψϵ, ψϵ).733

We then get734

ϵ4

4
∥∆ψϵ∥2 + ∥vψϵ∥2 + λ2∥ψϵ∥6L6735

≤E1 + ϵ2(∆vψϵ, ψϵ)− 2λ(v|ψϵ|2ψϵ, ψϵ) + λϵ2(∆|ψϵ|2ψϵ, ψϵ)736

≤E1 − ϵ2(∇vψϵ,∇ψϵ) + 2λ∥v∥∞∥ψϵ∥4L4 + 3λϵ2∥ψϵ∥2∞∥∇ψϵ∥2737

≤E1 + C∥v∥∞ + ϵ∥∇v∥∞ + 2λ∥v∥∞∥ψϵ∥4L4 + 3λC∥ψϵ∥2∞.738

Hence, there exists a constant C that depends on ∥v∥∞, ∥∇v∥∞, E0, E1, and ∥ψϵ∥∞739

such that740

(B.3) ∥∇2ψϵ∥ ≤ C

ϵ2
, ∥ψϵ∥6L6 ≤ C

λ2
.741

Furthermore, if ψϵ ∈ H4, we also have [Hs,H] = 0 for s ≤ 4. Repeat the above742

procedures and we can get743

(B.4) ∥∇sψϵ∥ ≤ C

ϵs
.744

Next, we study the bound of ∥∂tψϵ∥Hs with 0 ≤ s ≤ 2. Taking the time derivative745

for (2.1) yields746

(B.5) iϵ∂ttψ
ϵ = −ϵ

2

2
∆∂tψ

ϵ + v∂tψ
ϵ + 2λ|ψϵ|2∂tψϵ + λ(ψϵ)2∂tψ̄

ϵ.747

Take inner product of this equation with ∂tψ
ϵ and we get748

(B.6)

iϵdt(∂tψ
ϵ, ∂tψ

ϵ) = λ

∫
D
(∂tψ

ϵψ̄ϵ)2 − (∂tψ̄
ϵψϵ)2dx = 4iλ

∫
D
ℜ(∂tψϵψ̄ϵ)ℑ(∂tψϵψ̄ϵ)dx.749

Thus we have750

ϵdt∥∂tψϵ∥2 ≤ 2λ∥∂tψϵψϵ∥2 ≤ 2λ∥ψϵ∥2∞∥∂tψϵ∥2,751

which indicates752

(B.7) ∥∂tψϵ∥ ≤ ∥∂tψin∥ exp
(
2λT∥ψϵ∥2∞

ϵ

)
.753
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For the initial condition, we have754

∥∂tψin∥ ≤ ϵ

2
∥∇ψin∥+

1

ϵ
(vψin, ψin) +

λ

ϵ
∥ψin∥2L4 ≤ C

ϵ
.755

We therefore get756

(B.8) ∥∂tψϵ∥ ≤ C

ϵ
exp

(
2λ∥ψϵ∥2∞T

ϵ

)
.757

Take inner product of the equation (B.5) with ∂t∆ψ
ϵ, and we have758

ϵdt∥∇∂tψϵ∥2 = ℑ{2(∇v∂tψϵ,∇∂tψϵ) + 4λ(ψϵ∂tψ
ϵ∇ψ̄ϵ,∇∂tψϵ)759

+ 4λ(ψ̄ϵ∂tψ
ϵ∇ψϵ,∇∂tψϵ) + 4λ(ψϵ∂tψ

ϵ∇ψϵ,∇∂tψϵ) + 2λ((ψϵ)2, (∇∂tψϵ)2)}.760

By the inequalities761

∥ψϵ∂tψ
ϵ∇ψϵ∇∂tψϵ∥L1 ≤ ∥ψϵ∥L6∥∂tψϵ∥L6∥∇ψϵ∥L6∥∇∂tψϵ∥762

≤C∥ψϵ∥L6

(
d

3
∥∂t∇ψϵ∥+

(
1− d

3

)
∥∂tψϵ∥

)
∥∇2ψϵ∥ 1

2+
d
6 ∥∇∂tψϵ∥763

≤C∥ψϵ∥L6 (∥∂t∇ψϵ∥+ ∥∂tψϵ∥) ∥∇2ψϵ∥∥∇∂tψϵ∥764

and765

∥(ψϵ)2(∇∂tψϵ)2∥L1 ≤ ∥ψϵ∥2L∞∥∇∂tψϵ∥2,766

we get767

ϵdt∥∂t∇ψϵ∥ ≤2∥∇v∥∞∥∂tψϵ∥+ Cλ∥∇2ψϵ∥ (∥∂t∇ψϵ∥+ ∥∂tψϵ∥) + 2λ∥ψϵ∥2L∞∥∇∂tψϵ∥.768

Then we arrive at769

∥∂t∇ψϵ∥ ≤
(
2∥∇v∥∞

ϵ
+
Cλ∥∇2ψϵ∥

ϵ

)
∥∂tψϵ∥ exp

(
CλT∥∇2ψϵ∥

ϵ
+

2λT∥ψϵ∥2∞
ϵ

)
770

≤ Cλ

ϵ4
exp

(
CλT

ϵ3

)
.771

Let d = 3, and the above result can be replaced with772

(B.9) ∥∂t∇ψϵ∥ ≤ 2∥∇v∥∞
ϵ

∥∂tψϵ∥ exp
(
CλT∥∇2ψϵ∥

ϵ
+

2λT∥ψϵ∥2∞
ϵ

)
.773

By the similar procedures, we have774

ϵdt∥∂t∇2ψϵ∥2 ≤ ∥∇2v∥∞∥∂tψϵ∥∥∂t∇2ψϵ∥+ 2∥∇v∥∞∥∂t∇ψϵ∥∥∂t∇2ψϵ∥+775

Cλ∥∇3ψϵ∥ 2
3+

d
9 ∥∂t∇ψϵ∥ d

3 ∥∂tψϵ∥1− d
3 ∥∂t∇2ψϵ∥+776

Cλ∥∇3ψϵ∥
6

9−d ∥ψϵ∥2−
6

9−d

L6 ∥∂t∇ψϵ∥ d
3 ∥∂tψϵ∥1− d

3 ∥∂t∇2ψϵ∥+777

Cλ∥∇2ψϵ∥ 1
2+

d
6 ∥∂t∇2ψϵ∥ 1

2+
d
6 ∥∂tψϵ∥ 1

2−
d
6 ∥∂t∇2ψϵ∥+ Cλ∥ψϵ∥2∞∥∂t∇2ψϵ∥2778
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in which we use the inequalities779

∥∇2ψϵψϵ∂tψ
ϵ∂t∇2ψϵ∥L1 ≤ ∥ψϵ∥L6∥∇2ψϵ∥L6∥∂tψϵ∥L6∥∂t∇2ψϵ∥780

≤ C∥∇3ψϵ∥ 2
3+

d
9 ∥∂t∇ψϵ∥ d

3 ∥∂tψϵ∥1− d
3 ∥∂t∇2ψϵ∥,781

∥∇ψϵ∇ψϵ∂tψ
ϵ∂t∇2ψϵ∥L1 ≤ ∥∇ψϵ∥2L6∥∂tψϵ∥L6∥∂t∇2ψϵ∥782

≤ C∥∇3ψϵ∥
6

9−d ∥ψϵ∥2−
6

9−d

L6 ∥∂t∇ψϵ∥ d
3 ∥∂tψϵ∥1− d

3 ∥∂t∇2ψϵ∥,783

∥ψϵ∇ψϵ∂t∇ψϵ∂t∇2ψϵ∥L1 ≤ ∥ψϵ∥L6∥∇ψϵ∥L6∥∂t∇ψϵ∥L6∥∂t∇2ψϵ∥784

≤ C∥∇2ψϵ∥ 1
2+

d
6 ∥∂t∇2ψϵ∥ 1

2+
d
6 ∥∂tψϵ∥ 1

2−
d
6 ∥∂t∇2ψϵ∥,785

and786

∥(ψϵ)2(∂t∇2ψϵ)∥L1 ≤ ∥ψϵ∥2∞∥∂t∇2ψϵ∥2.787

Then we get788

(B.10)

∥∂t∇2ψϵ∥ ≤ Cλ∥∇3ψϵ∥ℓ∥∂t∇ψϵ∥ d
3 ∥∂tψϵ∥1− d

3

ϵ
exp

(
CλT∥∇2ψϵ∥+ CλT∥ψϵ∥2∞

ϵ

)
,789

where ℓ = max{ 2
3 + d

9 ,
6

9−d}. Let d = 3 and we get the compact form790

(B.11) ∥∂t∇2ψϵ∥ ≤ Cλ∥∇3ψϵ∥
ϵ

∥∂t∇ψϵ∥ exp
(
CλT∥∇2ψϵ∥+ CλT∥ψϵ∥2∞

ϵ

)
.791

Due to ϵ ≪ 1, the order of ∥∂tψϵ∥Hs with respect to ϵ directly depends on the792

estimate ∥∂t∇sψϵ∥. Thus, there exists a constant Cλ,ϵ that depends on λ and ϵ such793

that ∥∂tψϵ∥Hs ≤ Cλ,ϵ. This completes the proof.794

Appendix C. The proof of Lemma 4.8.795

Proof. Let |ν| = 1, and we take the derivative with respect to ξj(ω) of (2.10).796

Denote ∂jψm = ∂ξjψ
ϵ
m and ∂jvm = ∂ξjv

ϵ
m, and we get797

iϵ∂t(∂jψm) = −ϵ
2

2
∆(∂jψm)+ (∂jvm)ψϵ

m+ vϵm(∂jψm)+λ(2|ψϵ
m|2∂jψm+(ψϵ

m)2∂jψ̄m).798

We have799

ϵdt∥∂jψm∥ ≤ 2∥∂jvm∥∞ + 2λ∥ψϵ
m∥2∞∥∂jψm∥,800

ϵdt∥∇∂jψm∥ ≤ 2∥∇∂jvm∥∞ + 2∥∂jvm∥∞∥∇ψϵ
m∥+ 2∥∇vm∥∞∥∂jψm∥+801

16λ∥ψϵ
m∥∞∥∂jψm∥L4∥∇ψϵ

m∥L4 + 2λ∥ψϵ
m∥2∞∥∇∂jψm∥,802

ϵdt∥∇2∂jψm∥ ≤ 2∥∇2∂jvm∥∞ + 4∥∇∂jvm∥∞∥∇ψϵ
m∥+ 2∥∂jvm∥∞∥∇2ψϵ

m∥+803

2∥∇2vm∥∞∥∂jψm∥+ 4∥∇vm∥∞∥∇∂jψm∥+ 8λ∥ψϵ
m∥∞∥∇2ψϵ

m∥L4∥∂jψm∥L4+804

8λ∥∇ψϵ
m∥2L6∥∂jψm∥L6 + 16λ∥ψϵ

m∥∞∥∇ψϵ
m∥L4∥∇∂jψϵ

m∥L4 + 2λ∥ψϵ
m∥2∞∥∇2∂jψm∥.805
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Owing to806

∥∂jψm∥L4∥∇ψϵ
m∥L4 ≤ C∥∇∂jψm∥ d

4 ∥∂jψm∥1− d
4 ∥ψm∥

1
2

H2∥ψm∥
1
2∞807

≤ C∥ψm∥
1
2

H2∥ψm∥
1
2∞

(
d

4
∥∇∂jψm∥+

(
1− d

4

)
∥∂jψm∥

)
,808

∥∇2ψϵ
m∥L4∥∂jψm∥L4 ≤ C∥∇3ψm∥

8+d
12 ∥ψm∥

4−d
12

(
d

4
∥∇∂jψm∥+

(
1− d

4

)
∥∂jψm∥

)
,809

∥∇ψϵ
m∥2L6∥∂jψm∥L6 ≤ C∥∇2ψϵ

m∥1+ d
3 ∥ψϵ∥1− d

3 ∥∇∂jψm∥ d
3 ∥∂jψm∥1− d

3810

≤ C∥∇2ψϵ
m∥1+ d

3 ∥ψϵ∥1− d
3

(
d

3
∥∇∂jψm∥+

(
1− d

3

)
∥∂jψm∥

)
,811

and812

∥∇ψϵ
m∥L4∥∇∂jψϵ

m∥L4 ≤ C∥ψm∥
1
2

H2∥ψm∥
1
2∞∥∇2∂jψm∥ 1

2+
d
8 ∥∂jψm∥ 1

2−
d
8813

≤ C∥ψm∥
1
2

H2∥ψm∥
1
2∞

((
1

2
+
d

8

)
∥∇2∂jψm∥+

(
1

2
− d

8

)
∥∂jψm∥

)
.814

We can construct815

ϵdt∥∂jψm∥H2 ≤ C1

ϵ2
∥∂jvm∥H2 +

C2

ϵ4
∥∂jψm∥H2 .816

Then we get for all t ∈ (0, T ]817

∥∂jψm∥H2 ≤ C1t

ϵ3
∥∂jvm∥H2 exp

(
C2t

ϵ4

)
≤ C(t, λ, ϵ, |ν|)

√
λj∥vj∥H2 ,818

where C(t, λ, ϵ, |ν|) depends on t, λ, ϵ but is independent of dimensions.819

Then for |ν| ≥ 2, by the Leibniz rule we have820

iϵ∂t∂
νψϵ

m = −ϵ
2

2
∆(∂νψϵ

m) +
∑
µ⪯ν

(
ν
µ

)
∂ν−µvm∂

µψϵ
m + λ

∑
µ⪯ν

(
ν
µ

)
∂ν−µ|ψϵ

m|2∂µψϵ
m821

= −ϵ
2

2
∆(∂νψϵ

m) + vm∂
νψϵ

m + λ(2|ψϵ
m|2∂νψϵ

m + (ψϵ
m)2∂ν ψ̄ϵ

m)+822 ∑
µ≺ν,

|ν−µ|=1

(
ν
µ

)
∂ν−µvm∂

µψϵ
m + λ

∑
µ≺ν

(
ν
µ

) ∑
η⪯ν−µ

(
ν − µ
η

)
∂ν−µ−ηψϵ

m∂
µψ̄ϵ

m∂
ηψϵ

m.823
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Repeat the above procedures, and we get824

ϵdt∥∂νψϵ
m∥ ≤ 2|ν|

∑
|ν−µ|=1

∥∂ν−µvm∥∞∥∂µψϵ
m∥+ 2λ∥ψϵ∥2∞∥∂νψϵ

m∥+825

2λ
∑
µ≺ν

(
ν
µ

) ∑
η⪯ν−µ

(
ν − µ
η

)
∥∂ν−µ−ηψϵ

m∥L6∥∂µψϵ
m∥L6∥∂ηψϵ

m∥L6 ,826

ϵdt∥∇∂νψϵ
m∥ ≤ 2∥∇vm∥∞∥∂νψm∥+ 2λC(∥∇ψϵ

m∥L4∥∂νψϵ
m∥L4 + ∥∇∂νψϵ

m∥)827

+ 2|ν|
∑

|ν−µ|=1

(∥∇∂ν−µvm∥∞∥∂µψϵ
m∥+ ∥∂ν−µvm∥∞∥∇∂µψϵ

m∥)+828

2λ
∑
µ≺ν

(
ν
µ

) ∑
η⪯ν−µ

(
ν − µ
η

)[
∥∇∂ν−µ−ηψϵ

m∥L6∥∂µψϵ
m∥L6∥∂ηψϵ

m∥L6+829

∥∂ν−µ−ηψϵ
m∥L6∥∇∂µψϵ

m∥L6∥∂ηψϵ
m∥L6 + ∥∂ν−µ−ηψϵ

m∥L6∥∂µψϵ
m∥L6∥∇∂ηψϵ

m∥L6

]
.830

and831

ϵdt∥∇2∂νψϵ
m∥ ≤ 2(∥∇2vm∥∞∥∂νψm∥+ ∥∇vm∥∞∥∇∂νψm∥) + 8λ∥∇ψϵ

m∥2L6∥∂νψm∥L6832

+ 8λ∥ψϵ
m∥∞∥∇2ψϵ

m∥L4∥∂νψm∥L4 + 16λ∥ψϵ
m∥∞∥∇ψϵ

m∥L4∥∇∂νψϵ
m∥L4+833

2|ν|
∑

|ν−µ|=1

[
∥∇2∂ν−µvm∥∞∥∂µψϵ

m∥+ 2∥∇∂ν−µvm∥∞∥∇∂µψϵ
m∥+834

∥∂ν−µvm∥∞∥∇2∂µψϵ
m∥
]
+ 2λ∥ψϵ

m∥2∞∥∇2∂νψm∥+835

6λC
∑
µ≺ν

(
ν
µ

) ∑
η⪯ν−µ

(
ν − µ
η

)
∥∂ν−µ−ηψϵ

m∥H2∥∂µψϵ
m∥H2∥∂ηψϵ

m∥H2 ,836

in which we use the inequality generalized from Proposition 3.6 in [49] as837

∥∇2fgh∥ ≤ C∥f∥H2∥g∥H2∥h∥H2 ,838

∥(∇f)(∇g)h∥ ≤ C∥f∥H2∥g∥H2∥h∥H2 .839

Thus we get840

ϵdt∥∂νψϵ
m∥H2 ≤ C3∥∂νψϵ

m∥H2 + C4|ν|
∑

|ν−µ|=1

∥∂ν−µvm∥H2∥∂µψϵ
m∥H2+841

λC5

∑
µ≺ν

(
ν
µ

) ∑
η⪯ν−µ

(
ν − µ
η

)
∥∂ν−µ−ηψϵ

m∥H2∥∂µψϵ
m∥H2∥∂ηψϵ

m∥H2 .842

An application of the Gronwall inequality yields843

∥∂νψϵ
m∥H2 ≤ exp

(
C3T

ϵ

){C4T |ν|
ϵ

∑
|ν−µ|=1

∥∂ν−µvm∥H2∥∂µψϵ
m∥H2+844

λC5T

ϵ

∑
µ≺ν

(
ν
µ

) ∑
η⪯ν−µ

(
ν − µ
η

)
∥∂ν−µ−ηψϵ

m∥H2∥∂µψϵ
m∥H2∥∂ηψϵ

m∥H2

}
.845

Use the induction argument and we get846

∥∂νψm∥H2 ≤ C(t, λ, ϵ, |ν|)
∏
j

(
√
λj∥vj∥H2)νj .847
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[27] P. Henning, A. Målqvist, and D. Peterseim, Two-level discretization techniques for ground909
state computations of Bose-Einstein condensates, SIAM J. Numer. Anal., 52 (2014),910
pp. 1525–1550.911
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[34] K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Annales Academiae925
Scientiarum Fennicae: Ser. A 1, Kirjapaino oy. sana, 1947.926
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