
Gradient-enhanced sparse Hermite polynomial expansions for pricing and
hedging high-dimensional American options∗

Jiefei Yang† and Guanglian Li‡

Abstract. We propose an efficient and easy-to-implement gradient-enhanced least squares Monte Carlo method
for computing price and Greeks (i.e., derivatives of the price function) of high-dimensional Amer-
ican options. It employs the sparse Hermite polynomial expansion as a surrogate model for the
continuation value function, and essentially exploits the fast evaluation of gradients. The expansion
coefficients are computed by solving a linear least squares problem that is enhanced by gradient
information of simulated paths. We analyze the convergence of the proposed method, and establish
an error estimate in terms of the best approximation error in the weighted H1 space, the statistical
error of solving discrete least squares problems, and the time step size. We present comprehensive
numerical experiments to illustrate the performance of the proposed method. The results show that it
outperforms the state-of-the-art least squares Monte Carlo method with more accurate price, Greeks,
and optimal exercise strategies in high dimensions but with nearly identical computational cost, and
it can deliver comparable results with recent neural network-based methods up to dimension 100.

Key words. sparse Hermite polynomial expansion, least squares Monte Carlo, backward stochastic differential
equation, high dimensions, American option

MSC codes. 60G40, 91G60, 91G20, 62J05, 65C30

1. Introduction. The early exercise feature of American or Bermudan options gives hold-
ers the right to buy (call) or sell (put) underlying assets before the expiration date, and their
accurate numerical calculation is of great practical importance. Meanwhile, the efficient es-
timation of Greeks (i.e., derivatives of the price function, e.g., delta and gamma) is vital for
hedging and risk management, since the theory of option pricing builds on the assumption of
the absence of arbitrage. For example, when the asset price is on the rise, the gain in the long
position of a call writer’s asset may offset the potential loss of the call option.

Nonetheless, the early exercise feature of American options poses significant challenges for
computing price and Greeks, especially in high dimensions. One of the most popular methods
for high-dimensional American option pricing is the least squares Monte Carlo (LSM) method
[15, 22]. Computing Greeks in high dimensions is more involved, and further developments
with LSM have been proposed [24, 5]. In this work, building on LSM, we shall develop
a simple, fast, and accurate algorithm, termed as gradient-enhanced least squares Monte
Carlo (G-LSM) method, c.f. Algorithm 4.1, for computing price and Greeks simultaneously
at all time steps for dimensions up to 100. The key methodological innovations includes
using sparse Hermite polynomial space with a hyperbolic cross index set as the ansatz space
for approximating the continuation value functions (CVFs), and incorporating the gradient

∗Submitted to the editors May XX, 2024.
Funding: JY acknowledges support from the University of Hong Kong via the HKU Presidential PhD Scholar

Programme (HKU-PS). GL acknowledges the support from GRF (project number: 17317122) and Early Career
Scheme (Project number: 27301921), RGC, Hong Kong.

†Department of Mathematics, University of Hong Kong, Pokfulam, Hong Kong (jiefeiy@connect.hku.hk).
‡Department of Mathematics, University of Hong Kong, Pokfulam, Hong Kong (lotusli@maths.hku.hk).

1

mailto:jiefeiy@connect.hku.hk
mailto:lotusli@maths.hku.hk

2 J. YANG AND G. LI

information for computing the expansion coefficients.
We elaborate on the two methodological innovations. First, the main obstacle of using

gradient information lies in the computational expense: a d-variate price has d partial deriva-
tives, which grows quickly with d, especially when the derivative evaluation is costly. With the
proposed sparse Hermite polynomial ansatz space, the derivatives of polynomial bases can be
obtained at almost no extra cost, cf. (3.3) below. This allows greatly reducing the computa-
tional cost. Second, although using a polynomial ansatz space for the CVFs as LSM, G-LSM
constructs the expansion coefficients via solving a linear least squares problem enhanced by
the gradient (and hence the name G-LSM), by minimizing the mean squared error between
the approximate and exact value functions at tk+1, c.f. (4.6) below. This differs markedly
from LSM, which approximates the conditional expectations by projection and minimizes the
mean squared error of approximating CVF at tk. Numerical experiments show that this choice
can achieve better accuracy in price, Greeks, and optimal exercise strategies than LSM.

In G-LSM, the approximation of the terminal condition at tk+1 is obtained by discretizing
the linear backward stochastic differential equation (BSDE) for the CVF, c.f. Theorem 4.1,
which was recently innovated in a deep neural network-based method for American option
pricing [6]. The idea of matching the terminal condition has been widely applied in solving
high-dimensional BSDEs with deep neural networks (DNNs) [7, 12]. In practice, it involves
computing the gradient of the CVF, and in turn that of the basis functions in the ansatz space
(in addition to function evaluation). When d≫ 1, for a complicated ansatz space, evaluating
the derivatives at all time steps can be prohibitive. We shall show that the extra cost is nearly
negligible for the sparse Hermite polynomial ansatz, and that the overall complexity of G-LSM
with N time steps, M sample paths, and Nb basis functions is O(NMNb), nearly identical
with that for LSM. Numerical results show that the accuracy of G-LSM is competitive with
DNN-based methods for dimensions up to d = 100.

In theory, the CVF can be formulated as a smooth, high-dimensional function in L2
ω(Rd)

with a Gaussian weight function ω(y) [25]. This regularity enables the use of normalized and
generalized Hermite polynomials, which form an orthonormal basis of L2

ω(Rd). Furthermore,
drawing on the geometric convergence rate of the hyperbolic cross approximation with Her-
mite polynomials [17], we shall prove the global convergence of G-LSM using BSDE technique,
stochastic and Malliavin calculus, and establish an error bound in terms of time step size, sta-
tistical error of the Monte Carlo approximation, and the best approximation error in weighted
Sobolev space H1

ω(Rd), c.f. Theorem 5.6. In sum, the algorithmic development of G-LSM,
its error analysis and extensive numerical evaluation represent the main contributions of the
present work.

Now we situate the present study in existing works. Currently, there are two popular
classes of methods to price American options in high dimensions: (i) least-squares Monte
Carlo-based (LSM) methods and (ii) DNN-based methods. The LSM method has shown
tremendous success for pricing American or Bermudan options with more than one stochastic
factors. The original LSM [15] uses polynomials to approximate the CVF, and other choices
have also been explored, e.g., Gaussian process [16] and DNNs [14, 4]. Recently, LSM with
the hierarchical tensor train technique has been studied in [2], which demonstrates the success
of polynomial approximation for CVFs in very high dimensions. The proposed G-LSM is
a variant of LSM that incorporates gradient information that comes nearly for free. Due

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 3

to the excellent capability for high-dimensional approximation of DNNs, several methods
based on DNNs have been proposed for pricing American or Bermudan options, based on
optimal stopping problem (parameterizing the stopping time by DNNs and then maximizing
the expected reward [3]), free boundary PDEs (parameterizing PDE solutions with DNNs
[21]), or BSDEs (parameterizing the solution pair of the associated reflected BSDE [8] by
DNNs [12]). Within the framework of BSDEs, Chen and Wan [6] suggest approximating
the difference of the CVF between adjacent time steps by averaging several trained neural
networks, which has a quadratic complexity in the number of time steps. Wang et al. [23]
extend the deep BSDE method [7] from European option pricing to Bermudan one, with the
loss function being the variance of the initial value, and Gao et al. [10] analyze its convergence.
In comparison with DNN-based methods, G-LSM enjoys high efficiency and robustness, which
involves only least-squares problems and is easy to implement.

The structure of this article is organized as follows. In section 2, we describe the mathe-
matical framework of pricing and hedging high-dimensional American or Bermudan options,
and in section 3, we recall several useful properties of generalized Hermite polynomials and
approximation with sparse hyperbolic cross index set. Then in section 4, we derive the main
algorithm, i.e., gradient-enhanced least squares Monte Carlo (G-LSM) method, and establish
its local and global error estimates in section 5. In section 6, we present extensive numerical
results including prices, Greeks, optimal stopping time, and computing time. We also present
a comparative study with existing methods. Finally, we conclude in section 7 with further
discussions.

Throughout, bold and plain letters represent multi-variable and scalars, respectively, and
the capital and bold letters S, X̃ and W denote random vectors. The notation a · b denotes
the dot product of two vectors a and b, Tr(A) the trace of a square matrix A, and ⊤ vector
transpose. The notation ∇xf(t,x) and Hessx f(t,x) denote respectively the gradient and
Hessian of f with respect to x. For multi-index α = (α1, . . . , αd)

⊤ ∈ Nd0, |α| = α1 + · · ·+ αd.
For a positive-valued integrable function ω : Rd → R+, the weighted space L2

ω(Rd) is defined
by

L2
ω(Rd) := {f : Rd → R : ∥f∥L2

ω(Rd) <∞}, with ∥f∥2L2
ω(Rd) :=

∫
Rd

f(x)2ω(x)dx.

The weighted Sobolev space Hm
ω (Rd), m ∈ N, is defined by

Hm
ω (Rd) := {f : Rd → R : ∥f∥Hm

ω (Rd) <∞}, with ∥f∥2Hm
ω (Rd) =

∑
0≤|α|≤m

∥∥∥∥∂αf∂xα

∥∥∥∥2
L2
ω(Rd)

.

2. Bermudan option pricing and hedging. Now we describe the valuation framework for
American or Bermudan option pricing and hedging.

2.1. Option pricing and Greeks. The fair price of American option vA(t) at time t ∈ [0, T]
is expressed as the solution to the optimal stopping problem in a risk neutral probability space
(Ω,F , (Ft)0≤t≤T ,Q),

vA(t) = sup
τt∈[t,T]

E[e−r(τt−t)g(Sτt)|Ft],

4 J. YANG AND G. LI

where τt is an Ft-stopping time, T > 0 is the expiration date, (St)0≤t≤T is a collection of
d-dimensional price processes, and g(St) ∈ L2(Ω,Ft,Q) is the payoff depending on the type
of the option.

Numerically, the price of Bermudan option is used to approximate the American one. The
Bermudan option can be exercised at finite discrete times 0 = t0 < t1 < · · · < tN = T with
∆t := tk+1 − tk for all k = 0, 1, . . . , N − 1. Using dynamic programming principle or Snell
envelope theory [20, Section 1.8.4], the Bermudan price function vtk at time tk is given by the
following backward induction:

(2.1)

vtN (s) = gtN (s),

vtk(s) =

{
gtk(s), if gtk(s) ≥ c̃tk(s),

c̃tk(s), if gtk(s) < c̃tk(s),
for k = N − 1 : −1 : 0,

where gtk is the discounted payoff (exercise value) function and c̃tk is the CVF, defined by

(2.2) c̃tk(s) = E[vtk+1
(Stk+1

)|Stk = s].

The options delta and gamma are defined to be the first and second order derivatives of the
price function vtk with respect to the price of underlying assets, i.e.,

(2.3) ∆tk := ∇vtk(s) =
(
∂vtk(s)

∂s1
, . . . ,

∂vtk(s)

∂sd

)⊤
and Γijtk :=

∂2vtk(s)

∂sj∂si
.

We consider all exercise and continuation values of Bermudan option discounted to the time
t = 0.

2.2. Multi-asset model and transformation. One of the most classical models for high-
dimensional American option pricing is the multi-asset Black-Scholes model. Under the risk-

neutral probability Q, the prices of d underlying assets, St =
(
S1
t , . . . , S

d
t

)⊤
, follow the corre-

lated geometric Brownian motions

(2.4) dSit = (r − δi)S
i
t dt+ σiS

i
t dW̃

i
t with Si0 = si0, i = 1, 2, . . . , d,

where W̃ i
t are correlated Brownian motions with correlation E[dW̃ i

t dW̃
j
t] = ρij dt, and r, δi

and σi are the riskless interest rate, dividend yields, and volatility parameters, respectively.
We denote the correlation matrix by P = (ρij)d×d, the volatility matrix by Σ (which is a
diagonal matrix with volatility σi on the diagonal), and write the dividend yields as a vector
δ = [δ1, . . . , δd]

⊤. Using the spectral decomposition ΣPΣ⊤ = QΛQ⊤, the rotated log-price
X̃t := Q⊤ ln(St./s0) satisfies an independent Gaussian distribution

X̃t ∼ N
(
Q⊤

(
r − δ − 1

2
Σ21

)
t,Λt

)
.

Let µ = Q⊤ (r − δ − 1
2Σ

21
)
and λi be the i-th diagonal element of Λ. This gives a trans-

formation between underlying asset prices St and independent Brownian motions Wt =
[W 1

t , . . . ,W
d
t]

⊤, i.e.,

(2.5) St = s0 ⊙ exp
(
Q
(
µt+

√
ΛWt

))
,

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 5

where ⊙ denotes componentwise product.
From (2.5) and (2.2), the CVF ctk with respect to the independent Brownian motions is

(2.6) ctk(w) = E[utk+1
(Wtk+1

)|Wtk = w],

where utk+1
represents the value function at time tk+1 with respect to the independent Brown-

ian motions. Our aim is to develop a gradient-enhanced least squares Monte Carlo method
that can efficiently approximate ctk , and thus provide accurate prices and their derivatives.

3. Sparse Hermite polynomial expansion and gradient. Sparse polynomial chaos expan-
sion can serve as a surrogate model of unknown stochastic variables with finite second-order
moments. The motivations of using sparse Hermite polynomial expansion for pricing and
hedging American options are twofold:

1. Let ωt, t > 0, be the Gaussian density function defined by ωt(y) :=
∏d
j=1 ρt(yj)

with ρt(y) :=
1√
2πt

exp(−y2

2t). The CVF ctk satisfies ctk ∈ L2
ωtk

(Rd), since the payoff

g(Stk) ∈ L2(Ω,Ftk ,Q) has a finite second-order moment. Thus, as an orthonormal
basis for L2

ωtk
(Rd), the set of normalized and generalized Hermite polynomials emerges

as a natural choice.
2. The CVF ctk ∈ Hm

ωtk
(Rd) for any positive integer m by [25, Lemmas 4.2 and 4.3]. The

smoothness of the function implies efficient polynomial approximation.

Next, we recall one-dimensional normalized and generalized Hermite polynomials H
(t)
n (y)

and the tensorized d-dimensional polynomials H
(t)
α (y), α ∈ Nd0. For d = 1, using the stan-

dard Hermite polynomials Hn, we define the nth-order normalized and generalized Hermite

polynomial H
(t)
n by

H(t)
n (y) :=

Hn(
y√
t
)

√
n!

, for n ∈ N0, t > 0, y ∈ R.

Then {H(t)
n }n∈N0 forms a complete orthonormal basis for L2

ρt(R):

E
[
H(t)
n (Wt)H

(t)
m (Wt)

]
=

∫
R
H(t)
n (y)H(t)

m (y)ρt(y) dy = δnm,

with δnm being the Kronecker delta. For d > 1, the tensorized Hermite polynomial with the
multi-index α = (α1, . . . , αd)

⊤ ∈ Nd0 defined by

H
(t)
α (y) :=

d∏
j=1

H(t)
αj

(yj)

forms a complete orthonormal basis for L2
ωt
(Rd), satisfying

E
[
H

(t)
α (Wt)H

(t)
γ (Wt)

]
=

∫
Rd

H
(t)
α (y)H

(t)
γ (y)ωt(y) dy = δα,γ , α,γ ∈ Nd0.

Here, δα,γ =
∏d
j=1 δαj ,γj and ωt(y) =

∏d
j=1 ρt(yj).

6 J. YANG AND G. LI

For any fixed multi-index set I ⊂ Nd0, the Hermite polynomial ansatz space PI,k is defined
by

PI,k := span
{
H

(tk)
α : α ∈ I

}
.(3.1)

Then we aim to approximate the CVF ctk in PI,k by

ctk(Wtk) ≈
∑
α∈I

βαH
(tk)
α (Wtk).

It is well-known that computing polynomial approximations in high dimensions suffers from
the notorious curse of dimensionality with tensor product-type multi-index sets. Fortunately,
the smoothness of ctk implies a fast decay of the coefficients in the polynomial expansion. The
large coefficients usually occur in a lower multi-index set I, that is, if α ∈ I and γ ≤ α, then
γ ∈ I [1, Section 1.5]. To circumvent the curse of dimensionality, the decay property of the
expansion coefficients can be exploited and a hyperbolic cross sparse index set can be used
to construct an approximation. The hyperbolic cross multi-index set I with maximum order
p ∈ N is defined by

(3.2) I :=
{
α = (αj)

d
j=1 ∈ Nd0 :

d∏
j=1

max(αj , 1) ≤ p
}
,

which has a cardinality O(p(ln p)d−1). The best approximation error of the sparse Hermite
polynomial approximation with hyperbolic cross index set was analyzed in [17]; see section 5
for details.

Now, we introduce a property of derivatives of Hermite polynomials, which plays an impor-
tant role in reducing the computational cost. The first-order derivative of the one-dimensional

normalized and generalized Hermite polynomial H
(t)
n (y) satisfies

d

dy

(
H(t)
n (y)

)
=

√
n

t
H

(t)
n−1(y).

For the d-dimensional Hermite polynomial, we have

(3.3)
∂

∂yj

(
H

(t)
α (y)

)
=

√
αj
t
H

(t)
α−ej

(y),

where ej is the j-th canonical basis vector. This implies that for a lower multi-index set

I ⊂ Nd0, we have α − ej ∈ I if α ∈ I. Thus, once the evaluations of H
(t)
α (y) for α ∈ I are

available, the gradients of H
(t)
α (y) for α ∈ I can be evaluated cheaply.

4. Algorithm and complexity. Now we derive the main methodology to approximate the
CVF ctk by matching values of utk+1

, and analyze its computational complexity. Below we
abbreviate the notations ctk , utk and Wtk to ck, uk and Wk, etc, for k = 0, 1, . . . , N .

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 7

4.1. Gradient-enhanced Least Squares (G-LS). First we derive a linear backward sto-
chastic differential equation (BSDE) for the CVF ck.

Theorem 4.1. The CVF ck(Wk) satisfies the linear BSDE

ck(Wk) = uk+1(Wk+1)−
∫ tk+1

tk

∇wf(t,Wt) · dWt,

where f(t,w), t ∈ [tk, tk+1], is defined by f(t,w) := E[uk+1(Wk+1)|Wt = w].

Proof. This is a direct consequence of martingale representation theorem [26, Theorem
2.5.2]. For the sake of completeness, we provide a brief proof. By the Feynman-Kac formula,
f(t,w) satisfies a d-dimensional parabolic PDE subject to a terminal condition

(4.1)

∂f

∂t
(t,w) +

1

2
Tr (Hessw f(t,w)) = 0, t ∈ [tk, tk+1),

f(tk+1,w) = utk+1
(w).

Let Yt := f(t,Wt). By Itô’s formula, we have

dYt =

(
∂f

∂t
(t,Wt) +

1

2
Tr (Hessw f(t,Wt))

)
dt+∇wf(t,Wt) · dWt.

In view of (4.1), the drift term vanishes. After taking the stochastic integral and using the
terminal condition in (4.1), we obtain the desired assertion.

Next, we construct an approximation of the CVF ck by matching the terminal condi-
tion over the interval [tk, tk+1]. By Theorem 4.1, the terminal value over [tk, tk+1] can be
approximated by the Euler discretization, i.e.,

(4.2) ūk+1(Wk+1) = cCLS
k (Wk) +∇cCLS

k (Wk) ·∆Wk,

where ∆Wk := Wk+1 −Wk is the Brownian increment and cCLS
k denotes an approximation

to the CVF ck. Let ûk+1 be the value function computed in the last time step. Then using
PI,k defined in (3.1) and (3.2) as the ansatz space for cCLS

k , we solve for cCLS
k using the least

squares regression:

(4.3) cCLS
k (Wk) = argmin

ψ∈PI,k

Ek(ψ),

with Ek(·) : PI,k → R+ being the quadratic loss (i.e., mean squared error) defined by

Ek(ψ) := E
[
(ûk+1(Wk+1)− ψ(Wk)−∇ψ(Wk) ·∆Wk)

2
]
.

Finally, the numerical value ûk at time tk is updated to be the discounted exercise or contin-
uation value at tk:

ûk(Wk) =

{
gk(Sk), if exercise,

cCLS
k (Wk), if continue.

(4.4)

Since the option is only profitable when exercised in the in-the-money region ΩITM = {s ∈
Rd : gk(s) > 0}, we make the decision of exercising the option when cCLS

k (Wk) < gk(Sk) and
Sk ∈ ΩITM; otherwise, the option will be continued.

8 J. YANG AND G. LI

4.2. Gradient-enhanced Least Squares Monte Carlo (G-LSM). Now we derive the
methodology based on the Monte Carlo method to solve (4.3) numerically and analyze its
computational complexity. Let Nb = |I| and let {ϕkn(Wk)}Nb

n=1 be the set of Hermite polyno-
mials in a scalar-indexed form. Then any function ψ ∈ PI,k can be expressed as

ψ(Wk) =

Nb∑
n=1

βnϕ
k
n(Wk),

with its gradient given by

(4.5) ∇ψ(Wk) =

Nb∑
n=1

βn∇ϕkn(Wk).

In practice, the continuous least squares problem (4.3) is solved by minimizing its Monte Carlo
approximation:

(4.6) ĉk := argmin
ψ∈PI,k

1

M

M∑
m=1

(
ûk+1(W

m
k+1)− ψ(Wm

k)−∇ψ(Wm
k) ·∆Wm

k

)2
,

where {Wm
k }Mm=1 areM independent paths of the Gaussian random processWk and ∆Wm

k :=
Wm

k+1−Wm
k is the mth path of increment ∆Wk. Let Ak ∈ RM×Nb , βk ∈ RNb and ûk+1 ∈ RM

with their components defined by

(Ak)mn = ϕkn(W
m
k) +∇ϕkn(Wm

k) ·∆Wm
k ,

(βk)n = βn, (ûk+1)m = ûk+1(W
m
k+1)

for m = 1, . . . ,M , n = 1, . . . , Nb.
Then finding the optimal polynomial in (4.6) amounts to solving the classical least squares

problem

βk = argmin
β

∥Akβ − ûk+1∥22 = (A⊤
k Ak)

−1A⊤
k ûk+1.

The proposed algorithm is summarized in Algorithm 4.1.

Remark 4.2. Note that the well-known least squares Monte Carlo (LSM) method [15, 22]
also approximates the CVF with a finite number of basis functions. The orthonormal Hermite
polynomials is one possible choice. However, LSM computes the coefficients by projecting the
value, utk+1

(Wtk+1
) in (2.6), onto a finite-dimensional space spanned by the basis functions

due to the projection nature of conditional expectation:

ĉLSMk := argmin
ψ∈PI,k

1

M

M∑
m=1

(
ûk+1(W

m
k+1)− ψ(Wm

k)
)2
.

In contrast, G-LSM computes the coefficients by matching the approximate and exact value
of utk+1

(Wtk+1
), see (4.6). Their numerical performance will be compared in section 6.

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 9

Algorithm 4.1 G-LSM

Input: Market parameters: S0, r, δi, σi, P
Option parameters: payoff function g(s)
Algorithm parameters: N,M, p

Output: Option price v0
1: Compute the hyperbolic cross multi-index set I with maximum order p
2: Generate M sample paths
3: Initialize values ûN = (e−rT g(SmN))

M
m=1

4: Initialize stopping times τ⋆ = T
5: for k = N − 1 : −1 : 1 do
6: Φk = basis matrix(Wk, I) with (Φk)m,n = ϕkn(W

m
k)

7: Compute matrix Ak with Algorithm 4.2
8: Solve system of linear equations: Akβk = uk+1

9: Update (ûk)m =

{
e−rk∆tg(Smk), if exercise

(Φkβk)m, if continue
and τ⋆ =

{
k∆t, if exercise

τ⋆, if continue
10: end for
11: v0 = max

{
1
M

∑M
m=1 e

−rτm⋆ g(Smτm⋆), g(S0)
}

For the efficient computation of the matrix Ak, using (3.3), i.e.,

∂ϕkn
∂wj

(Wm
k) =

√
αj
tk
ϕkn′(Wm

k) for ϕkn = H
(tk)
α , ϕkn′ = H

(tk)
α−ej

,

we can compute the matrix Ak from the basis matrix Φk and the increment ∆Wk. This routine
is summarized in Algorithm 4.2, where (Ak)n represents the n-th column of the matrix Ak.

Finally, we analyze the computational complexity of Algorithm 4.1. We employ backward
induction (2.1) with N time steps to price American options, which has a complexity O(N).
For each fixed tk, the computation consists of steps 6-9 in Algorithm 4.1. Step 6 has a
complexity O(MNb), when using M samples and Nb basis functions. Step 7 is detailed in
Algorithm 4.2, which has a linear complexity in the number of nonzero αj for all α ∈ I and
j = 1, . . . , d,

∥I∥0 :=
∑
α∈I

{j = 1, · · · , d : αj ̸= 0} .

Note that ∥I∥0 can be calculated by (Nb − Nb,p−1)d for maximum order p, where Nb,p−1

represents the number of basis functions with maximum order p−1. Figure 1 shows that ∥I∥0
scales nearly linearly with respect to Nb. Thus, the complexity of Algorithm 4.2 is linear in
Nb. Step 8 involves solving a linear system of size M ×Nb. Using an iterative solver, the cost
is O(MNb) if the matrix A is well-conditioned. Step 9 involves matrix-vector multiplication,
which has a complexity O(MNb). Hence, with a fixed sample size M and number N of time
steps, the total cost of the proposed G-LSM is O(NMNb). We will numerically verify the
complexity analysis in subsection 6.3.

10 J. YANG AND G. LI

Algorithm 4.2 Compute the matrix Ak using I,Φk and ∆Wk

1: Initialize Ak = Φk
2: for j = 1 : d do
3: for α ∈ I do
4: if αj ≥ 1 then

5: (Ak)n = (Ak)n + (∆Wk)j ⊙ (Φk)n′

√
αj

tk
.

6: end if
7: end for
8: end for

10
0

10
2

10
0

10
5

10
0

10
2

10
0

10
2

10
4

10
6

10
0

10
2

10
0

10
2

10
4

10
6

(a) p = 4 (b) p = 6 (c) p = 10

Figure 1. ∥I∥0 scales linearly with respect to Nb.

4.3. Computing deltas. Now we present the approximation of deltas for constructing
hedging strategies based on Algorithm 4.1. In the backward induction loop, (2.1) and (2.3)
imply the deltas at time tk is given by

∂vk(s)

∂sj
=

∂gk(s)

∂sj
, if exercise,

∂c̃k(s)

∂sj
, if continue,

j = 1, . . . , d.

In the continuation region, c̃k(s) = ck(w) with s = s0 ⊙ exp(Q(µtk +
√
Λw)). Once we have

obtained the coefficients βk of the expansion, the gradient ∇ck(w) of the continuation value
ck(w) is approximated by ∇ĉk(w) in (4.5). Hence, we calculate the deltas in the continuation
region by

∂c̃k(s)

∂sj
≈

d∑
i=1

∂ĉk(w)

∂wi

∂wi
∂sj

, k = 1, . . . , N − 1.

The gammas Γijtk can be approximated in a similar way.

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 11

Particularly, the Greeks at time t = 0 involves solving an additional linear system, which
arises from minimizing the L2

ωt1
(Rd) error of approximating u1(W1). We employ a slightly

different ansatz from the case of tk > 0, since the expansions in H
(0)
α is not applicable. Instead,

we take

ĉ0(w) =
∑
α∈I

βαH
(∆t)
α (w).

Since c0(W0) is a deterministic value given W0 = 0, we consider the Euler approximation

u1(W1) ≈ ĉ0(0) +∇ĉ0(0) ·W1.

Similar to (4.6), the coefficients βα can be approximated by solving an M ×Nb linear system.
After that, the delta at t = 0 is approximated by

∂c̃0(s0)

∂sj
≈

d∑
i=1

∂ĉ0(0)

∂wi

∂wi
∂sj

(s0), with s = s0 ⊙ exp(Q
√
Λw).

5. Convergence analysis. Now we analyze the convergence of Algorithm 4.1. We assume
the Lipschitz continuity of the discounted payoff function gk(·).

Assumption 5.1. The discounted payoff function gk(·) is L-Lipschitz continuous: for k =
0, 1, . . . , N

(5.1) |gk(s)− gk(s
′)| ≤ L∥s− s′∥, ∀s, s′ ∈ Rd.

Recall that ûk(w) is the numerical value function at time tk computed by Algorithm 4.1,
which approximates the exact value uk(w) for k = 0, 1, . . . , N − 1. We aim to establish an
upper bound for max0≤k≤N−1 ∥uk − ûk∥2L2

ωk
(Rd)

.

5.1. One-step error estimation. First, we analyze the one step error over the interval
[tk, tk+1] for k = 0, 1, . . . , N − 1, i.e., the numerical value function ûk(w) as an approximation
to the exact one uk(w). Given the previous value function ûk+1, we define the current CVF
čk(Wk) by

(5.2) čk(Wk) = E[ûk+1(Wk+1)|Wk].

The classic backward Euler scheme for BSDE approximate ∇čk by

(5.3) Žk :=
1

∆t
E[ûk+1(Wk+1)∆Wk|Wk].

With the sparse Hermite polynomial ansatz space PI,k, let c
∗
k ∈ PI,k be the best approximation

to čk in H1
ωk
(Rd) defined by

(5.4) c∗k := argmin
ψ∈PI,k

∥čk − ψ∥H1
ωk

(Rd).

12 J. YANG AND G. LI

Also we define the best approximation error Ebest
k by

(5.5) Ebest
k := ∥čk − c∗k∥2H1

ωk
(Rd).

Next, we denote the statistical error of solving the discrete least squares problem (4.6) by

Estat
k := ∥ĉk − cCLS

k ∥2L2
ωk

(Rd),(5.6)

where cCLS
k solves the continuous least squares problem (4.3) for k = 0, 1, . . . , N − 1. In

Theorem 5.4 below, we derive the convergence of cCLS
k to the exact ck provided that the

previous approximation error ∥uk+1− ûk+1∥2L2
ωk+1

(Rd)
, Ebest

k in (5.5), and time step size ∆t are

small. We first provide in Lemma 5.2 an estimate of Ebest
k in (5.5), which is a direct application

of [17, Theorem 4.2].

Lemma 5.2. For the hyperbolic cross index set I with maximum order p defined in (3.2),
given čk ∈ Km(Rd, ωk), we have

Ebest
k ≤ C(m, d)

1

pm−1
|čk|2Km

ωk
(Rd),

where Km
ωk
(Rd) is the weighted Koborov-type space defined by

Km
ωk
(Rd) = {u : ∂αu ∈ L2

ωk
(Rd), 0 ≤ |α|∞ ≤ m},

and | · |Km
ωk

(Rd) is the seminorm defined by

|u|Km
ωk

(Rd) =

 ∑
|α|∞=m

∥∂αu∥2L2
ωk

(Rd)

1/2

.

The next result provides a one-step error estimate of the Z component in the BSDE by
the backward Euler scheme (5.3). The proof is inspired by the idea of [11, pages 816-817]. By
martingale representation theorem, the definition of čk (5.2) implies the existence of a square
integrable process Z̃s, tk ≤ s ≤ tk+1, such that

(5.7) ûk+1(Wk+1) = čk(Wk) +

∫ tk+1

tk

Z̃t · dWt.

Lemma 5.3. Let Žk and Z̃t be defined in (5.3) and (5.7). Then for some constant C1 > 0,

E
[
(Žk − Z̃tk)

2
]
≤ C1∆t

2.

Proof. By the integration by parts formula of Malliavin calculus, we obtain

Žk =
1

∆t
E [ûk+1(Wk+1)∆Wk|Wk] =

1

∆t
E
[∫ tk+1

tk

DtWk+1∇ûk+1(Wk+1) dt

∣∣∣∣Wk

]
,

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 13

where DtWk+1 is an identity matrix of size d× d. Together with the identity

Z̃tk = ∇čk(Wk) =
1

∆t

∫ tk+1

tk

∇čk(Wk) dt,

it further leads to

Žk − Z̃tk =
1

∆t
E
[∫ tk+1

tk

∇ûk+1(Wk+1)−∇čk(Wk) ds

∣∣∣∣Wk

]
.

Then, by [11, Equation (26)], we obtain

Žk − Z̃tk =

∫ tk+1

tk

E [G(t,Wt)|Wk] dt,

for a bounded function G. Hence, there holds |Žk− Z̃tk | = O(∆t), and there exists a constant

C1 > 0 such that E
[
(Žk − Z̃tk)

2)
]
≤ C1∆t

2.

Next, we provide an error estimate of solving the continuous least squares problem (4.3)
in terms of the error of the previous value function, the best approximation error in the sparse
Hermite polynomial ansatz space (5.5) and the time step size ∆t. The proof is inspired by
the foundational work [12].

Theorem 5.4. For ∆t ≤ 1/4, with the constant C1 > 0 in Lemma 5.3, there holds

∥ck − cCLS
k ∥2L2

ωk
(Rd) ≤ (1 + 4∆t)∥uk+1 − ûk+1∥2L2

ωk+1
(Rd) +

1
2∆tE

best
k + C1∆t

2.

Proof. By the inequality (a+ b)2 ≤ (1 + 4∆t)a2 + (1 + 1
4∆t)b

2, we have

∥ck − cCLS
k ∥2L2

ωk
(Rd) ≤ (1 + 4∆t)∥ck − čk∥2L2

ωk
(Rd) + (1 + 1

4∆t)∥čk − cCLS
k ∥2L2

ωk
(Rd)

≤ (1 + 4∆t)∥ck − čk∥2L2
ωk

(Rd) +
1

2∆t∥čk − cCLS
k ∥2L2

ωk
(Rd),

since ∆t ≤ 1/4. For the first term, the definitions (2.6) and (5.2), the tower property, and
Jensen’s inequality lead to

E
[
(ck(Wk)− čk(Wk))

2
]
= E

[
(E [uk+1(Wk+1)− ûk+1(Wk+1)|Wk])

2
]

≤ E
[
(uk+1(Wk+1)− ûk+1(Wk+1))

2
]
= ∥uk+1 − ûk+1∥2L2

ωk+1
(Rd).

Hence, it remains to show

(5.8) ∥čk − cCLS
k ∥2L2

ωk
(Rd) ≤ Ebest

k + 2C1∆t
3.

By plugging (5.7) into the quadratic loss function Ek(·) in (4.3), we obtain

Ek(ψ) = E

[(
čk(Wk)− ψ(Wk) +

∫ tk+1

tk

Z̃s · dW(s)−∇ψ(Wk) ·∆Wk

)2
]

= E
[
(čk(Wk)− ψ(Wk))

2
]
+ E

[(∫ tk+1

tk

Z̃s · dW(s)−∇ψ(Wk) ·∆Wk

)2
]
.

14 J. YANG AND G. LI

Now Itô isometry implies the identity

E

[(∫ tk+1

tk

Z̃s · dW(s)−∇ψ(Wk) ·∆Wk

)2
]

=E

[(∫ tk+1

tk

Z̃s · dW(s)−
∫ tk+1

tk

Žk · dW(s) + Žk ·∆Wk −∇ψ(Wk) ·∆Wk

)2
]

=E
[∫ tk+1

tk

|Z̃s − Žk|2 ds
]
+∆tE

[∣∣Žk −∇ψ(Wk)
∣∣2]

+ 2E
[∫ tk+1

tk

(Z̃s − Žk) ds

]
· E[Žk −∇ψ(Wk)].

The definitions of Žk and Z̃s in (5.3) and (5.7), together with Itô isometry, yield

Žk =
1

∆t
E
[∫ tk+1

tk

Z̃s ds

∣∣∣∣Wk

]
,

which implies

E
[∫ tk+1

tk

(Z̃s − Žk) ds

]
= 0.

Hence, we can express the loss function Ek(ψ) as

Ek(ψ) = E
[
(čk(Wk)− ψ(Wk))

2
]
+ E

[∫ tk+1

tk

|Z̃s − Žk|2 ds
]
+∆tE

[∣∣Žk −∇ψ(Wk)
∣∣2] .

The equality (4.3) implies that Ek(c
CLS
k) ≤ Ek(ψ) for all ψ ∈ PI,k. Taking ψ := c∗k as defined

in (5.4), we obtain

E
[(
čk(Wk)− cCLS

k (Wk)
)2]

+∆tE
[(
Žk −∇cCLS

k (Wk)
)2]

≤ E
[
(čk(Wk)− c∗k(Wk))

2
]
+∆tE

[(
Žk −∇c∗k(Wk)

)2]
.

Note that Z̃tk = ∇čk(Wk). By subtracting and adding Z̃tk , we have

∥čk − cCLS
k ∥2L2

ωk
(Rd)

≤ ∥čk − c∗k∥2L2
ωk

(Rd) + 2∆tE
[
(Žk − Z̃tk)

2
]
+ 2∆tE

[
|∇čk(Wk)−∇c∗k(Wk)|2

]
≤ ∥čk − c∗k∥2H1

ωk
(Rd) + 2C1∆t

3,

where the last inequality follows from the condition 2∆t ≤ 1 and Lemma 5.3. This shows the
estimate (5.8), and completes the proof.

Now, we can give the one-step error propagation of ∥uk − ûk∥2L2
ωk

(Rd)
given ∥uk+1 −

ûk+1∥2L2
ωk+1

(Rd)
.

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 15

Corollary 5.5. For ∆t ≤ 1/6, there holds

∥uk− ûk∥2L2
ωk

(Rd) ≤ (1+6∆t)∥uk+1− ûk+1∥2L2
ωk+1

(Rd)+

(
1 +

1

2∆t

)
Ebest
k +

6

5
C1∆t

2+
6

5∆t
Estat
k ,

where Ebest
k and Estat

k are defined in (5.5) and (5.6), and C1 > 0 is the constant in Lemma 5.3.

Proof. First, using inequality (a+ b)2 ≥ (1−∆t)a2 − 1
∆tb

2 for any a, b ∈ R, leads to

∥ck − cCLS
k ∥2L2

ωk
(Rd) ≥ (1−∆t)∥ck − ĉk∥2L2

ωk
(Rd) −

1

∆t
∥ĉk − cCLSk ∥2L2

ωk
(Rd).

This and Theorem 5.4 yield

∥ck − ĉk∥2L2
ωk

(Rd)

≤ 1 + 4∆t

1−∆t
∥uk+1 − ûk+1∥2L2

ωk+1
(Rd) +

1

2∆t(1−∆t)
Ebest
k +

C1∆t
2

1−∆t
+

1

∆t(1−∆t)
Estat
k

≤ (1 + 6∆t)∥uk+1 − ûk+1∥2L2
ωk+1

(Rd) +

(
1 +

1

2∆t

)
Ebest
k +

6

5
C1∆t

2 +
6

5∆t
Estat
k ,

provided that ∆t ≤ 1/6. Finally, using inequality |max(a, b)−max(a, c)| ≤ |b− c|, we derive

∥uk − ûk∥2L2
ωk

(Rd) = ∥max(Gk, ck)−max(Gk, ĉk)∥2L2
ωk

(Rd) ≤ ∥ck − ĉk∥2L2
ωk

(Rd).

This completes the proof.

5.2. Global error estimation. Finally, we prove a global error estimate.

Theorem 5.6. For ∆t ≤ 1/6, there holds

max
0≤k≤N−1

∥uk − ûk∥2L2
ωk

(Rd) ≤ C

(
∆t+N

N−1∑
k=0

(
Ebest
k + Estat

k

))
,

where the constant C = max
(

6
5T e

6T , 6T5 C1e
6T
)
only depends on the finite time horizon T and

the constant C1 > 0 defined in Lemma 5.3.

Proof. For ∆t ≤ 1/6, Corollary 5.5 implies

∥uk − ûk∥2L2
ωk

(Rd) ≤ (1 + 6∆t)∥uk+1 − ûk+1∥2L2
ωk+1

(Rd) +
6

5∆t

(
Ebest
k + Estat

k

)
+

6

5
C1∆t

2.

Using the discrete Gronwall’s inequality and ∆t = T/N , we obtain

max
0≤k≤N−1

∥uk− ûk∥2L2
ωk

(Rd) ≤ e6T ∥uN− ûN∥2L2
ωN

(Rd)+e
6T 6N

5T

N−1∑
k=0

(
Ebest
k + Estat

k

)
+e6T

6T

5
C1∆t.

Since the terminal condition uN is known, the result follows by ∥uN − ûN∥L2
ωN

(Rd) = 0.

16 J. YANG AND G. LI

Theorem 5.6 implies that the numerical value function ûk computed by Algorithm 4.1
at each time tk approximates the exact one uk well if ∆t, Ebest

k , and Estat
k are small. Using

Lemma 5.2, the best approximation error Ebest
k decays geometrically with the increase of

the order p of Hermite polynomials. By the law of large numbers, the statistical error Estat
k

between the discrete and the continuous least squares will be small when using a large number
of sample paths.

6. Numerical examples. In this section, we present several examples of high-dimensional
Bermudan option pricing to show the efficiency and accuracy of Algorithm 4.1. The codes
for the numerical experiments can be founded in the GitHub repository https://github.com/
jiefeiy/glsm-american. The accuracy of the computed prices v̂0(s0) and deltas ∇v̂0(s0) are
measured by the relative errors defined by

|v̂0(s0)− v†0|
|v†0|

× 100% and
∥∇v̂0(s0)−∆†

0∥
∥∆†

0∥
× 100%,

respectively, where v†0 and ∆†
0 are exact price and delta at time t = 0. Unless otherwise stated,

the results are the average of 10 independent runs. The parameter settings of the examples
are summarized in Table 1, which has been considered previously [25, 21, 6, 3, 9].

Table 1
The parameters used in Examples 1-5. Examples 3 and 4 share the parameters except the volatility σi.

Example Parameters

1. Geometric basket put K = 100, T = 0.25, r = 0.03, δi = 0, σi = 0.2, ρij = 0.5, N = 50
2. Geometric basket call K = 100, T = 2, r = 0, δi = 0.02, σi = 0.25, ρij = 0.75, N = 50
3. Max-call with d symmetric assets K = 100, T = 3, r = 0.05, δi = 0.1, σi = 0.2, ρij = 0, N = 9

4. Max-call with d asymmetric assets σi =

{
0.08 + 0.32× (i− 1)/(d− 1), if d ≤ 5

0.1 + i/(2d), if d > 5

5. Put option under Heston model
K = 10, T = 0.25, r = 0.1, v0 = 0.0625, ρ = 0.1,

κ = 5, θ = 0.16, ν = 0.9, N = 50

6.1. Example 1: Bermudan geometric basket put. Geometric basket options are bench-
mark tests for high-dimensional option pricing problems, since they can be reduced to one-
dimensional problems, and thus highly accurate prices are available. Indeed, the price of the
d-dimensional problem equals that of the one-dimensional American option with initial price
ŝ0, volatility σ̂, and dividend yield δ̂ given respectively by

ŝ0 =
(d∏
i=1

si0

)1/d
, σ̂ =

1

d

√∑
i,j

σiσjρij , δ̂ =
1

d

d∑
i=1

(
δi +

σ2i
2

)
− σ̂2

2
.

We consider the example of Bermudan geometric basket put from [13, 25]. The exact
prices are computed by solving the reduced one-dimensional problem via a quadrature and
interpolation-based method [25] for Bermudan options. We present in Table 2 the computed
option prices and their relative errors using G-LSM and LSM, with the same ansatz space
for the CVF. The results show that G-LSM achieves higher accuracy than LSM in high

https://github.com/jiefeiy/glsm-american
https://github.com/jiefeiy/glsm-american

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 17

dimensions: G-LSM has a relative error 0.55% for d = 15, which is almost ten times smaller
than that by LSM. That is, by incorporating the gradient information, the accuracy of LSM
can be substantially improved.

Table 2
The price and relative errors of Bermudan geometric basket put computed by LSM and G-LSM using

M = 100, 000 samples, with si0 = 100 and p = 10.

d Nb LSM error G-LSM error v†0
1 11 3.6715 0.16% 3.6532 0.34% 3.6658
2 29 3.1886 0.18% 3.1791 0.12% 3.1831
3 56 3.0113 0.28% 2.9896 0.44% 3.0029
5 141 2.8700 0.70% 2.8381 0.41% 2.8499
10 581 2.8030 2.71% 2.7160 0.48% 2.7290
15 1446 2.8258 5.15% 2.6726 0.55% 2.6874

Table 3 gives the computed option prices and their relative errors by G-LSM with different
maximum polynomial orders p for the 20-dimensional geometric basket put. The relative
error decays steadily as the order p of Hermite polynomials increases, which agrees with
Theorem 5.6.

Table 3
The computed prices and their relative errors by G-LSM for d = 20 with polynomial order p and M =

100, 000 samples. v†0 = 2.6664.

p 2 5 10 12

v̂0(s0) 2.6389 2.6414 2.6529 2.6634
error 1.03% 0.94% 0.50% 0.11%

6.2. Example 2: American geometric basket call. Now we consider the example of
American geometric basket call option from [21, 6] to demonstrate that the proposed G-LSM
can achieve the same level of accuracy as the DNN-based method [6], and take M = 720, 000
samples as in [6]. The prices and deltas are given in Table 4 and Table 5, respectively, where
the results of [6] are the average of 9 independent runs. From Table 4, both methods have
similar accuracy for the price. From Table 5, the relative error of delta using G-LSM and
DNN varies slightly with the dimension d. This is probably because the DNN-based method
computes the delta via a sample average, while G-LSM uses the derivatives of the value
function directly. The relative error of the delta computed by G-LSM increases slightly for
larger dimensions, possibly due to the small magnitude of the exact delta values.

Table 4
Prices of American geometric basket call at t = 0 using M = 720, 000 samples.

G-LSM DNN [6]
d si0 p exact price error price error

7 100 10 10.2591 10.2475 0.11% 10.2468 0.12%
13 100 10 10.0984 10.0781 0.20% 10.0822 0.16%
20 100 10 10.0326 10.0141 0.18% 10.0116 0.21%
100 100 6 9.9345 9.8980 0.37% 9.9163 0.18%

18 J. YANG AND G. LI

Table 5
Deltas of American geometric basket call at t = 0 using M = 720, 000 samples. 1 = (1, 1, . . . , 1)⊤.

G-LSM DNN [6]
d si0 p exact delta error delta error

7 100 10 0.0722 ∗ 1 (0.0724, 0.0725, . . . , 0.0724)⊤ 0.32% 0.0717 ∗ 1 0.69%

13 100 10 0.0387 ∗ 1 (0.0389, 0.0387, . . . , 0.0388)⊤ 0.39% 0.0384 ∗ 1 0.78%

20 100 10 0.0251 ∗ 1 (0.0253, 0.0253, . . . , 0.0254)⊤ 0.59% 0.0249 ∗ 1 0.80%

100 100 6 0.00502 ∗ 1 (0.00501, 0.00508, . . . , 0.00498)⊤ 1.45% 0.00498 ∗ 1 0.80%

With a priori knowledge of the regularity of the CVF, we can approximate functions with
polynomials in high dimensions. We briefly compare the complexity of the two approaches.
Compared with the DNN approximator, G-LSM can involve fewer unknown parameters, and
involves a simpler numerical task (solving least-squares problems versus minimizing nonconvex
losses). Indeed, at each fixed time step, [6] suggests training the neural network with L = 7
hidden layers and width d + 5 in each layer, leading to more than L(d + 5)2 parameters.
In contrast, the number of undetermined parameters in G-LSM is the number Nb of basis
functions, which has a cardinality O(p(ln p)d−1). For example, for d = 100, the neural network
approach involves more than 77175 parameters, whereas G-LSM with p = 6 involves only
Nb = 15451 basis functions.

Next, Figure 2 shows the classification results of continued and exercised data using G-
LSM and LSM with the number of simulated paths M = 100, 000 in d = 7 or 20. Compared
with the exact exercise boundary, G-LSM achieves better accuracy in determining the exercise
boundary than LSM despite of using the same ansatz and number of paths. Thus, even with
the right ansatz space, LSM might fail the task of finding exercise boundary in high dimensions
using only a limited number of samples. Compared with [6, Figure 5] and [18, Figure 6],
Figure 2 domonstrates that G-LSM can detect accurate exercise boundary with fewer number
of paths than the DNN-based method.

6.3. Example 3: Bermudan max-call with symmetric assets. To benchmark G-LSM on
high-dimensional problems without exact solutions and to validate the complexity analysis in
section 4, we test Bermudan max-call option and report the computing time. The computing
time is calculated as follows. For a fixed time step, Tbas is the time for generating basis matrix
Φ, Tmat is the time for assembling matrix A, Tlin is the time for solving linear system, and Tup
is the time for updating values. The overall computing time is Ttot ≈ (N − 1)(Tbas + Tmat +
Tlin + Tup).

Table 6 presents the prices and computing time (in seconds) for Bermudan max-call options
with d symmetric assets. The reference 95% confidence interval (CI) is taken from [3]. The
reference CI is computed with more than 3000 training steps and a batch of 8192 paths in each
step, which in total utilizes more than 107 paths. The last five columns of the table report
the computing time for the step 6, 7, 8, 9 in Algorithm 4.1, and the total time, respectively.
All the computation for this example was performed on an Intel Core i9-10900 CPU 2.8 GHz
desktop with 64GB DDR4 memory using MATLAB R2023b. It is observed that the prices
computed by G-LSM fall into or stay very close to the reference 95% CI, confirming the high
accuracy of G-LSM. Furthermore, the time for generating basis matrix, Tbas, dominates the

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 19

(a) G-LSM (b) LSM

(c) G-LSM (d) LSM

Figure 2. Classification of the simulated continued and exercised data using M = 100, 000 samples, with
p = 10. Black star dots represent the exact exercise boundary.

overall computing time. Hence, the cost mainly arises from evaluating Hermite polynomials
on sampling paths, which is also required by LSM. In comparison with LSM , Tmat is the extra
cost to incorporate the gradient information and takes only a small fraction of the total time.
Therefore, G-LSM has nearly identical cost with LSM.

We present in Table 7 the computing time for each basis function to verify that the
complexity is almost linear in Nb as analyzed in section 4. The ratio does not vary much
with the dimension d. Since Nb = O(p(ln p)d−1) with polynomials up to order p, the total
computing cost of G-LSM exhibits a polynomial growth, which overcomes the so-called curse of
dimensionality. Figure 3 shows the growth of Nb with respect to the dimension for 1 ≤ d ≤ 200
and p = 6, indicating that Nb exhibits a nearly quadratic growth in dimensions for d ≤ 200.

Table 6 reports the time Tlin of solving linear system using the built-in MATLAB function
cgs. The main memory requirement is storing the matrix A ∈ RM×Nb , which takesM×Nb×8
bytes in double-precision floating-point format. For d = 100, the memory for storing A is
about 4GB. This limits the application of G-LSM with direct solvers in higher dimensions. To

20 J. YANG AND G. LI

Table 6
The results for Bermudan max-call options with d symmetric assets using M = 100, 000 samples. si0 = 100

for i = 1, . . . , d.

d p Nb reference 95% CI G-LSM Tbas Tmat Tlin Tup Ttot

2 10 29 [13.880, 13.910] 13.8970 0.1678 0.0128 0.0024 0.0039 1.5725
3 10 56 [18.673, 18.699] 18.6715 0.2890 0.0265 0.0048 0.0060 2.6347
5 10 141 [26.138, 26.174] 26.0553 0.5718 0.0758 0.0149 0.0132 5.4662
10 10 581 [38.300, 38.367] 38.1738 1.9932 0.3164 0.1397 0.0497 19.9308
20 10 2861 [51.549, 51.803] 51.6508 11.3278 1.7153 3.2000 0.2434 131.9362
30 5 1456 [59.476, 59.872] 59.5475 7.8154 0.7750 0.7044 0.1247 75.3066
50 5 3926 [69.560, 69.945] 69.7216 29.3088 2.0516 5.6871 0.3281 299.4528
100 4 5351 [83.357, 83.862] 83.6777 71.7678 2.7185 10.8018 0.4306 684.9927

Table 7
Ratio of the computing time and number Nb of basis functions.

d Tbas/Nb Tmat/Nb Tlin/Nb Tup/Nb Ttot/Nb

2 0.0058 0.0004 0.0001 0.0001 0.0542
3 0.0052 0.0005 0.0001 0.0001 0.0470
5 0.0041 0.0005 0.0001 0.0001 0.0388
10 0.0034 0.0005 0.0002 0.0001 0.0343
20 0.0040 0.0006 0.0011 0.0001 0.0461
30 0.0054 0.0005 0.0005 0.0001 0.0517
50 0.0075 0.0005 0.0014 0.0001 0.0763
100 0.0134 0.0005 0.0020 0.0001 0.1280

remedy the issue, one can solve the linear system on a large RAM server, or use single-precision
floating-point, or with stochastic gradient descent.

Figure 4 shows the classification of continued and exercised sample points computed by
G-LSM and LSM in the example of two-dimensional max-call. G-LSM yields a smoother
exercise boundary than LSM. Compared with the exercise boundary computed in literature
[19, Figure 3], G-LSM exhibits higher accuracy, albeit that the same ansatz space for the CVF
is employed.

6.4. Example 4: Bermudan max-call with asymmetric assets. Example 3 assumes that
all underlying assets follow the same dynamic. To further show the robustness of G-LSM,
we consider the Bermudan max-call option but each asset has different volatility. The refer-
ence 95% confidence interval (CI) is taken from [3]. The pricing results for different initial
price si0 and dimension d are listed in Table 8. The standard error (s.e.) is calculated by√

1
10(10−1)

∑10
i=1(v

(i)
0 − v̄)2 with v̄ being the average of 10 independent runs. Similar to Exam-

ple 3, the prices computed by G-LSM always fall into or stay very close to the reference 95%
CI.

6.5. Example 5: Bermudan put under Heston model. The previous experiments and
theoretical analysis are concerned with the most frequently used multi-asset Black-Scholes
model, cf. subsection 2.2. We now generalize G-LSM to price Bermudan option under the He-
ston model. The Heston model defines the dynamic of the log-price process, X1

t := ln(St/S0),

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 21

10
0

10
1

10
2

10
0

10
2

10
4

10
6

Figure 3. The number Nb of basis functions in dimension 1 ≤ d ≤ 200 with hyperbolic cross index set
versus linear and quadratic scale in d, with p = 6.

(a) G-LSM, at t1 (b) G-LSM, at t4 (c) G-LSM, at t7

(d) LSM, at t1 (e) LSM, at t4 (f) LSM, at t7

Figure 4. Classification of simulated continued and exercised data for 2-d Bermudan max-call option at
different times tk, k = 1, 4, 7. Here, we take si0 = 100 for i = 1, 2, M = 100, 000 and p = 20.

and the volatility process, vt, by two-dimensional SDEs:

dX1
t = (r − 1

2vt) dt+
√
vt

(
ρdW 1

t +
√

1− ρ2 dW 2
t

)
,

dvt = κ(θ − vt) dt+ ν
√
vt dW

1
t ,

22 J. YANG AND G. LI

Table 8
Results for Bermudan max-call options with d asymmetric assets, with M = 100, 000.

d p si0 reference 95% CI G-LSM s.e.

2 10 90 [14.299, 14.367] 14.3472 0.0230
2 10 100 [19.772, 19.829] 19.8019 0.0371
2 10 110 [27.138, 27.163] 27.1041 0.0213
3 10 90 [19.065, 19.104] 19.0266 0.0241
3 10 100 [26.648, 26.701] 26.6931 0.0411
3 10 110 [35.806, 35.835] 35.8363 0.0472
5 10 90 [27.630, 27.680] 27.6032 0.0259
5 10 100 [37.940, 38.014] 37.9309 0.0405
5 10 110 [49.445, 49.533] 49.3711 0.0473
10 10 90 [85.857, 86.087] 85.8221 0.0376
10 10 100 [104.603, 104.864] 104.7052 0.1029
10 10 110 [123.570, 123.904] 123.4777 0.0686
20 10 90 [125.819, 126.383] 126.4276 0.0980
20 10 100 [149.480, 150.053] 150.4028 0.1194
20 10 110 [173.144, 173.937] 173.8584 0.1349
30 5 90 [154.378, 155.039] 154.6913 0.1128
30 5 100 [181.155, 182.033] 181.6733 0.1385
30 5 110 [208.091, 209.086] 208.1267 0.1160
50 5 90 [195.793, 196.963] 196.6921 0.0890
50 5 100 [227.247, 228.605] 227.7831 0.1385
50 5 110 [258.661, 260.092] 259.7261 0.1413
100 4 90 [263.043, 264.425] 263.0543 0.1515
100 4 100 [301.924, 303.843] 302.0623 0.2130
100 4 110 [340.580, 342.781] 340.8581 0.2233

whereW 1
t andW 2

t are two independent Wiener processes, and the model parameters r, κ, θ, ν
and ρ represent the interest rate, the speed of mean reversion, the mean level of variance, the
variance of volatility process, and the correlation coefficient, respectively. Since the transition
density of log-variance has better regularity [9], we take the log-variance process X2

t := ln(vt)
as the regression variable. Let Xt = [X1

t , X
2
t]

⊤ be a two-dimensional process. The discounted
continuation value at time tk is given by

ck(Xtk) = E[uk+1(Xtk+1
)|Xtk],

with uk+1 being the discounted value function. In view of the martingale representation
theorem and backward Euler approximation, we obtain

uk+1(Xtk+1
) ≈ ck(Xtk) +

(
σ(Xtk)

⊤∇ck(Xtk)
)
·∆Wk,

where σ(·) is the covariance matrix of Xt given by

σ(Xt) =

[
ρ exp(X2

t /2)
√
1− ρ2 exp(X2

t /2)
ν exp(−X2

t /2) 0

]
.

The reference prices are computed by the COS method [9], with 27 cosine basis functions
to approximate the transition density and 27 points for the quadrature rule in log-variance

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 23

dimension. The results of G-LSM are calculated using 70 basis functions (polynomials up
to order 20) with Hermite polynomials in log-price dimension and Chebyshev polynomials in
log-variance dimension. The results in Table 9 show that the computed prices by G-LSM
coincide with the reference prices up to the two places after the decimal separator for most
cases. In Figure 5, we plot the classification results of continued and exercised points using
two approaches. Given that the G-LSM method is simulation-based, it has great potential for
stochastic volatility models in higher dimensions.

Table 9
Prices of Bermudan put option under the Heston model. M = 100, 000. p = 20.

s0 8 9 10 11 12

COS 1.9958 1.1061 0.5186 0.2131 0.0818
G-LSM 1.9949 1.0972 0.5146 0.2118 0.0807

(a) COS (b) G-LSM

Figure 5. Classification of continued and exercised grid/simulated points using COS and G-LSM under the
Heston model at time t25 with initial price s0 = 8.

7. Conclusions and outlook. In this work, we have proposed a novel gradient-enhanced
least squares Monte Carlo (G-LSM) method that employs sparse Hermite polynomials as the
ansatz space to price and hedge American options. The method enjoys low complexity for the
gradient evaluation, ease of implementation and high accuracy for high-dimensional problems.
We analyzed rigorously the convergence of G-LSM based on the BSDE technique, stochastic
and Malliavin calculus. Extensive benchmark tests clearly show that it outperforms least
squares Monte Carlo (LSM) in high dimensions with almost the same cost and it can also
achieve competitive accuracy relative to the deep neural networks-based methods.

There are several avenues for further research. The superiority of G-LSM over LSM in
high dimensions indicates that matching option values at tk+1 might be a better choice than
at tk for approximating the continuation value function. There are other variants of LSM
with different ansatz spaces, and it is natural to ask whether incorporating the gradient
information will also result in improved performance for these variants. Moreover, to solve

24 J. YANG AND G. LI

higher dimensional problems, e.g., d = 1000, the hierarchical tensor train technique can be
applied, which has been combined with LSM in [2], and it is natural to combine the technique
with G-LSM. Numerical results also show the potential of G-LSM for stochastic volatility
models. It would be interesting to investigate G-LSM for more challenging financial models,
e.g., rough volatility models.

Acknowledgments. The authors acknowledge the support of research computing facilities
offered by Information Technology Services, the University of Hong Kong.

REFERENCES

[1] B. Adcock, S. Brugiapaglia, and C. G. Webster, Sparse Polynomial Approximation of High-
Dimensional Functions, SIAM, Philadelphia, PA, 2022.

[2] C. Bayer, M. Eigel, L. Sallandt, and P. Trunschke, Pricing high-dimensional Bermudan options
with hierarchical tensor formats, SIAM Journal on Financial Mathematics, 14 (2023), pp. 383–406.

[3] S. Becker, P. Cheridito, and A. Jentzen, Deep optimal stopping, The Journal of Machine Learning
Research, 20 (2019), pp. 2712–2736.

[4] S. Becker, P. Cheridito, and A. Jentzen, Pricing and hedging American-style options with deep
learning, Journal of Risk and Financial Management, 13 (2020), p. 158.

[5] B. Bouchard and X. Warin, Monte-Carlo valuation of American options: facts and new algorithms to
improve existing methods, in Numerical Methods in Finance: Bordeaux, June 2010, Springer, Berlin,
2012, pp. 215–255.

[6] Y. Chen and J. W. Wan, Deep neural network framework based on backward stochastic differential
equations for pricing and hedging American options in high dimensions, Quantitative Finance, 21
(2021), pp. 45–67.

[7] W. E, J. Han, and A. Jentzen, Deep learning-based numerical methods for high-dimensional para-
bolic partial differential equations and backward stochastic differential equations, Communications in
Mathematics and Statistics, 5 (2017), pp. 349–380.

[8] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng, and M.-C. Quenez, Reflected solutions of
backward SDE’s, and related obstacle problems for PDE’s, The Annals of Probability, 25 (1997),
pp. 702–737.

[9] F. Fang and C. W. Oosterlee, A Fourier-based valuation method for Bermudan and barrier options
under Heston’s model, SIAM Journal on Financial Mathematics, 2 (2011), pp. 439–463.

[10] C. Gao, S. Gao, R. Hu, and Z. Zhu, Convergence of the backward deep bsde method with applications
to optimal stopping problems, SIAM Journal on Financial Mathematics, 14 (2023), pp. 1290–1303.

[11] E. Gobet and C. Labart, Error expansion for the discretization of backward stochastic differential
equations, Stochastic Processes and their Applications, 117 (2007), pp. 803–829.

[12] C. Huré, H. Pham, and X. Warin, Deep backward schemes for high-dimensional nonlinear PDEs,
Mathematics of Computation, 89 (2020), pp. 1547–1579.

[13] P. Kovalov, V. Linetsky, and M. Marcozzi, Pricing multi-asset American options: A finite element
method-of-lines with smooth penalty, Journal of Scientific Computing, 33 (2007), pp. 209–237.

[14] B. Lapeyre and J. Lelong, Neural network regression for Bermudan option pricing, Monte Carlo
Methods and Applications, 27 (2021), pp. 227–247.

[15] F. Longstaff and E. Schwartz, Valuing American options by simulation: a simple least-squares ap-
proach, The Review of Financial Studies, 14 (2001), pp. 113–147.

[16] M. Ludkovski, Kriging metamodels and experimental design for Bermudan option pricing, Journal of
Computational Finance, 22 (2018), pp. 37–77.

[17] X. Luo, Error analysis of the Wiener–Askey polynomial chaos with hyperbolic cross approximation and
its application to differential equations with random input, Journal of Computational and Applied
Mathematics, 335 (2018), pp. 242–269.

[18] A. S. Na and J. W. L. Wan, Efficient pricing and hedging of high-dimensional American options using
deep recurrent networks, Quantitative Finance, 23 (2023), pp. 631–651.

GRADIENT-ENHANCED LSM FOR AMERICAN OPTIONS 25

[19] A. M. Reppen, H. M. Soner, and V. Tissot-Daguette, Deep stochastic optimization in finance,
Digital Finance, 5 (2023), pp. 91–111.

[20] R. Seydel and R. Seydel, Tools for computational finance, vol. 3, Springer, 2006.
[21] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential

equations, Journal of Computational Physics, 375 (2018), pp. 1339–1364.
[22] J. Tsitsiklis and B. Van Roy, Regression methods for pricing complex American-style options, IEEE

Transactions on Neural Networks, 12 (2001), pp. 694–703.
[23] H. Wang, H. Chen, A. Sudjianto, R. Liu, and Q. Shen, Deep learning-based BSDE solver for

LIBOR market model with application to Bermudan swaption pricing and hedging, arXiv preprint
arXiv:1807.06622, (2018).

[24] Y. Wang and R. Caflisch, Pricing and hedging American-style options: a simple simulation-based
approach, The Journal of Computational Finance, 13 (2009), pp. 95–125.

[25] J. Yang and G. Li, On sparse grid interpolation for American option pricing with multiple underlying
assets, arXiv preprint arXiv:2309.08287, (2023).

[26] J. Zhang, Backward stochastic differential equations, Springer, 2017.

	Introduction
	Bermudan option pricing and hedging
	Option pricing and Greeks
	Multi-asset model and transformation

	Sparse Hermite polynomial expansion and gradient
	Algorithm and complexity
	Gradient-enhanced Least Squares (G-LS)
	Gradient-enhanced Least Squares Monte Carlo (G-LSM)
	Computing deltas

	Convergence analysis
	One-step error estimation
	Global error estimation

	Numerical examples
	Example 1: Bermudan geometric basket put
	Example 2: American geometric basket call
	Example 3: Bermudan max-call with symmetric assets
	Example 4: Bermudan max-call with asymmetric assets
	Example 5: Bermudan put under Heston model

	Conclusions and outlook

