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Abstract

The study of tumor invasion and metastasis dynamics is of utmost impor-
tance for the advancement of cancer biology and treatment. Many mathematical
models have been developed to investigate the process of host tissue invasion by
tumor cells. In this paper, we develop a novel stochastic interacting particle-field
(SIPF) algorithm that accurately simulates the cancer cell invasion process within
the haptotaxis advection-diffusion (HAD) system. Our SIPF algorithm approx-
imates the cell density by empirical measures of particles and approximates the
coupled smooth fields, which are the extracellular matrix concentration (ECM)
and matrix-degrading enzymes (MDEs) by the spectral method. We derive a
one-step time recursion for both the positions of stochastic particles and the field
variables using the implicit Euler discretization, which is based on the explicit
Green’s function of an elliptic operator characterized by the Laplacian minus a
positive constant. Finally, we conduct numerical experiments to demonstrate the
superior performance of the proposed algorithm, especially in computing cancer
cell growth with thin free boundaries in three-dimensional (3D) space. Numerical
results show that the SIPF algorithm is mesh-free, self-adaptive, and low-cost.
Moreover, it is more accurate and efficient than traditional numerical techniques
such as the finite difference method (FDM) and spectral methods.
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1 Introduction

The prevalence of cancer has seen a significant global increase, making it the second
leading cause of death following cardiovascular diseases [19]. The study of tumor in-
vasion and metastasis dynamics is a crucial area of research within cancer biology and
treatment. Since the 1970s, various mathematical models have been developed to ana-
lyze the different phases of solid tumor growth, both in temporal and spatio-temporal
contexts [4]. A significant amount of empirical data on the growth dynamics of avascular
tumors has been integrated into mathematical models that utilize various growth laws,
including Gompertzian, logistic, and exponential growth [18]. Additionally, stochastic
growth models have been utilized to simulate the invasion of tumor cells, providing
insights into the functional implications of histological patterns [20].

Mathematical modeling is a powerful tool for unraveling the complexities of biolog-
ical processes, providing valuable insights that inform both experimental and clinical
strategies. The field of cancer modeling has benefited from various approaches, ranging
from mechanistic models that explore the detailed mechanisms of diseases to data-
driven models that facilitate clinical decision-making [3]. Specifically, in the area of
tumor-induced angiogenesis, researchers have developed both continuous and discrete
mathematical models to simulate the formation of capillary networks triggered by tu-
mor angiogenic factors. These models effectively integrate critical interactions between
endothelial cells and the extracellular matrix concentration (ECM) [1]. Cancer cell
invasion of tissue is a complex process that involves cell migration through the ECM,
facilitated by the secretion of degradative enzymes [17]. This invasion is modeled using
a system of partial differential equations (PDEs) that capture the dynamics involv-
ing tumor cells, the ECM, and matrix-degrading enzymes (MDEs), highlighting the
intricate biological interactions essential for tissue invasion [2].

Additionally, fractional mathematical models have been introduced to better under-
stand the complex dynamics among tumor cells, matrix degradation, and enzyme pro-
duction, employing sophisticated analytical techniques such as the q-homotopy analysis
transform method [25]. Stochastic differential equation (SDE) models have also been
formulated to capture the stochastic behaviors of cancer cell migration and invasion,
addressing the variability in diffusion processes within the context of PDE [10]. Fur-
thermore, the global behavior of solutions to models of tumor invasion, which emphasize
the critical role of ECM concentration, has undergone thorough analysis, providing a
detailed understanding of the invasion process and its interactions with various bio-
logical factors [24, 15, 11]. The integration of these models forms a comprehensive
framework of mathematical and computational approaches that significantly enhance
our understanding of cancer cell invasion and metastasis. This collective body of work
lays a solid foundation for the innovation of therapeutic strategies aimed at combating
cancer effectively.

The Lagrangian perspective has shown substantial theoretical progress in models
similar to cancer invasion, making it compelling to consider applying this framework to
numerically solve problems related to cancer invasion. A convergent particle method
was derived for fully parabolic chemotaxis equations [22]. The study [21] utilized cellular
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automaton simulations based on a reinforced self-attracting random walk for a single
particle in 1D. Building on this framework, [23] expanded the scope to derive more
general chemotaxis systems from similar reinforced random walks, and further analyzed
the qualitative behavior of these systems, providing deeper insights into the dynamics
and implications of such models in higher dimensions and more complex scenarios.
A random particle blob method has been shown to converge for the parabolic-elliptic
Keller-Segel (KS) system when the macroscopic mean-field equation allows for a global
weak solution [13, 12]. The success of this method largely depends on an in-depth
understanding of the nonlinear mean-field equation, rather than the complexities of
the multi-particle Markov process involved [16]. A deep-learning study of chemotaxis
and aggregation in 3D laminar and chaotic flows has been done in [27] with a kernel
regularization technique for particle dynamics.

In this paper, we propose a novel SIPF algorithm to compute the cancer cell invasion
process for the haptotaxis HAD system. Our method considers the coupled stochas-
tic particle and field evolutions, where the corresponding fields represent the ECM and
MDE concentration within the system. This approach enables self-adaptive simulations
that effectively handle potential singularities or free boundaries. In our SIPF algorithm,
we model the density of active particles using empirical particle representation, which
involves a summation of delta functions centered at the particle positions. Further-
more, we discretize the ECM and MDE, using the spectral method instead of FDM,
as suggested by [6]. This choice is motivated by the fact that the fields of ECM and
MDE tend to be smoother than the density. Specifically, the MDE concentration is
updated through an explicit Euler scheme applied to its Fourier coefficients, leveraging
the convolution theorem.

To validate the efficacy of our method, we conduct numerical experiments in 3D
space. It is worth mentioning that pseudo-spectral methods have been successfully em-
ployed to compute nearly singular solutions of the 3D Euler equations [8]. In addition,
the adaptive moving mesh method has been developed to investigate finite-time blowup
in the 3D axisymmetric Euler equations [14]. These approaches are high-resolution
methods for resolving nearly singular phenomena in the 3D Euler equations. How-
ever, it is important to acknowledge that implementing pseudo-spectral methods for
3D problems requires significant computational resources, and the adaptive moving
mesh method requires intricate design and advanced coding capabilities.

In contrast, the SIPF algorithm is a simple-to-program, efficient, and low-cost
method for 3D computations. We demonstrate the effectiveness of the SIPF algo-
rithm for simulating the haptotaxis HAD system that models cancer cell invasion. The
SIPF algorithm operates recursively without relying on historical data and computes
the field variable (concentration) using the Fast Fourier Transforms (FFT) method.
The concentration field variables are smoother than the particle density, allowing FFT
to work efficiently with only a few dozen Fourier modes. We accurately capture the
spreading phenomenon of the particle density using 10,000 particles. Traditional FDM
is not only time-consuming but also suffers from poor precision in 3D numerical simula-
tions. This results in an inaccurate representation of tumor invasion, as demonstrated
in Fig.2 and Fig.4. These results show that our approach outperforms FDM in terms
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of both computational runtime and accuracy, especially when the diffusion coefficient
of cancer cell density is small. Moreover, the SIPF algorithm has a notable strength in
its ability to simulate complex multi-modal cell development, such as multiple cancer
cell spreading and merging dynamics, where the system has non-radial solutions; see
Fig.5. This allows us to simulate complex behavior and gain valuable insights into the
dynamics.

The rest of the paper is organized as follows. In Section 2, we provide a concise
overview of the cancer cell invasion HAD system, including a discussion of related the-
oretical analyses. We introduce our SIPF algorithms, which streamline a theoretically
equivalent yet computationally intensive method (involving history-dependent parabolic
kernel functions) into practical recursive computations. In Section 3, we present nu-
merical results to illustrate the efficacy of the SIPF algorithm within 3D cancer cell
invasion models. Finally, we conclude with Section 4, where we summarize our results
and discuss potential avenues for future research.

2 Cancer Cell Invasion HAD System

Consider the following cancer cell invasion HAD System (see Eq.(5) in [2]), which
describes the interactions among tumor cells, ECM, and MDEs:

ρt = dn∆ρ− γ∇ · (ρ∇f),
ft = −ηmf,

mt = dm∆m− βm+ αρ.

(1)

The system (1) is defined with physical and biological parameters (dn, γ, η, dm, α, β) >
0 on a compact subset Ω of Rd (where d = 2, 3), and zero flux boundary conditions
(refer to Eq.(6)-(7) in [2], with ∂n representing the outward normal derivative):

dn∂nρ− γρ∂nf = 0, ∂nm = 0; on ∂Ω. (2)

Given that f = f0 exp
(
−η

∫ t

0
m(x; τ) dτ

)
, we have ∂nf = 0 on Ω if (∂nf0, ∂nm) =

0 on ∂Ω. Hence, the boundary conditions in (2) are replaced by the following zero
Neumann boundary conditions:

∂n(ρ,m) = 0, ∀t ≥ 0 on ∂Ω; ∂nf0 = 0 on ∂Ω. (3)

The variables ρ, m, and f in the system (1) are functions of both the spatial variable
x and time t. The first equation in (1) governs tumor cell motion, with ρ representing
the tumor cell density. Our model specifically focuses on the interactions between cells
and the ECM, examining their impact on tumor cell migration without incorporating
cell proliferation [9]. We choose dn to be a constant, representing the tumor cell random
motility coefficient, rather than a function of either the MDE or ECM concentration.

The second equation in (1) models this degradation process of the ECM, with f

representing the ECM density and δ being a positive constant. We assume that the
MDEs degrade the ECM when they come into contact with it. The tumor cells generate
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or activate the MDEs, which then diffuse throughout the surrounding tissue. These
active MDEs subsequently undergo some form of decay, either passively or actively.

The third equation in (1) describes the evolution of the MDE concentration, with m

representing the MDE concentration and the positive constant dm representing the MDE
diffusion coefficient. For the sake of simplicity, we assume a direct and proportional
relationship between the density of tumor cells and the amount of active MDEs present
in the surrounding tissue. This linear association is assumed to hold regardless of
the quantity of enzyme precursors secreted or the existence of endogenous inhibitors.
Therefore, we initially use αρ to represent the MDE production by the tumor cells and
βm to signify natural decay, respectively.

2.1 Global Well-Possedness of Nonnegative Solutions

The paper [11] presents theoretical analyses for the general reaction-advection-diffusion
model, which has also been discussed in [15] and [7]. Here, we follow the line of proof
outlined in [11]. Specifically, we set α2 = 0, g(v) ≡ 1, and χ(v) ≡ 1 to simplify the
system in [11] to the same as the system (1). We then proceed to nondimensionalize
the system (1), resulting in the following equation system:

ρt = ∆ρ−∇ · (ρ∇f),
ft = −mf,

mt = d∆m− λm+ ρ,

∂nρ− ρ∂nf = ∂nm = 0, x ∈ ∂Ω,

(4)

where d = dm
dn

and λ = β
α
.

We define the positive self-adjoint operator A as follows:

A := −a∆+ b

where the domain D(A) is given by:

D(A) := {ρ ∈ W 2,p(Ω) :
∂ρ

∂n
= 0 on ∂Ω}

Here, p ∈ (1,+∞), and a and b are both positive constants.
For 0 ≤ θ ≤ 1, the fractional powers of the operator A, denoted as Aθ, map the

space Xθ
p to Lp(Ω). The space Xθ

p is equipped with the graph norm given by:

∥u∥Xθ
p
= ∥Aθu∥Lp(Ω).

With these notations in place, we can now state the main results on the well-
posedness of the system 4 as follows:

Proposition 1 (Theorem 3.3, [11]). Let Ω ⊂ RN , where N ≥ 1, be a domain with C2

boundary and let p > N . Suppose we are given a non-negative initial value (ρ0, f0,m0) ∈
W 1,p(Ω) ×W 1,∞(Ω) × Xθ

p , where θ ∈
(

N+p
2p

, 1
)
. Then, there exists T > 0 (depending

5



only on ∥ρ0∥W 1,p(Ω), ∥f0∥W 1,∞(Ω), and ∥m0∥Xθ
p
) such that the system (4) has a unique

non-negative solution (ρ, f,m) defined on an interval [0, T ) ⊂ R and

ρ ∈ C
(
[0, T );W 1,q(Ω)

)
∩ C

(
(0, T );W 1,∞(Ω)

)
∩ C1

(
(0, T );W 1,q(Ω)

)
,

f ∈ C
(
[0, T );W 1,∞(Ω)

)
∩ C1

(
(0, T );W 1,∞(Ω)

)
,

m ∈ C
(
[0, T );Xθ

p

)
∩ C

(
(0, T );W 2,p(Ω)

)
∩ C1

(
(0, T );Xθ

p

)
.

Moreover, the solution depends continuously on the initial data.

Proposition 1 implies the local existence, uniqueness, and non-negativity of the
solution to the non-dimensionalized cancer system (4) when the initial values (ρ0, f0,m0)

are non-negative. Based on the lemmas and propositions in Section 4 of [11], we can
derive the following proposition, which shows the global existence of the solution in
Ω ⊂ R3.

Proposition 2. Let Ω ⊂ R3 be a domain with a smooth boundary. Given the non-
negative initial value (ρ0, f0,m0) ∈ L∞(Ω) × W 1,∞(Ω) × Xθ

p(Ω), where p > 3, θ ∈(
3+p
2p

, 1
)
, for all t ∈ [0, T ), there exists a constant Cp that is independent of time, such

that the solution (ρ, f,m) to the system (4) satisfies

∥ρ(·, t)∥L∞(Ω) + ∥f(·, t)∥Lp(Ω) + ∥m(·, t)∥Xθ
p (Ω) ≤ Cp.

Since the solution (ρ, f,m) is uniformly bounded in L∞(Ω) for all t ∈ [0, T ), the local
solution can be extended to a global solution.

2.2 Integral Identities

Integrating the equation for MDE concentration (the second equation in the system
(1)) over the spatial domain, we can obtain that∫

Ω

∆mdx =

∫
∂Ω

∇m · n dS = 0, due to ∇m · n = 0 on ∂Ω, (5)

d

dt

∫
Ω

mdx = −β
∫
Ω

mdx+ α

∫
Ω

ρ dx, (6)

where we have used the conservation form of the equation for ρ to deduce that
∫
Ω
ρ dx is

conserved in time. As a result, the integral
∫
Ω
mdx can be evaluated in closed analytic

form based on its initial value. Furthermore, the evolution of f can be expressed in
terms of m as follows:

f = f0 exp

(
−η

∫ t

0

m(x; τ)dτ

)
, (7)

where f0 denotes the initial value of f at t = 0.
Taking the logarithm of equation (7) and integrating it over the spatial domain, we

obtain: ∫
Ω

ln f dx =

∫
Ω

ln f0 dx− η

∫
Ω

∫ t

0

m(x; τ)dτdx. (8)
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Since the system (4) is well-posed, m(x; τ) is integrable in x and τ , and the integral of
m(x; τ) over Ω × [0, t] is finite. By applying Fubini’s theorem, we can interchange the
order of integration, which yields:∫

Ω

ln f dx =

∫
Ω

ln f0 dx− η

∫ t

0

∫
Ω

m(x; τ) dx dτ. (9)

Thus,
∫
Ω
ln f dx can also be evaluated in a closed analytical form via time integration of∫

Ω
mdx. These identities will be used to validate numerical approximations in Section

3.4 through equation (44).

2.3 SIPF Algorithm for Cancer Cell Invasion HAD System

To solve the model of invasion of host tissue by tumor cells, we utilize the SIPF algo-
rithm, which was first developed in [28] for solving the parabolic-parabolic KS systems.
We partition the time interval [0, T ] into temporal grid points {tn}n=0:nT

with t0 = 0

and tnT
= T , and approximate the density ρ using particles as follows:

ρt ≈
M0

P

P∑
j=1

δ(x−XP
t ), P ≫ 1, (10)

where M0 is the conserved total mass (the integral of ρ), and P is the number of
particles.

We restrict the domain Ω to [0, Lπ]d due to our utilization of the Fourier trans-
form. For the MDE concentration m, we use the spectral method to approximate it.
Specifically, we approximate m(x, t) by a Fourier series:∑

j,m,l∈H

αt;j,m,l exp(i2πjx1/L) exp(i2πmx1/L) exp(i2πlx1/L) (11)

where H denotes the index set

{(j,m, l) ∈ N3 : |j|, |m|, |l| ≤ H

2
}, (12)

and i =
√
−1.

At time t0 = 0, we generate P empirical samples {Xp
0}Pp=1 according to the initial

condition of ρ0, and set up α0;j,m,l using the Fourier series of m0.
For the sake of simplicity in presenting our algorithm, we use the notations

ρn =
M0

P

P∑
p=1

δ(x−Xp
n) (13)

mn =
∑

j,m,l∈H

αn;j,m,l exp(i2πjx1/L) exp(i2πmx2/L) exp(i2πlx3/L) (14)

fn =
∑

j,m,l∈H

βn;j,m,l exp(i2πjx1/L) exp(i2πmx2/L) exp(i2πlx3/L) (15)
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to represent the tumor cell density ρ, MDE concentration m, and ECM density f at
time tn, respectively.

Given that ρn, fn−1, and mn−1 are known, inspired by the operator splitting tech-
nique, our algorithm for time stepping system (1) from tn to tn+1 consists of three
sub-steps: updating the MDE concentration m, updating the ECM density f , and
updating the tumor cell density ρ.

Updating MDE concentration m. Let δt = tn+1− tn > 0 be the time step. We discretize
the m equation of (1) in time by an implicit Euler scheme:

mn −mn−1

δt
= dm ·∆mn − βmn + αρn. (16)

From (16), we obtain an explicit formula for mn as follows:

(∆− β

dm
− 1

dm · δt
) ·mn = −( 1

dm · δt
·mn−1 +

α

dm
· ρn). (17)

It follows that:

mn = m(x, tn) = −Kδt ∗ (
mn−1

dm · δt
+

α

dm
·ρn) = −Kδt ∗

(m(x, tn−1)

dm · δt
+

α

dm
·ρ(x, tn)

)
, (18)

where ∗ denotes the spatial convolution operator, and Kδt represents the Green’s func-
tion of the operator (∆− 1

dm·δt).
Using the expression for mn in (18), we can compute the gradient of m at time tn:

∇xmn = ∇xm(x, tn) = −∇xKδt ∗ (
mn−1

dm · δt
+

α

dm
· ρn)

= −∇xKδt ∗ (
m(x, tn−1)

dm · δt
+

α

dm
· ρ(x, tn)). (19)

In R3, the Green’s function Kδt is defined as:

Kδt = Kδt(x) = −
e−|ζ|x

4π|x|
, (20)

where the constant ζ satisfies ζ2 = β
dm

+ 1
dm·δt . We can easily find that the Green’s

function given in (20) has a closed-form Fourier transform,

FKδt(ω) = −
1

|ω|2 + ζ2
. (21)

In Eq.(18), the term −Kδt ∗mn−1 can be computed using (21). This is equivalent
to modifying the Fourier coefficients αn;j,m,l as follows:

αn;j,m,l

4π2j2/L2 + 4π2m2/L2 + 4π2l2/L2 + ζ2
.

To compute the second term Kδt ∗ ρ in (18), we first approximate Kδt using a cosine
series expansion. Then, using the particle representation of ρ given in (10), we obtain:

(Kδt ∗ ρ)j,m,l ≈
M0

P

P∑
p=1

exp
(
−2πjXp

n,1/L− 2πmXp
n,2/L− 2πlXp

n,3/L
)
(−1)j+m+l

(4π2j2/L2 + 4π2m2/L2 + 4π2l2/L2 + ζ2)
.

8



Finally, we summarize the one-step update of Fourier coefficients of the MDE con-
centration m in Algorithm 1.

Algorithm 1 One step update of MDE concentration in SIPF
Require: Distribution ρn represented by empirical samples Xn, initial MDE concen-

tration mn−1 represented by Fourier coefficients αn−1

1: for all (j,m, l) ∈ H do
2: αn;j,m,l ← αn−1;j,m,l

dm·δt(4π2j2/L2+4π2m2/L2+4π2l2/L2+ζ2)

3: Fj,m,l ← 0

4: for p = 1 to P do
5: Fj,m,l ← Fj,m,l + exp

(
−2πjXp

n;1/L− 2πmXp
n;2/L− 2πlXp

n;3/L
)

6: end for
7: Fj,m,l ← Fj,m,l

(−1)j+m+l

4π2j2/L2+4π2m2/L2+4π2l2/L2+β2 ∗ M
P

8: end for
9: αn ← αn − α

dm
· F

Ensure: Update MDE concentration field from input mn−1 to mn via αn.

Updating the ECM density f . f(x, t) has a series representation as follows:∑
j,m,l∈H

βt;j,m,l exp(i2πjx1/L) exp(i2πmx2/L) exp(i2πlx3/L). (22)

We discretize the f equation of (1) in time by an explicit Euler scheme:

f(x, tn+1) = f(x, tn)− η ·m(x, tn)f(x, tn)δt. (23)

For f(x, tn+1), according to the convolution theorem, it is equivalent to modify Fourier
coefficients βn;j,m,l to

βn;j,m,l − η
∑

j′,m′,l′∈H

αn;j′,m′,l′βn;j−j′,m−m′,l−l′ δt.

It follows that:

∇xf(x, tn+1) = ∇xf(x, tn)− ηf(x, tn)δt∇xm(x, tn)− ηm(x, tn)δt∇xf(x, tn). (24)

Finally, we summarize the one-step update of Fourier coefficients of ECM density f in
Algorithm 2.
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Algorithm 2 One step update of ECM density in SIPF
Require: Initial MDE concentration mn−1 represented by Fourier coefficients αn−1,

initial ECM density fn−1 represented by Fourier coefficients βn−1

1: for all (j,m, l) ∈ H do
2: Fj,m,l ← 0

3: for all (j′,m′, l′) ∈ H do
4: Fj,m,l ← Fj,m,l − ηαn−1;j′,m′,l′βn−1;j−j′,m−m′,l−l′δt

5: end for
6: βn;j,m,l ← βn−1;j,m,l − Fj,m,l

7: end for
Ensure: Update ECM density from input fn−1 to fn via βn.

Updating density of active particles ρ. After updating the ECM density f , we can
update the density ρ. The empirical particle system converging to density ρ reads:

dXp = γ∇xf(X
p
t , t) dt+

√
2dn dWp, p = 1, . . . , P, (25)

where
√
2dn is the diffusion coefficient and Wp’s are independent standard Brownian

motions in Rd.
In the one-step update of density ρn represented by particles {Xp

n}p=1:P , we apply
the Euler-Maruyama scheme to solve the SDE (25):

Xp
n+1 = Xp

n + γ∇xf(X
p
n, tn) · δt+

√
2dnδtN

p
n (26)

where Np
n
′s are i.i.d. standard normal distributions with respect to the Brownian paths

in the SDE formulation (25).
For n > 1, substituting the gradient of the ECM density given by (24) in (26) gives:

Xp
n+1 = Xp

n + γ
(
∇xf(x, tn−1)− η∇xf(x, tn−1) ·m(x, tn−1)δt

− η∇xm(x, tn−1) · f(x, tn−1)δt
)∣∣∣

x=Xp
n

δt+
√

2dnδtN
p
n.

(27)

In such particle formulation, the computation of spacial convolution is slightly dif-
ferent from the one in the update of m, which is given by (18). Specifically, the spatial
convolution is computed as follows:

∇xm(x, tn−1) = −∇xKδt ∗
(m(x, tn−2)

dm · δt
+

α

dm
· ρ(x, tn−1)

)
. (28)

In evaluating the convolution ∇xKδt ∗mn−2(X
p
n), we adopt a numerical quadrature

scheme to avoid the singularities inherent in ∇xKδt. Specifically, we compute the inte-
gral using quadrature points that are deliberately chosen to avoid the origin, where the
singularity may happen. To this end, we denote the standard quadrature points in the
domain Ω as

xj,m,l =

(
jL

H
,
mL

H
,
lL

H

)
,

where j,m, l are integers ranging from −H
2

to H
2
− 1.
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We compute ∇xKδt at positions {Xp
n+X

p

n−xj,m,l}j,m,l, where X
p

n is a small spatial
shift defined by X

p

n = H
2L

+
⌊

Xp
n

H/L

⌋
H
L
−Xp

n, and m is evaluated at {xj,m,l−X
p

n}j,m,l. We
obtain the latter by performing an inverse Fourier transform of the shifted coefficients,
where αj,m,l is modified as follows:

αj,m,l exp
(
−i2πjXp

n;1/L− i2πmX
p

n;2/L− i2πlX
p

n;3/L
)

with X
p

n;i denoting the i-th component of Xp

n.
Thanks to the particle representation of ρ(Xp

n, tn−1) in (10), the term ∇xKδt ∗
ρ(Xp

n, tn−1) is straightforward to compute:

∇xKδt ∗ ρn−1(X
p
n) =

∫
Kδt(X

p
n − y)ρ(y) dy ≈

P∑
q=1

M

P
Kδt(X

p
n −Xq

n−1). (29)

We approximate the integral using a sum over P particles, where each particle has mass
M/P .

Finally, we summarize the one-step update of the Fourier coefficients of the tumor
density ρ in Algorithm 3. The whole SIPF method for simulating the cancer cell invasion
process within the HAD system is described in Algorithm 4.
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Algorithm 3 One step update of tumor cell density in SIPF
1: Data: Distribution ρn represented by empirical samples Xn, input MDE concentra-

tion mn−1 represented by Fourier coefficients αn−1, ECM density fn−1 represented
by Fourier coefficients βn−1, ρn−1 represented by empirical samples Xn−1, MDE
concentration mn−2 represented by Fourier coefficients αn−2

2: for p = 1 to P do
3: Xp

n+1 ← Xp
n +
√
2dnδtN ▷ where N is a standard normal distribution

4: X̄p
n ← H

2L
+
⌊

Xp
n

H/L

⌋
H
L
−Xp

n

5: ∇xf(X
p
n, tn−1)← 0; f(Xp

n, tn−1)← 0; m(Xp
n, tn−1)← 0

6: for all (j,m, l) ∈ H do
7: Fj,m,l ← ∇xKϵ,δt(X

p
n + X̄p

n − xj,m,l) ▷ xj,m,l = (jL/H,mL/H, lL/H)

8: Gj,m,l ← αn−2;j,m,l exp
(
−2πjX̄p

n;1/L− 2πmX̄p
n;2/L− 2πlX̄p

n;3/L
)

9: ∇xf(X
p
n, tn−1)← ∇xf(X

p
n, tn−1)+

i2π
L
βn−1;j,m,le

i2πjXp
n;1/Lei2πmXp

n;2/Lei2πlX
p
n;3/L·

(j,m, l)

10: f(Xp
n, tn−1)← f(Xp

n, tn−1) + βn−1;j,m,le
i2πjXp

n;1/Lei2πmXp
n;2/Lei2πlX

p
n;3/L

11: m(Xp
n, tn−1)← m(Xp

n, tn−1) + αn−1;j,m,le
i2πjXp

n;1/Lei2πmXp
n;2/Lei2πlX

p
n;3/L

12: end for
13: Ĝ← iFFT(G)

14: for q = 1 to P do
15: ∇xm(Xp

n, tn−1)← −⟨F, Ĝ⟩ L
3

H3/(dm · δt)− αM
dmP
Kδt(X

p
n −Xq

n−1) ▷ where ⟨·, ·⟩
denote an inner product corresponding to L2(Ω) quadrature

16: end for
17: ∇xf(X

p
n, tn)← ∇xf(X

p
n, tn−1)− η∇xf(x, tn−1) ·m(x, tn−1)δt− η∇xm(x, tn−1) ·

f(x, tn−1)δt

18: Xp
n+1 ← Xp

n+1 + γ · ∇xf(X
p
n, tn) · δt

19: end for
20: Result: Output ρn+1 represented by updated Xn+1.

Algorithm 4 Stochastic Interacting Particle-Field (SIPF) Method
1: Data: Initial distribution ρ0, initial MDE concentration m0, initial ECM density

f0
2: Generate P i.i.d samples following distribution ρ0, X1, X2, . . . , XP .
3: for p← 1 to P do
4: Compute Xp

1 by (26), with f0
5: end for
6: Compute f1 by Algorithm 2 with f0 and m0.
7: Compute m1 by Algorithm 1 with m0 and ρ1 =

∑P
p=1

M
P
δXp

1
.

8: for step n← 2 to N = T/δt do
9: Compute Xn by Algorithm 3 with ρn−1, mn−1, ρn−2, mn−2 and fn−1

10: Compute fn by Algorithm 2 with fn−1 and mn−1.
11: Compute mn by Algorithm 1 with mn−1 and ρn =

∑P
p=1

M
P
δXp

n
.

12: end for
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3 Numerical Results

To demonstrate the spatio-temporal dynamics of the HAD model for cancer cell in-
vasion, we begin by reproducing a 2D numerical experiment of cancer cell spreading
originally presented in [2]. This experiment was derived from the FDM approximation
of the system (1). The four snapshots shown in Fig. 1 illustrate the temporal progres-
sion of the tumor cell density distribution, with the first sub-figure representing the
initial conditions. Specifically, the initial data is given by:

ρ(x, y, 0) = e−r2/ϵ, r2 = x2 + y2, r ∈ [0, 0.1], (30)
f(x, y, 0) = 1− 0.5ρ(x, y, 0), (31)
m(x, y, 0) = 0.5 ρ(x, y, 0), (32)

where we use the same parameters as in [2] for the system (1):

dn = dm = 0.001, γ = 0.005, η = 10, α = 0.1, β = 0, ϵ = 0.0025. (33)

The tumor cell equation (1) does not include terms for cell birth and death, and the
zero flux boundary conditions ensure that the total number of cells remains constant.
This conservation property allows us to verify the accuracy of the FDM. To measure
the deviation from the expected conservation, we define the error at time t = T as
follows:

Errort=T =

∑
i(ρi,t=T )−

∑
i(ρi,t=0)∑

i(ρi,t=0)
, (34)

where ρi refers to the density of the cell within the i-th grid of FDM. It has demonstrated
an accuracy within 0.01%, indicating high reliability in the numerical simulation. We
observe that the main body of the tumor invades slowly. At the forefront, a high-density
cell zone emerges, which subsequently detaches to form an independent circular cluster
of cells that penetrates deeper into the ECM.

All the experiments presented in this work were carried out on the HPC2021 system
at the University of Hong Kong, which is equipped with 16-core Intel Xeon 6226R
processors and an NVIDIA Tesla V100 32GB SXM2 GPU.

3.1 Comparing radial/FDM/SIPF methods in 3D

In this subsection, we aim to generalize the model to a 3D spatial domain, which allows
for a more detailed exploration of the spatio-temporal evolution of the system. To
achieve this, we set the initial conditions as follows:

ρ(x, y, z, 0) = e−r2/ϵ, r2 = x2 + y2 + z2, r ∈ [0, 0.1],

f(x, y, z, 0) = 1− 0.5 ρ(x, y, z, 0),

m(x, y, z, 0) = 0.5 ρ(x, y, z, 0).

(35)

Unless otherwise stated, the parameter values used in the subsequent simulations
were the same as those employed in the previous 2D experiments, as given by (33). In
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(a) t=0 (b) t=1

(c) t=2 (d) t=4

Figure 1: A numerical simulation of the system (1), with constant tumor cell diffusion,
reveals the spatio-temporal dynamics of the tumor invasion process. The figure shows
the emergence of a ring of cells that breaks away from the primary tumor mass and
invades deeper into the ECM.
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the radially symmetric case, we can denote the cancer cell invasion HAD system (1) as
ρ(x, y, z, t) = ρ(r, t), f(x, y, z, t) = f(r, t), and m(x, y, z, t) = m(r, t). This allows us
to study the system’s behavior in a simplified form and gain insights into the spatio-
temporal dynamics of the tumor invasion process.

ρt = dn

(
∂2ρ

∂r2
+

2

r

∂ρ

∂r

)
− γ

(
∂ρ

∂r

∂f

∂r
+ ρ · (∂

2f

∂r2
+

2

r

∂f

∂r
)

)
,

ft = −ηmf,

mt = dm

(
∂2m

∂r2
+

2

r

∂m

∂r

)
− βm+ αρ.

(36)

To ensure accuracy in our numerical experiments, we use a very fine mesh to com-
pute the radial solution, which serves as the reference solution. We then compare the
FDM and SIPF methods with the radial solutions in this experiment. For the FDM
simulations, we use a uniform mesh with δx = δy = δz = 1/101 and a time step
δt = 10−2. For the radial 1D simulations, we use a uniform mesh with δr = 1/301 and
a time step δt = 10−3. For the SIPF method, we discretize the MDE concentration m

using H = 24 Fourier basis in each spatial dimension and approximate the distribution
ρ with P = 10, 000 particles. We then simulate the evolution of m, f and ρ using
Algorithm 4 with a time step δt = 10−2.

Fig.2 presents 1D slices of the results from the FDM and SIPF methods, depicting
the temporal progression of tumor cell invasion into the host tissue. These results
indicate that the SIPF method performs with higher accuracy than the FDM method,
particularly at peak values.

To further demonstrate the accuracy and convergence rate of the FDM and SIPF
methods, we provide three tables (Tables 1-3) that compare the relative L2 error of
m obtained from these methods with the reference solution. The reference solution
is computed by the proposed radial case on a uniform mesh with δr = 1/801 and
δt = 10−3. To compare the SIPF method with the radial reference solution, we convert
3D spatial domain data to a 1D radial representation and compare it with the reference
radial solution. The spatial domain data, denoted as M , is derived from the frequency
domain data, which are the Fourier coefficients represented by M̃α. Specifically, M is
obtained by taking the real part of the result from the Inverse Fast Fourier Transform
(IFFT) applied to M̃α. We define n bins with edges ri for i = 0 to n. The relative L2

error between the SIPF mean and the reference radial solution is defined as:

Relative L2 Error =
√∑

i(Mi −Ri)2√∑
i(Ri)2

, (37)

where Mi represents the SIPF mean in the i-th bin, and Ri denotes the radial reference
value in the same bin.

In Table 1, the rate of convergence, denoted as Rate, is computed using the following
formula:

Rate =

∣∣∣∣ log(ϵprev/ϵcurr)

log(δxprev/δxcurr)

∣∣∣∣ , (38)
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

Figure 2: 3D numerical solutions of the system (1) with constant tumor cell diffusion
showing the cell density computed by radial, FDM, and SIPF.
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where ϵprev and ϵcurr are the relative L2 errors at the previous and current grid sizes,
respectively, while δxprev and δxcurr are the spatial step sizes at the previous and current
grid sizes, respectively.

Similarly, we can define the ratio in this way. As shown in Table 1, the FDM method
not only yields inaccurate results but also requires significant computational time. As
the grid size increases, the computational runtime of FDM escalates significantly. How-
ever, the accuracy of the numerical method does not improve proportionally with the
finer grid, failing to justify the substantial increase in runtime. Conversely, Table 2
demonstrates the variations in computational runtime and relative L2 error as the time
step δt changes for the SIPF method. Unlike FDM, SIPF is less computationally in-
tensive, and larger δt values still maintain commendable accuracy. Additionally, Table
3 shows that increasing the number of particles significantly impacts the runtime.

Fig.3 shows the relative L2 error of the MDE concentration m at the final time T = 4

for different time steps δt, particle numbers P , and Fourier modes H. By fitting the
slope of the error versus δt in logarithmic scale, we observe that e(δt) = O(δt1.0130), in-
dicating that the algorithm is approximately first-order in time. Additionally, by fitting
the slope of the error versus P in the logarithmic scale, we find that e(P ) = O(P−0.5587).
To provide a clearer picture of the convergence of the MDE concentration m versus
Fourier mode H, we plot the errors in semi-log scale in Fig.3(c), which indicates an
exponential convergence rate O(e−0.1608H). As the number of Fourier modes increases,
there is a clear improvement in accuracy, measured by the relative L2 error. Experi-
ments indicate that when we set particle number P to be 10,000, time step δt to be
0.01, and Fourier mode H to be 24, there is a good trade-off between accuracy and
computational time. The following SIPF algorithm adopts this configuration with no
specific mention.

FDM Grid Run time(s) Ratio Relative L2 Error Rate

21× 21× 21 15.54 1.1430
41× 41× 41 132.87 3.09 0.2808 2.02
61× 61× 61 465.08 3.09 0.1253 1.99
81× 81× 81 1126.01 3.07 0.0694 2.05

101× 101× 101 2238.85 3.08 0.0447 2.01

Table 1: 3D run time and relative L2 error of FDM vs. grid size (at δt = 0.01).

3.2 Regime of Small Diffusion Coefficient

In this subsection, we change the diffusion coefficient dn, while keeping all other con-
ditions and parameters unchanged. As dn decreases, the FDM becomes more compu-
tationally expensive. In Fig.4, we set dn = 0.0002. Compared with Fig.2, we can see
the simulation results in Fig.4 are not good. As the diffusion coefficient dn decreases,
the peak of tumor density becomes steeper, leading to instability in the FDM method.
This instability requires a very fine discretization to accurately resolve the peak, which
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dt(s) Run time(s) Ratio Relative L2 Error Rate

0.1 10.37 9.12E-02
0.05 18.06 0.80 4.50E-02 1.02
0.01 66.98 0.81 8.78E-03 1.02
0.005 117.42 0.81 4.36E-03 1.01
0.001 413.01 0.79 8.59E-04 1.01

Table 2: 3D run time and relative L2 error of SIPF vs. δt (at P = 10000).

Particle Numbers Run time(s) Ratio Relative L2 error Rate

5000 29.70 1.34E-02
10000 66.98 0.95 8.78E-03 0.61
20000 358.44 2.42 5.89E-03 0.58
30000 1129.15 2.83 4.77E-03 0.52
40000 1995.86 1.98 4.11E-03 0.51

Table 3: 3D run time and relative L2 error of SIPF vs. P (at δt = 0.01).

(a) vs. time step δt on log-scale (b) vs. particle number P on log-scale

(c) vs. Fourier mode H on semi-log-scale

Figure 3: 3D relative L2 errors of m in SIPF (radial solution being the reference).

18



in turn leads to a substantial increase in computational time. On the other hand, the
SIPF method remains stable and accurate even under these conditions.

(a) t=1 (b) t=2

(c) t=3 (d) t=4

Figure 4: Comparing radial solutions, FDM (red) and SIPF (green) at dn = 0.0002,
shows under-shoot (violating positivity) and inaccurate peak locations in FDM.

3.3 Two Clusters of Cancer Cells Evolution

All of the experiments conducted so far have satisfied the initial data symmetry. In this
subsection, we explore the behavior of the SIPF algorithm when dealing with non-radial
initial data. Our simulations demonstrate that the SIPF algorithm is equally effective
in asymmetric situations. Specifically, we present a 3D SIPF simulation of cancer cells
spreading dynamics from two clusters of cells with non-radial initial conditions. The
initial condition is as follows:

ρ1(x, y, z, 0) = e−r21/ϵ, r21 = (x− a)2 + (y − b)2 + (z − c)2, r ∈ [0, 0.1] (39)

ρ2(x, y, z, 0) = e−r22/ϵ, r22 = (x− d)2 + (y − e)2 + (z − f)2, r ∈ [0, 0.1] (40)
ρ(x, y, z, 0) = ρ1(x, y, z, 0) + ρ2(x, y, z, 0). (41)

Here we set a = b = c = 0.1, d = e = f = −0.1 as the parameters for the initial
condition, and present the fusion/spreading process of the two clusters in Fig.5. As
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shown in Fig.5, the two clusters of cells diffuse outward over time, intersect, and then
merge, continuing their invasion outward. Notably, in the absence of any specified
interactions between the two clusters of cells, the diffusion process remains similar to
that of a single cluster of cells.

(a) t=0 (b) t=0.3

(c) t=0.7 (d) t=1

Figure 5: Two clusters of cancer cells merge into a larger single cluster and spread
further.

3.4 Comparing FDM and SIPF based on Integral Identities

In Section 3.1, we consider the initial condition (35), which satisfies the following rela-
tion: ∫

Ω

m(X, 0) dX = 2π

∫ 0.1

0

e−
r2

ϵ r2 dr =
1

2

∫
Ω

ρ(X, 0) dX, β = 0,
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as shown in (6). We also have the following relationship, which holds for all t ≥ 0:∫
Ω

m(X, t) = 4παt

∫ 0.1

0

e−
r2

ϵ r2 dr + 2π

∫ 0.1

0

e−
r2

ϵ r2 dr. (42)

We evaluate the integral
∫
Ω
m(X, t) using the radial solution, FDM, and SIPF meth-

ods, and compare the results with the reference value in (42). By using Eq.(9), Eq.(42)
and the condition ∫

Ω

ln f0 dX = 4π

∫ 0.1

0

ln
(
1− 0.5e−r2/ϵ

)
r2 dr,

we can show that f satisfies the following relation:∫
Ω

ln f(X, t) = 4π

∫ 0.1

0

ln
(
1− 0.5e−r2/ϵ

)
r2 dr

− η

(
2παt2

∫ 0.1

0

e−
r2

ϵ r2 dr + 2πt

∫ 0.1

0

e−
r2

ϵ r2 dr

)
. (43)

To compare the accuracy of the SIPF, radial, and FDM methods in approximating
the solution m(X,T ), we define the reference value of m, denoted as mr, which is the
integral of m(X,T ) over the domain Ω as given in Eq.(42). For the SIPF method, we
compute m at time T as mSIPF = αT ;0,0,0 · L3, where α is a Fourier coefficient defined
previously (see Eq.(11)), and L is a characteristic length scale. In the radial method,
we discretize the radial coordinate r into bins with widths δr (the radial step size),
and values of m corresponding to these discrete radii. The integral of m at time T is
approximated as a sum: mradial =

∑
i(mi,t=T ) · 4πr2i · δr, where mi is the value of m

at the i-th radial position, and ri is the radius at the i-th position. For the FDM, we
compute m at time T as mFDM =

∑
j(mj,t=T ) · (δx)3, where δx is the spatial step size

used in the FDM.
To quantify the accuracy of the different methods, we define the relative L2 error of

m at time T , denoted as Errorm, as follows:

Errorm =
|mn −mr|
|mr|

, (44)

where mn represents any of the numerically computed values from the SIPF, radial, or
FDM. Similarly, we can define the relative error of ln f using a similar equation.

The relative error of m and ln f at different times is shown in Fig.6. The SIPF
method consistently demonstrates better performance compared to the FDM method.
At the final time, the relative error of both m and ln f is approximately an order of
magnitude lower for the SIPF method compared to the FDM method. Overall, the
SIPF method outperforms the FDM method in terms of accuracy.

4 Conclusion and Future Work

In this paper, we have developed the SIPF algorithm and demonstrated its efficacy and
accuracy in computing cancer cell invasion within the HAD system. The SIPF algorithm
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(a) m (b) ln f

Figure 6: Relative error comparison in computing the integrals of Eqs.(42)(43) by radial
solution (blue), FDM (red), and SIPF (green).

is recursive with no history dependence and we approximate the cell density by empirical
measures of particles and approximate the coupled field variables (MDEs and ECM)
by the spectral method. Because the field variables (concentration) are smoother than
the cell density, the spectral method works well with only a few dozen Fourier modes.
The spreading behavior of the cell density is resolved by 10, 000 particles. Our results
show that the FDM is both time-consuming and inaccurate in 3D computations of
tumor invasion. Moreover, the SIPF algorithm can simulate complex multi-modal cell
development, such as multiple cancer cell spreading and merging dynamics. Therefore,
the SIPF method offers a promising alternative for accurately modeling and simulating
complex biological systems.

In future works, we will conduct a deep particle study [26, 27] based on the data
generated from the SIPF simulations presented in this paper. We aim to explore more
complex models of tumor invasion to better capture the growth dynamics. Specifically,
we plan to incorporate oxygen supply into the existing system to enable more precise
computations [1]. In addition, the coupled two-species cancer invasion haptotaxis model
has practical significance in real-world applications and in understanding realistic tumor
progression [5]. While we have briefly discussed a non-radial 3D case study in this paper,
there is still much to explore in this area, and we plan to further investigate this topic
in future research.
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