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A NOVEL METHOD AVOIDING INVERSE CRIME IN SOLVING
INVERSE PROBLEMS OF PARABOLIC TYPE USING MODEL
REDUCTION METHODS*

WENLONG ZHANG! AND ZHIWEN ZHANGH

Abstract. In this paper, we propose novel proper orthogonal decomposition (POD)-based
methods that effectively address the issue of inverse crime when solving parabolic inverse problems
using model reduction methods. We study inverse source and initial value problems using our new
methods. By exploiting the low-dimensional structures inherent in the solution space of parabolic
equations and constructing POD basis functions, our methods significantly reduce computational
costs while maintaining accuracy in solving parabolic inverse problems. In addition, we provide
the convergence analysis of the proposed methods for solving these two types of parabolic inverse
problems. Finally, we conduct numerical experiments to demonstrate the accuracy and efficiency of
the proposed method. The results show that our method efficiently solves parabolic inverse problems
and overcomes the inverse crime issues associated with traditional model reduction methods for such
problems.

Key words. Parabolic inverse problem; Regularization method; Model reduction method;
Inverse crime; Convergence analysis.
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1. Introduction. Inverse problems associated with parabolic equations have
garnered significant attention in mathematics and engineering research fields [25, 19].
These problems can be broadly categorized into several types: recovering source terms
in the PDEs, determining the system’s initial state, identifying physical parameters,
and determining the boundary conditions. In this paper, we focus on the first two
types of inverse problems and leave the other types as future work. We will refer
to the first two types of inverse problems as inverse source problems and backward
problems, respectively.

Inverse source problems, which involve reconstructing the source from final time
observation, have attracted much attention from researchers in recent decades [23]
and references therein. These problems have been extensively studied in the litera-
ture and applied to various physical and engineering source identification problems,
such as groundwater migration, groundwater pollution detection, pollution source
control, and environmental protection [8, 12, 16, 11, 23] and references therein. Ac-
curately recovering pollutant sources is crucial for ensuring environmental safeguards
in densely populated cities [9]. The estimation of the strength of acoustic sources
from measurements can be found in e.g. [23, 13, 31]. Given the importance of inverse
source problems in practical applications, numerous numerical methods have been
extensively explored [8, 6, 29, 15, 16] and references therein.

For inverse source problems, iteration optimization methods are typically used to
determine the true source term [6, 10, 24]. The forward parabolic equation must be
solved one or two times in each iteration. However, as the size of discrete problems
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2 W. ZHANG, AND Z. ZHANG

increases (e.g. using the finite element method (FEM) or finite difference method
(FDM)), the computational time increases rapidly, especially for time-evolution prob-
lems. As a result, the computation of the forward equation will consume the most
time throughout the entire process.

To address the computational challenges associated with solving parabolic inverse
source problems, we propose a data-driven model reduction method [35]. Our method
consists of offline and online stages. In the offline stage, we exploit the low-dimensional
structures in the solution space of parabolic equations in the forward problem, given
a class of source functions, and construct a small number of POD basis functions
to achieve significant dimension reduction. With the POD basis functions, we can
rapidly solve the forward problem in the online stage. Consequently, we developed
a fast algorithm called the POD algorithm to solve the optimization problem in the
parabolic inverse source problems. Moreover, we derive an error estimate for the POD
algorithm in parabolic inverse source problems. Numerical results demonstrate that
the POD algorithm offers significant computational savings compared to the FEM
while maintaining the same level of accuracy. However, we have to point out that
our POD algorithm has a limitation: it requires assuming that the true source term
belongs to a known function class, leading to the inverse crime [25, 22]. In this paper,
we aim to develop novel model reduction methods to solve parabolic inverse problems
and eliminate the inverse crime issue.

Backward problems are another important type of parabolic inverse problem that
has been extensively studied in physics and engineering, particularly in the field of
heat transfer. The main focus of these problems is to determine the initial condition
from transient temperature measurements at the final time 7. The main difficulty in
solving the backward problems arises from the exponential decay of forward solutions
of the parabolic equations with respect to the initial data. Therefore, backward
problems are also ill-posed in the sense of Hadamard [23, 18], as the eigenvalues of
elliptic operators decay exponentially fast, making them particularly unstable with
respect to measurement data uncertainties. This lack of stability poses a significant
challenge for numerical inversions, as even small changes in the data can lead to
substantial differences in the reconstructed source strength.

In response to these challenges, many regularization techniques have been devel-
oped for solving backward problems. For instance, in [26], Sobolev error estimates
and a prior parameter selection for semi-discrete Tikhonov regularization were de-
rived. A backward problem for the one-dimensional heat conduction equation, with
the measurements on a discrete set, was considered in 7], and the uniqueness of recov-
ering the initial value was proved using the analytic continuation method. It is worth
noting that in [30], a comparison of various inverse methods for estimating the initial
condition of the heat equation was studied, demonstrating that explicit approaches
to the backward problem yield disastrous results unless some form of regularization
is utilized.

In our recent work [36], we study the stochastic convergence of regularized solu-
tions for backward problems. We derive an error estimate for the least-squares reg-
ularized minimization problem within the framework of stochastic convergence. Our
analysis reveals that the optimal error of the Tikhonov-type least-squares optimization
problem depends on the noise level, the number of sensors, and the underlying ground
truth. Additionally, we propose a self-adaptive algorithm to identify the optimal reg-
ularization parameter for the optimization problem without requiring knowledge of
the noise level or any other prior information, which would be highly practical in ap-
plications. Numerical results demonstrate the effectiveness of our method in solving
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A NOVEL METHOD AVOIDING INVERSE CRIME 3

backward problems. By assuming the initial condition belongs to a known function
class, it is straightforward to develop a POD method to solve backward problems
using the stochastic convergence developed in [36]. However, the corresponding POD
method also suffers from the issue of inverse crime [25, 22]. Once again, this motivates
us to develop new model reduction methods to solve parabolic backward problems and
eliminate the inverse crime issue.

As we have discussed, the issue of inverse crime arises when we develop the POD
method for solving inverse problems [35], where the forward model used for generating
the data is identical to the one employed for solving the inverse problem. This scenario
can lead to overly optimistic results and underestimates the uncertainties associated
with the solution. The inverse crime poses a significant challenge in inverse problem
solving, as it fails to account for model errors and uncertainties that are inherent in
real-world applications.

Motivated by an interesting observation in our previous work on numerical simu-
lation of parabolic equations, we propose a novel POD-based model reduction method
to address the issue of inverse crime encountered in solving inverse problems associated
with parabolic equations. Specifically, we aim to develop a novel POD methodology
that can be applied to both the inverse source problems and backward problems of
the parabolic type. To start with, we consider a generic parabolic equation as follows:

us+ Lu= f(x) inQx(0,7),
(1.1) u(z,t) =0 on 002 x (0,T),
u(z,0) = g(z) in 2,

where Q@ C R? (d = 1,2,3) is a bounded domain with a C? boundary or a convex
domain satisfying the uniform cone condition, £ denotes a second-order elliptic oper-
ator given by Lu = —V - (¢(z)Vu) + ¢(z)u, f(x) is the source term, and g(z) is the
initial condition. We assume the elliptic operator £ is uniform elliptic, i.e., there exist
Gmins Gmax > 0 such that gmin < ¢(2) < gmax for all z € Q. Additionally, we assume
q(z) € CH(Q), c(x) € C(Q) and c(z) > 0.

Let u represent the solution of the parabolic equation (1.1). We define the forward
operator S : S(f,g) = u(-,T). The forward problem involves computing the solution
u(-,t) for t > 0 given the source term f(z) and initial condition g(x). The inverse
problem, on the other hand, aims to reconstruct f(z) or g(z) from the final time
measurement m = u(-, 7). We will solve two types of inverse problems as follows:

1. Inverse source problem: recover the source term f(x) using the final time
measurement m = u(-, T') and the known initial term g(x).

2. Backward problem: recover the initial term g(x) using the final time mea-
surement m = u(-,T") and the known source term f(zx).

In this paper, we develop a novel POD-based model reduction method, called the
adjoint-POD method, for solving inverse problems of parabolic types. We begin by
developing the adjoint-POD method to solve the inverse source problem and construct
basis functions for this problem. Specifically, we study the convergence of the POD
basis functions obtained by our adjoint-POD method and prove their approximation
property in Theorem 2.3. By leveraging this property, we derive the convergence
analysis of the adjoint-POD method in solving inverse parabolic source problems
in Theorem 2.4 and Theorem 2.5. We then extend our approach to the parabolic
backward problem, where we construct the POD basis functions by solving the adjoint
equation with the given final time measurement as the initial condition. We also prove
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4 W. ZHANG, AND Z. ZHANG

the approximation property of the corresponding POD basis functions in Theorem
3.2 and the convergence analysis of the adjoint-POD method in solving the parabolic
backward problem in Theorem 3.3 and Theorem 3.4. Finally, we present numerical
experiments that demonstrate the effectiveness of our adjoint-POD method in solving
parabolic inverse problems and its ability to overcome inverse crime.

The rest of the paper is organized as follows. In Section 2, we introduce the
adjoint-POD method for solving parabolic inverse source problems and provide the
error estimate for the proposed methods. Similarly, in Section 3, we propose the
adjoint-POD method for solving parabolic backward problems and provide the cor-
responding error estimate. In Section 4, we present numerical results to demonstrate
the accuracy of our methods. Finally, concluding remarks are made in Section 5.

2. Adjoint-POD method for parabolic inverse source problems. Regu-
larization methods are commonly used to solve inverse problems, where one applies
iterative methods to solve the forward problem one or more times in each iterative
step. As a result, most computational time is spent on solving the forward problem.
To address this issue, it is natural to develop model reduction methods to decrease
the computational cost of solving the forward problems.

One of the model reduction ideas in solving time-evolution problems is the POD
method [33, 4]. The POD method uses data from an experiment or an accurate nu-
merical simulation and extracts the most energetic modes in the system by using the
singular value decomposition. This approach generates low-dimensional structures
that can approximate the solutions to the time-evolution problem with high accu-
racy. The POD method has been applied successfully to solve many types of PDEs,
including linear parabolic equations [34, 27], Navier-Stokes equations [27], viscous
G-equations [17], Hamilton—Jacobi-Bellman (HJB) equations [28], and optimal con-
trol problems [2]. The interested reader is referred to [32, 3, 20] for a comprehensive
introduction to the model reduction methods.

The traditional POD method has a significant drawback: to construct the POD
basis functions, one must know the source term f(z) or the initial condition g(z).
Therefore, directly using the POD method to solve inverse problems may result in
the inverse crime issue. In our previous work [35], we mitigated this issue by assuming
that the true source term belongs to a known function class. However, this approach
does not fully address the issue of the inverse crime.

To tackle this challenge, we propose a novel method for model reduction in inverse
problems: the adjoint-POD method. Unlike the traditional POD method, our method
does not require any prior knowledge of the source or initial term. By integrating
the adjoint method with the model reduction capabilities of the POD method, we
will show that the adjoint-POD method can efficiently solve inverse problems while
avoiding the inverse crime issue.

2.1. Adjoint POD method. To demonstrate the idea of the adjoint-POD
method, we will first apply it to solve the inverse source problem. This problem
involves recovering the unknown source term f(x) of the parabolic equation, given
the final time measurement m(z) = S(f) = u(-,T). Here, u satisfies the following
equation:

ur+ Lu= f(x) inQx(0,T),
(2.1) u(z,t) =0 on 00 x (0,T),
u(z,0) =0 in Q.
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A NOVEL METHOD AVOIDING INVERSE CRIME 5

Here we assume that u(z,t) = 0 and u(z,0) = 0 for simplicity, otherwise, one
just needs to subtract the background solution from the measurement m(x). Since the
source term f(z) is unknown, we cannot use the traditional POD method to obtain
snapshots. Instead, we will obtain the snapshots from the following equation:

s+ Lu=m(xz) inQx(0,T),

(2.2) u(x,t) =0 on 90 x (0,7T),

(x,0) =0 in Q.
We denote the snapshots as g = (-, tx—1), k=1,..., M + 1 with M = £, and
G = 0 ty—nr—1), k=M +2,...,2m + 1. Here, da(-, ty) = Lol tbbicn) g6 f —
1,..., M. We then construct the new POD basis functions {¢1,...,9n,.,} using the
method described in Appendix A from the adjoint equation (2.2). Finally, we denote
the linear space spanned by the POD basis functions as Vpop = span{t1, ..., 9,4}
We can use these new POD basis functions {t1,...,%n,,,} to approximate the
forward problem and speed up the computation. We construct the fully discrete
scheme on V.4, and we denote the solution by Uy, for k = 1--- M. Specifically, we

seek numerical solutions Uy such that:

(2.3) (OUk, ) + a(Uk, %) = (f,9), V¥ € Voo

Here the bilinear form a(u,v) = (¢Vu, Vv) + (cu,v). We define the solution operator
from the source term f to the final time solution Uy as Spod, such that Spoaf = U
By using the new POD basis functions and the reduced-order model represented by
Spod, we can efficiently solve the forward problem for each time step. This significantly
reduces the computational cost compared to using the full-scale model. This approach
is particularly useful when solving inverse problems, where multiple forward problem
evaluations are required.

2.2. Convergence of the adjoint-POD method. We will first revisit an im-
portant property of the eigenvalue distribution for the classical elliptic operator L
[1, 14].

PROPOSITION 2.1. Suppose ) is a bounded domain in R? and a(x),c(z) € C°(Q),
c(x) > 0. Then, the eigenvalue problem

(2.4) Lip = p with Yy =0

has a countable set of positive eigenvalues p1 < po < ---, with corresponding eigen-
functions {¢}32, forming an orthogonal basis of L*(Q). Moreover, there exist posi-
tive constants Cv,Cy > 0 such that C1k?/ < pr < Cok2/ forallk=1,2,---.

According to the Proposition above, the eigenfunction set {¢x};2, forms an or-
thogonal basis of L?(£2). Thus, for any f € L*(2), we can write f = > 7~ fudn,
where fi’s are coefficients. Similarly, let uw = Y77, ug(t)¢r be the solution of the
problem (2.1). Substituting these expressions of f and u into the first equation of
(2.1) and noting that L¢p = prdr, we can compare the coefficients of ¢, on both
sides of the equation to obtain ux(0) = 0 and

(2.5) u, () + ppug = frr ~ in (0,7).

This manuscript is for review purposes only.
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6 W. ZHANG, AND Z. ZHANG

This equation expresses the time evolution of the coefficients ug (t) in terms of the
coefficients fj, of the source term f. We can write the solution as ux (1) = ay, fx, where

_ T — . oo
o = e T [ etrsds = M%(l — e #T). Noting that Sf = u(-,T) = > pe; uk(T)r,
we can formally write

S(i fk¢k> = i U [P
k=1 h=1

This representation of the solution operator S provides a convenient way to com-
pute the solution w(-,T) using the eigenfunctions ¢, and the coefficients ay. To
simplify the problem, we approximate the source term f(z) by truncating it to a
finite-dimensional space, i.e.

L
(2.6) Japp = ka¢k-

k=1

Using this truncation, the solution u(x,t) of the parabolic equation can be written
as:

L
_ 1 _ =T
(2.7) = Elﬂk (1 —e #5) fron.

After simple calculation, we will also derive that

1
ﬁ —e Y (1 — e ) frooy..

Mh

(2.8)
k=1

It is worth noting that the POD basis (A.4) is simply the singular value decom-
position of the matrix A = (§1,...,ar), Where §; = (@(21,tj), ..., @(zn,t;))T and
T1,...,xn are the finite element nodes in €. Specifically, if A has the singular value
decomposition A = UXV, then the first M columns of U correspond exactly to the
POD basis { }L,.

Let us denote A = (y1,...,Ynm ), A= (U1, .-y Unr), the matrix & = (¢1(Z,t1), ...
,oL(Z,ty)), F = diag(f1,..., fr), and D = dlag(i( — e Ty I%L(l — eheTy),
In addition, let J be an L x M matrix with entries J(i,j) = Ni(l —e M), ®isa
column orthogonal matrix due to the normal orthogonality of the eigenfunctions ¢y.
Using the formulations of v and @, we can represent the matrices A and A as follows:

(2.9) A=®FJ, and A= ®DFJ.

Proposition A.1 shows that the low-rank space V,oq provides the best Npod-
rank approximation of the column space of A. Our objective is to demonstrate that
Viod is also a good approximation of the column space of A, which will validate the
effectiveness of the new POD method. To begin, we need to establish the relationship
between the matrices A and A.

LeEMMA 2.2. If L < M, then span{ys,...,ynm} = span{yi,....gm}, i.e. C(A) =
C(A).

This manuscript is for review purposes only.
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A NOVEL METHOD AVOIDING INVERSE CRIME 7

Proof. We will provide a concise proof for the case when the eigenvalues y; are
distinct from each other. The proof for the case of repeated eigenvalues follows a
similar approach. To demonstrate the desired results, we need to show that there
exist matrices P and P such that

(2.10) ®DFJP =®FJ, and ®DFJ=®FJP.

We will only present a brief proof for the first equality, as the second can be
derived similarly. Since the columns of ® are independent and the diagonal matrix F’
is invertible, we can show the existence of a matrix P by proving that the following
equation holds

(2.11) JP =DJ.

First, we will prove that the matrix J; ., with entries J'(i,j) = 1 — e il is
invertible. To do this, we introduce the vector e = (1,...,1)7. It follows that we can
write J' as the difference between the outer product of e and its transpose, ee”, and
the Vandermonde matrix Vz, where V. (i, j) = e #i%. Namely, we have J' = ee’ — V7.

Next, we aim to show the invertibility of .J' by contradiction. Suppose that J’ is
singular, which implies that there exists a nonzero vector ¢ = (ci, ..., cr)T satisfying
J'c = 0. Equivalently, we can express this as V;c = ee’c.

Let us consider the function f(x) = Zle c;e™ . With this assumption, we have
that

(2.12) f(0) = f(u1) = flp2) =+ = f(pr),

which implies that the function f has L + 1 distinct zeros. Therefore, its derivative
fl(x) = Z§:1 c;jt;je* must has L distinct zeros. Since ¢ is nonzero, and all ;s are
also nonzero, this implies that the Vandermonde matrix Vy is singular. However,
this contradicts the fact that V is an invertible matrix. Consequently, J’ must be a
nonsingular matrix.

Since the invertibility of J’, the first L columns of J are independent and thus
form a basis for RY. Similarly, the matrix DJ also has independent columns that form
a basis for RY. Therefore, there must exist a matrix P such that JP = DJ. This
result establishes that the spaces spanned by the sets {y1,...,ya } and {g1, ..., Ja} are
equivalent, i.e., span{yi,...,yn} = span{gi,...,gap - This completes the proof. 0O

Proposition A.1 suggests that the new POD basis provides an effective approxi-
mation of the set {g1, ..., yar}. Given the previous results, we can now show that the
new POD basis also serves as a good approximation for the original set {y1,...,yar}-

THEOREM 2.3. Using the same notation as in Proposition A.1, we can derive
an approximation error bound if a sufficient number of snapshots are available, i.e.
L < M. In this case, the following error bound holds:

M 2
Zi=1 ||’yz - PpodyiHL2(Q)
M 2
2im1 ||yiHL2(Q)

where Ppoq is the projection operator onto the adjoint-POD space span{iq, . .. ,wde}
M e
and p = % is a parameter that depends on the decay speed of the eigenvalues
1 k

(2.13) < CLY 4,

k=
of the correlation matriz.
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8 W. ZHANG, AND Z. ZHANG

Proof. In the following proof, we assume L = M for simplicity. For the case
L < M, the proof is similar. Using the same notation of Lemma 2.2, ® and J are
both invertible square matrices. Then there exists a unique matrix P such that,

(2.14) ®DFJP = ®FJ,

where P = J~'D~1J.
Hence, we have y; = Zle Pi;9;. Using the Cauchy-Schwarz inequality, we can
show that for any 1 < j < L,

L L
(2.15) Iy = Pooay;[I> <D PE> " i — Pooalill*
i=1 =1

Moreover, we can get that

L L L L
(2.16) > v — PooatslI> < > P i — Pooadiill® = IPI7 > lldi — Pooadill*.
Jj=1 i,j=1 i=1 i=1

The rest is to estimate the Frobenius norm of P. Since P = J 'D~1J, we can

define |P||g = ||[D~Y||2. It is easy to verify that || - ||4 is a matrix norm. Then, we
have
(2.17) 1Pl < ClIPlla = CID™ 2 < Cpar.

On the other hand, since ® is an orthogonal matrix, we have,

L
(2.18) > llgil? = |@DFJ|5
j=1
(2.19) = [|[DFJ|% < ||D|%||FJ||%
L
(2.20) S CIFIE < C Y llysll*

j=1
Aligning with Proposition A.1, we can combine the previous inequalities to obtain

M 2 M |~ -2
Zi:l llyi — PpodyiHLz(Q) Zi=1 |7 — Ppodyi”m(g)

(2.21) — < C||Pll% M
2im1 HyiHL?(Q) >im1 ||yi||L2(Q)
(2.22) < uip.
The conclusion follows from the estimation u; < Ci%/¢. O

2.3. Convergence of inverse parabolic source problem. To solve this in-
verse source problem, we use the well-established Tikhonov regularization method,
which is expressed as

(2.23) ?g(l IS(f) = mllZ20) + Al FlIZ20)-

However, in the conventional application of the POD method, the source term f
must be determined initially to generate snapshots and obtain the POD basis func-
tions. In the context of inverse problems, the only available information is the mea-
surement m(x). This predicament, referred to as the inverse crime, makes the conven-
tional POD method impossible to implement in practice. Our new method overcomes
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A NOVEL METHOD AVOIDING INVERSE CRIME 9

this vital drawback by using the POD forward solver as the forward solver in the
Tikhonov regularization method.

In the general discrete approximation of problem (2.23), we seek to solve the
following least-squares regularized optimization problem:

(2.24) féﬂ‘}]ﬁd 1Spod (f) = M 720y + Al fII72(0)-
Consider the functional Jpoa[f] = |Spoaf — mHQLQ(Q) + )\Hf||2Lz(Q)- By computing
the Fréchet derivative of Jpoa[f], we can derive the subsequent iterative scheme:

(2.25) Jr41 = fr — BdTpodlfr], Vk €N,

where 3 is the step size, dJpoalf] = Soa(Spodf — m) + Af denotes the Fréchet
derivative, and fy is an initial guess [35].

The above theory is based on the noise-free case, where the final time measurement
m = u(-,T) is assumed to be precisely known. However, in practical applications,
measurement data often contains uncertainties. We assume that the measurement
data is blurred by noise and takes the discrete form

(2.26) my =u(d;, T)+e;, i=1,---,n,

where d;s represent the positions of detectors, and {e;}? ; are independent and
identically distributed (i.i.d.) random variables on an appropriate probability space
(%X, F,P).

Based on [6] and the analysis therein, we know that ||ul|c(j0,77;12()) < Cllfllz2(0)-
According to the embedding theorem of Sobolev spaces, we know that H2(Q) is
continuously embedded into C(Q) so that u(-,T) is well defined point-wisely for all
d; € Q. Without loss of generality, we assume that the scattered locations {d;}
are uniformly distributed in Q. That is, there exists a constant B > 0 such that
dmax/dmin < B, where dpax and dp,in are defined by
(2.27) Amax = 21618 1&1% |z —d;| and dpin = 1§1f1;1§§n |d; —d;l.

We will first use the technique developed in [5] to recover the final time mea-
surement u(-,T") from the noisy data m[, for i = 1,...,n. We approximate u(-,T') by
solving the following minimization problem:

n

1
(2.28) m= argergl(in - E (u(w;) —mi)? + OZ|U‘%12(Q).
v i=1

The choice of the optimal parameter « typically depends on both the noise level
and the unknown function u*. In the case of measured data with uncertainty, an a
posteriori method has been proposed and discussed in previous literature [5, 6, 36].
We list the algorithm below.

Assuming the pointwise noise e; has a bounded variance o, which is referred to as
the noise level, [5] analyzed this problem and provided optimal convergence results.
Moreover, they proposed an a posteriori algorithm to obtain the best approximation
without knowing the true solution m and noise level o. Here, we list their main
results. If one chooses the optimal regularization parameter

(2.29) ol/2Td/8 = O(Un_l/zllu("T)H;I}L’(Q))7
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10 W. ZHANG, AND Z. ZHANG

Algorithm 2.1 A self-consistent algorithm for finding the optimal «

Given an initial guess of ag; for j =0,1,---, do the following
Solve (2.28) for uj, with « replaced by the current value of o; on the mesh;
Update aj41: a;ffrd/s =n"Y2|lup, — m"||, |uh\;{12(ﬂ).

The algorithm stops if |o; — 1| < 10710,

then the solution m of (2.28) achieves the optimal convergence
(2.30) E[[lu(-,T) = mllr2()] < Ca?|lu(, T)l|m2(0)-
If the noise {e;}?_; are independent Gaussian random variables with variance o,

we further have,

2

(2.31) P(lu( T) = mll 3oy = @V2[ul T) 120y 2) < 26767

Using this recovered function m(x), we generate the adjoint POD basis functions
in Section 2.1. It can be easily shown that, with uncertainty, the POD basis functions
are still a good low-rank approximation of the snapshots {yi,...,ya}. Combining
Theorem 2.3 and (2.30), we have that for any 1 < i < M,

2
(2.32) 195 — Pooatil 220y < COMLY 4 + )| 32 0y.

Since we replace the source term by a finite truncation (2.6) and if f € H(Q),
we have

IVfllzz _ A1Vl
(233) Hf_fappHL2 <C \//E <C Li/d -

If f € L*(Q), then fapp — f as L — +oo. We assume

(2.34) If = fappllie < e,

where € depends on L. With these results, using a similar technique to prove Theorem
4.1 in [35], we can obtain the following convergence results.

THEOREM 2.4. Let {e;}7, be independent random variables satisfying Ele;] = 0
and Ble?]) < o2 fori=1,--- ,n. Set a'/?+/8 = O(Jn*1/2Hu*(~7T)H;é(m) in (2.28),
and X\ = O(ML*%p + «). Then, we have the following error estimates

(2.35) E(ISf* = Spoafpodlli2 ()] < CAIf* 220y + Ce,
(2.36) E{lIf* = fpodll7ziy] < ClIF* 72 + Cé,
and

(2.37) E[1F* = fpodlFr-1(0)) < CAY2(1F* 1720y + Ce.

Furthermore, if we assume the noise {e;}_; are independent Gaussian random
variables with variance o, we can obtain a stronger type of convergence. A similar
proof can be found in [6]. We list the results here for completeness.
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THEOREM 2.5. Let {e;}, be independent Gaussian random variables with vari-
ance o. Set a'/?T8 = O(on=12||u*(-, )||H2(Q ) in (2.28), and A = O(ML*?p+a).
Then, there exists a constant C, for any z > 0, such that

(2.38) P(I|Spoafpoa = Sf¥llr2) = A2 f7]|2 +)2) < 20797,

(2.39) P(ll fpod = f*lz2(@) = (1 lp2 +e)2) < 2e7%,

and

(2.40) P(ll fpod = f*lm-1(0) = A4 f* (|22 + €)2) < 267
Theorems 2.4 and 2.5 provide the stochastic convergence rate for the error ||Sf*—

podfpod||L2 @ = OP()‘”f*H%?(Q)—i_E)’ and ||f*_fpodH%1—1(Q) = Op()\l/2||f*|\%2(g)+5)
in terms of the values A and . These results provide useful guidance for practical
numerical simulations.

3. Parabolic backward problem. For the backward problem of the parabolic
equation, our goal is to recover the initial condition g(z), given the final time mea-
surement m = S(g) = u(-,T). In this case, u satisfies the following equation:

us+Lu=0 in Q x (0,T),
(3.1) u(z,t) =0 on 99 x (0,7,
u(z,0) = g(x) in 2,

Unlike the traditional POD method, we obtain the snapshots from the adjoint
equation as follows:

iy + L =0 in Q x (0,7),
(3.2) (x,t) =0 on 09 x (0,7T),
u(x,0) = m(x) in Q,

In this case, the snapshots are generated by solving the adjoint equation (3.2)
with the given final time measurement m(z) as the initial condition.

Following the standard procedure in section 2.2, we generate the new POD basis
functions t,’s from the snapshots {a(-,to), a(-,t1), ..., a(-,tar) }, where tj, = kAt with
At = % and k = 0,...,M. Then, we obtain the following error formula, similar to
Proposition A.1:

D |7

Zk 1 (gia¢k('))Lz(Q¢k(')‘ .

L2(2)
)il (7] A

where the number N,oq is determined accordlng to the decay of the ratio p =

2M+1 Ak
k=Npoq+1
ilv{+1 I
We consider using these new POD basis functions to approximate the forward
problem to accelerate the computation. The fully discrete scheme is constructed on
Vpod, and the solution is denoted by Uy, for k = 1--- M with M = %. Specifically,

we seek numerical solutions U}, such that

(3.3) = p,

(3.4) (5Uk; ’Q/J) + a(Uk,w) =0, VY& Vi,

with Uy = g(z). We define the solution operator from the initial condition g(x) to
the final time solution Ups as Spod, i-€., Spoag = Unr.
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3.1. Convergence of the adjoint-POD method. For any g € L?(Q), we
can write g = Y p | gr¢x for a set of coefficients gr. Let u = >p°; ugp(t)dr be the
solution of the problem (2.1). Substituting these two expressions of g and w into the
first equation of (2.1), we get, by noting the fact that Loy = prp¢or and comparing
the coefficients of ¢ on both sides of the equation, that u;(0) = g, and

ul(t) + prup =0 in (0,7).

We can write the solution as ux(T) = oy, gx, with o, = e #T. Noting that
Sg=u(-,T) = > p—; ur(T)¢i, we can formally write

S( i gk¢k) = i Gk Pk
k=1 k=1

This representation shows the relationship between the initial condition g and the
solution u(-,T") at the final time 7. The operator S maps the initial condition to the
solution at time T through the coefficients oy, which depend on the eigenvalues g
of the operator L and the final time 7. This relationship can be used to analyze the
properties of the solution and the backward problem.

For simplicity, we approximate the source term g(z) by a finite-dimensional trun-
cation, i.e.

L
(3'5) Gapp = ng¢k~
k=1

Then, the solution u(zx,t) of the parabolic equation has the form:u(-,T) = Zﬁzl
e~ T frép. After simple calculation, we can also have that @(z,t) = Zizl e T
e Hrt fi di.  Constructing the POD basis functions is equivalent to computing the
singular value decomposition of the matrix A = (G1s -, Grr), where g; = (U(z1,t5), ...
,u(zn,t;))T. Here z1,...,xy are the finite element nodes in . Suppose A has the
singular value decomposition: A = UXV, then the ¥ s are exactly the first M columns
of U.

Let us denote A = (y1,...,yar) and A = (41, ..., Jar), the matrix ® = (¢1(Z, t1), ...
01 (Z,t1)), F = diag(f1,..., fz) and D = diag(e=*“7, ..., e #LT). We also define the
L x M matrix J with entries J(i,7) = e *i%. Since the normal orthogonality of the
eigenfunctions ¢p’s, ® is a column orthogonal matrix. Using the formulations of u
and @, we can represent the matrix A and A as follows:

(3.6) A=®FJ, and A=®DFJ.

The matrix representations of A and A provide a concise way to express the
relationship between the coefficients of the eigenfunctions ¢ and the solutions u(z, t)
and u(z,t).

Proposition A.1 shows that the low-rank space Vpoq provides the best Npoq-rank
approximation of the column space of A. We aim to prove that Viod is also a good
approximation of the column space of A, which will confirm the effectiveness of the
new POD method. To begin, we establish the connection between the matrices A and

A.

LeEMMA 3.1. If L < M, it follows that span{yi, ...,ynm} = span{f1, ..., gar}. Con-
sequently, the column spaces of A and A are identical, i.e., C(A) = C(A).

This manuscript is for review purposes only.



467
468

169
470
471

476

477
478
479
480
181
482
483

484

486

487
488
489

490

491

193

194

495

196

497

A NOVEL METHOD AVOIDING INVERSE CRIME 13

Proof. The proof of this statement is analogous to that of Lemma 2.2, using the
fact that the matrix J is a Vandermonde matrix. 0

Using (3.3), we observe that the new POD basis provides a good approximation
of {91,...,9m}. With the preceding analysis, we aim to demonstrate that the new
POD basis is also an effective approximation of {y1, ..., yar}-

THEOREM 3.2. Using the same notation in this section, we note that if a sufficient
number of snapshots are available, i.e., L < M, then we have

M 2
Zi:l Hyl - PPOdyiHLQ(Q) < CeQMLTp
M 2 = )
Dim1 ||yiHL2(Q)

where Ppoq denotes the projection operator on the adjoint-POD space span{s, ...,

Py Ak
k=Npoq+1

/(r/)Npod}7 and p = ZIZC\/I:1 Ak

(3.7)

Proof. In the following proof, we assume L = M for simplicity. For the case
L < M, the proof is similar. Using the same notation of Lemma 3.1, & and J are
both invertible square matrices. Then, there exists a unique matrix P such that,

(3.8) ®DFJP = ®FJ,

where P = J~'D~!J. Therefore, we have y; = Zle P, ;.
Using the Cauchy-Schwarz inequality, we obtain the following estimate for any
1<j<L,

L L
(3.9) ly; — Pooayill® < > P35 D 115 — Pooadill*-
i=1 i=1

Hence, we can obtain that

L L L L
(310) > llyj — Pooayill® < D P55 = Pooadill® = I1PIF Y 17 — Pooadill.
j=1

i,j=1 i=1 i=1

The remaining part is to estimate the Frobenius norm of P. Since P = J~'D~1J,
we define that ||P|lq = ||[D~!]2. It is easy to verify that ||-||4 is a matrix norm. Then,
we obtain

(3.11) |Pllr < C||Pla=C|D™ |2 < CettT.
On the other hand, since ® is an orthogonal matrix, we have
L
(3.12) > lgl* = 1@DF I3 = |[DFJ|3 < [ DIEIFJ|F
j=1
L
(3.13) <CIFTIE <CY lysl*.

j=1
Aligned with the equation (3.3), we can derive the following estimate:
M - =2
Ei:l ||yz - PpodyiHL2(Q)
M |~ (2
>im1 Hyi”L?(Q)

M 2
Zi:l ||y’t - PpodyiHLz(Q)
M 2
> i1 ||yi||L2(Q)
(3.15) < Ce?eT),

< C|P|%

(3.14)

Therefore, we can conclude the inequality with the estimated value of y; < Ci%/?.0

This manuscript is for review purposes only.
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14 W. ZHANG, AND Z. ZHANG

3.2. Stochastic convergence of backward problem. To solve this backward
problem, we use the traditional Tikhonov regularization method,

(3.16) min ||S(g) — ml|L2 () + Allglliz ()

where A is the regularization parameter.
In the discrete approximation of the regularization problem (3.16), we solve the
following least-squares regularized optimization problem:
. 2 2
(3.17) i [Spoa(9) = mll72(q) + Algllz2(q)-
We define the functional Jpedg] = ||Spodgfm||2L2(Q)+)\Hg||%2(m. We can compute
the Fréchet derivative of Jpoa[g] and obtain the following iterative scheme:

(3.18) gk+1 = gk — BdTpodlgr], Vk €N,

where [ is the step size, dTpodlg] = S q(Spoag —m) + Af, and go is an initial guess.

The above theory is based on the assumption of a noise-free case, where the final
time measurement m = u(-,T") is known exactly. However, in practical applications,
the measurement data often contains uncertainty. To account for this uncertainty,
we assume that the measurement data takes the discrete form m? = u(d;,T) + e; for
i=1,---,n, where e¢; denotes the measurement error at the i-th point. Based on the
properties of parabolic equations [36], we know that |lullc(o,r;m2) < CllgllL2)-
Furthermore, according to the embedding theorem of Sobolev spaces, we know that
H?() is continuously embedded into C(2), ensuring that u(-, T') is well-defined point-
wise for all d; € Q.

We repeat the procedure of (2.28) in section 2.3. If we choose the optimal regu-
larization parameter o!'/2+/8 = O(an*1/2|\u(-,T)||;I£(Q)) (in practice, we chose the
optimal parameter using Algorithm 2.3), then the denoised solution m achieves the
optimal convergence with noise of bounded variance o2 given by

(3.19) E[u(-,T) = m| 2 ()] < Ca'?||u(-, T)l| 2 (-

Assuming that the noise {e;}? ; are independent Gaussian random variables with
a variance of ¢, we can obtain a further result. Specifically, we have:

2
(3.20) IP’(Hu(,T) - m||L2(Q) > a1/2\|u(~,T)HH2(Q)z) < 26_02 .

In practice, the noise level and the true initial term may be unknown. To deter-
mine the optimal regularization parameter « for denoising, we can apply Algorithm
2.3. This algorithm will select a value of « that balances the trade-off between re-
ducing noise and preserving important features of the solution. Using the recovered
function m(z), we generate the adjoint POD basis in Section 2.1. It can be shown
that, even with uncertainty, the POD basis still provides a good low-rank approxima-
tion of the snapshots {y1, ..., yar}. Combining Theorem 3.2 and (3.19), we can deduce
that for any 1 <4 < M, the following inequality holds:

(3.21) llyi — PpodyiHiz(Q) < C(MGQMLTP + O‘)HQH%Q(Q)'

Since we replace the source term with a finite truncation (3.5), we make the
assumption that:

(3.22) 19 = Gappl72 < (L)

This manuscript is for review purposes only.
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Using similar techniques to those employed in the proof of Theorem 3.7 in [36], we can
derive the following convergence results based on the aforementioned assumptions.

THEOREM 3.3. Let {e;}7, be independent random variables satisfying Ele;] = 0
and E[e?] < 0% fori = 1,--- ,n. If we set o'/>T/8 = O(Un’1/2||u(~,T)||;I£(Q)) in
(2.28) and A = O(Me**tTp + ), then we obtain:

(3.23) E[89" = Spoagpodll F2(y] < CAlg* (720 + Ce,
and
(3.24) Ellg" = gpodll72(a)] < Cllg* 1720y + Ce.

Furthermore, if we assume that the noise {e;}_; are independent Gaussian ran-
dom variables with a variance of o, we can obtain a stronger type of convergence. A
similar proof can be found in [36]. Here, we only present the resulting convergence
results.

THEOREM 3.4. Let {e;}_, be independent Gaussian random variables with a
variance of o. If we set o'/?>T4/8 = O(on71/2|\u(-,T)||I}£(Q)) in (2.28) and A =
O(Me?#tT p + @), then for any z > 0, there exists a constant C such that:

2
(3.25) P([|Spoagpod — S*lz2(0) = (A2]lg" |12 (0) +€)2) < 2e7%,
and
* * —C2z2
(3.26) P(llgpod — 9" lIr2(0) = (9" |l r2(0) + €)2) < 27 C%.

Theorem 3.3 and Theorem 3.4 provide the stochastic convergence rate as ||Sg* —
SpodgpodH%z(Q) = Op()\Hg*H%g(m + ¢) in terms of the values A and e. These results
also provide useful guidance for practical numerical simulations.

4. Numerical examples. This section presents several numerical examples to
demonstrate the reconstruction results for the inverse source problem and the back-
ward problem discussed in this paper. Specifically, we consider a parabolic equation
as follows:

ug—Au= f(x) inQx(0,7T),
(4.1) u(z,t) =0 on 09 x (0,7T),
u(z,0) = g(x) in Q,

where the domain Q = [0, 71]?, f(x) is the source term, and g(z) is the initial condition.
For each observation data set, we first use the backward Euler scheme in time and the
linear finite element method (specifically, the P1 element) in space with a mesh size
of h =1/50 and a time step of At = 7/400. We use 9 POD basis functions (usually
less basis is enough) to compute the inverse problems unless otherwise specified. For
the FEM, there are approximately 2500 basis functions.

In [35], the authors have already compared the efficiency of the POD method and
the finite element method for solving this inverse problem. They have demonstrated
that the POD method achieves a speed-up of at least 6 times, even with 400 finite
element basis functions. Therefore, we do not include a comparison with the finite
element method in this paper. However, it is worth noting that as the number of
finite element basis functions increases, the potential for the POD method to achieve
greater speed-up also grows correspondingly.

This manuscript is for review purposes only.
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4.1. Numerical results for inverse source problems. In the following ex-
amples, we use the adjoint POD method to recover the source term f as described in
Section 2. We obtain the data for the forward problem with the exact source term f
at the final time 7' = 1.

Example 4.1 We first demonstrate the importance of choosing the appropriate
POD basis functions. For the same source term, we apply different right-hand sides of
equation (2.1) to obtain the POD basis functions. Subsequently, we solve the inverse
source problem using these different POD basis functions.

Figure 1 illustrates this process. The true source term is sin(2z) sin(2y)em:rry , and
its surface plot is shown in Figure 1 (a). Figure 1 (b) presents the reconstruction
result obtained using the adjoint POD method proposed in this paper, indicating
that our new method effectively and efficiently recovers the source term. Figure 1
(c) displays the result when an incorrect right-hand side is used to generate the POD
basis functions. In this case, we use sin(z)sin(y) as the right-hand side in (2.1) to
generate the POD basis functions. Figure 1 (d) shows the result when we use an
A-shaped function as the right-hand side to derive the POD basis.

As can be seen, Figure 1 (b) provides a good reconstruction, whereas Figures 1
(c) and (d) yield inaccurate results. The result in Figure 1 (d) is particularly striking,
as the recovered image deviates significantly from the exact source term.

In this example, we demonstrate the importance of selecting appropriate basis
functions for solving inverse problems. Using an unsuitable set of basis functions can
lead to incorrect results. Our proposed adjoint POD method offers a set of suitable
basis functions for such problems. In the following examples, we will compare our
adjoint POD basis functions with the original true POD basis to validate Theorem

3
i
25 3
2 2
1
15
0
1
4
0s
2
o
o 05 1 15 2 25 3

(a) Exact source term (b) Reconstructed by the ad-
joint POD method

o 05 1 15 2 25 3

(c) Using the POD basis gen- (d) Using the POD basis gener-
erated with the right hand side ated with the right hand side of
sin(x) sin(y) A shaped function

Fic. 1. The importance of choice of POD basis
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602 Example 4.2 In this example, we first use the true source term as the right-hand
603 side in (2.1) to generate the POD basis. Then, we generate the POD basis using our
604 proposed adjoint POD method. To validate Theorem 2.3, we compare both sets of
605 basis functions and assess their similarity. Figure 2 shows the results when using the
606 exact source term f* = sin(2z) sin(2y). Figure 2 (b) and Figure 2 (c) show that both
607 the traditional POD method and our adjoint POD method recover the true source
608 term accurately. However, our adjoint POD method does not require prior knowledge
609 of the exact source term, while the traditional POD method does, leading to the
610 so-called inverse crime.

611 Figure 3 presents the results for an exact source term f* in the form of a Z-shaped
612 function. This example also illustrates the efficiency of the POD method in solving
613 inverse problems compared to the finite element method. Figure 3 (¢) and Figure 3 (e)
614 show that both traditional POD and our adjoint POD method yield basis functions
615 that contain critical information about the exact source term we aim to recover. In
616 contrast, the basis functions of the finite element method do not contain any prior
617 information about the true function we need to recover.

1
3 3 3
08 08 08
25 06 25 08 25 08
04 04 04
2 2 2
0z 0z 02
15 i 15 i 15 i
02 02 02
1 04 1 04 1 04
08 08 08
0s 0s 0s
08 95 08
o 1 o 0
o 05 1 15 2 25 3 o 05 1 15 2 25 3 o 05 1 15 2 25 3

(a) Exact source term (b) Recovered result by tradi- (c) Result by the adjoint POD
tional POD with exact right
hand side

Fic. 2. Comparison of basis between traditional POD and the adjoint POD for f =

sin(2x) sin(2y).
3 g 3 3
= 1 1
25 08 25 25
o7 28 b
o8
15 s 15 15 -
X 03 1 i 02
02
0
(a) Exact source term (b) Recovered result by tradi- (c) Result by the adjoint POD
tional POD with exact right
hand side

F1c. 3. Comparison of basis between traditional POD and the adjoint POD for f* of Z-shaped
function.

618 In the previously mentioned cases, all measured data were noise-free. We will
619 now examine highly challenging cases with noise levels ranging from 10% to 50% to
620 test the denoising method described in Section 2.3.
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Example 4.3 In this example, we will evaluate the robustness of the adjoint
POD method in the presence of noise. We consider the measurement data to be
m =u(d;, T)+oe;, i =1,--- ,n, where d; represents positions within the domain ,
and {e;}?_, are independent standard normal random variables. We will take 2500
positions d; uniformly distributed over the domain 2.

Figure 4 demonstrates the robustness of our method in the presence of significant
noise. Even with a 50% noise level, where the measured data is entirely obscured by
noise as shown in Figure 4 (c), our method is still able to recover the source term as
depicted in Figure 4 (f).

3
s
25 B
2 2
1
15
0
1
1
o5
2
o
o 05 1 15 2 25 3

(a) Exact source term (b) Measured data with 25% (c) Measured data with 50%

noise noise

= 4
2 ¥
, 5
15 !

"
1

b
os

a
o
o os 1 18 2 25 3

(d) Recovered result for 10% (e) Recovered result for 25% (f) Recovered result for 50%

noise noise noise

z+
FI1G. 4. Robustness of the adjoint POD against the noise for f = sin(2x)sin(2y)eTy.

Example 4.4 In this example, we demonstrate the effect of choosing different
numbers of our new POD basis and verify the convergence of our POD method. Figure
5 illustrates this test. We see that as the number of our POD basis increases, the
reconstruction error decays rapidly; see Figure 5 (f). We observe exponential decay
from our numerical experiments. Even for a complicated function with a ’Z’ shape, we
can obtain satisfactory results with just 10 POD basis functions. As the number of our
POD basis increases, the reconstruction becomes increasingly accurate, as depicted
in Figure 5 (a) - (e).

4.2. Numerical results for backward problems. In this subsection, we ap-
ply the new POD method to recover the initial condition g, as discussed in Section 3.
We collect the data at the time 7' = 0.05. Since most of the examples are similar to
what we did in section 4.1, we may not explain the setting of numerical examples in
detail.

Example 4.5 In this example, we demonstrate the importance of POD basis,
similar to what we did in Example 4.1. We solve the backward problem using different
POD basis functions.
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Result for 4 POD basis

Resultfor 1 POD basis Result for 2 POD basis
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(d) 7 POD basis

(e) 10 POD basis (f) Error decay as the number of

POD basis grows

Fic. 5. Effects of the numbers of POD basis.

Figure 6 illustrates the corresponding results. The true initial condition is sin(2x)
sin(2y)e¥, and its surface plot is shown in Figure 6 (a). Figure 6 (b) presents the
reconstruction result using our adjoint POD method. Figure 6 (c) shows the result
when we use an incorrect initial condition to generate the POD basis functions, and
Figure 6 (d) displays the result when we use an A-shaped function as the initial
condition to generate the POD basis functions.

Example 4.6 In the following two examples, we adopt the approach of example
4.2. We first use the true initial condition as the initial condition in Eq. (3.1) to
generate the POD basis functions. Then, we generate the POD basis functions using
our proposed adjoint POD method.

Figure 7 shows the results obtained by using the exact source term ¢g* = sin(2z)
sin(2y)e¥. Figures 7 (b) and 7 (c) demonstrate that both the traditional POD
and our adjoint POD methods work well in recovering the true initial condition.
However, our adjoint POD method does not require prior knowledge of the exact
initial condition. Figure 8 shows the results using the exact initial condition g* of the
A-shaped function.

In the above numerical examples in this subsection, all the measured data are
noise-free. Now, we test the denoising method discussed in Section 3.2 by examining
very challenging cases with noise levels ranging from 10% to 50%.

Example 4.7 Similar to Example 4.3, we test the robustness of the adjoint POD
method against noise. We take the measurement data as m? = u(d;,T) + oe;, for
i = 1,---,n, where d;s represent the positions inside Q, {e;}?, are independent
standard normal random variables, and ¢ is the noise level. We use 2500 positions
d; uniformly distributed over the domain 2. Figure 9 demonstrates that our method
is robust even in the presence of significant noise. Remarkably, even with 50% noise,
when the measured data is completely obscured by noise as shown in Figure 9 (c), we
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can still recover the initial condition, as seen in Figure 9 (f).

Example 4.8 Finally, we study a more interesting case. Although the inverse
source problem and the backward problem are two distinct problems, we have ob-
served from the previous numerical examples that they share some commonalities.
Specifically, the POD basis functions for both problems contain critical information
about the functions one wants to recover. As a result, we employ the POD basis
functions derived from the inverse source problem to solve the backward problem.
Please refer to Figure 10 for the reconstruction results. This example also shows that
the inverse source problem and the backward problem share similar basis functions
from the point of view of the POD method. This similarity can also be explained by
the theory of semi-groups and spectral analysis.
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5. Conclusion. In this paper, we have developed a novel POD-based model re-
duction method for solving parabolic inverse problems, specifically focusing on inverse
source and inverse initial value problems. By leveraging the intrinsic low-dimensional
structures in the parabolic equations, we have successfully developed POD basis func-
tions that reduce computational costs while maintaining accuracy in solving parabolic
inverse problems. Our primary contribution is the effective addressing of the inverse
crime issue associated with traditional model reduction methods for solving PDEs,
which is a common challenge encountered by traditional POD methods for solving in-
verse problems. Furthermore, we have provided convergence analysis for our proposed
method and demonstrated its accuracy and efficiency through numerical examples.
The results show that our proposed method overcomes the inverse crime issue and
produces superior results compared to traditional methods. Therefore, our proposed
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method provides a promising avenue for solving parabolic inverse problems with high
accuracy and computational efficiency.
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Appendix A. Proper orthogonal decomposition (POD) method. As-
suming that u € Hg(Q) is the solution to the weak formulation of the parabolic
equation (1.1), the construction of POD basis functions requires solution snapshots.
These solution snapshots can be obtained through various technological means related
to a specific application, such as experimental data or numerical methods. For in-
stance, one can measure the solution at different times using sensors in experimental
settings to obtain the solution snapshots. Alternatively, one can use FEM to solve
the parabolic equation numerically and obtain the solution snapshots.

Given a set of solutions at different time instances {u(-,to),u(:,t1), ..., u(-, trp)},
where t;, = kAt with At = % and k =0,..., M, we first obtain the solution snapshots
{y1,. s YM+1, YM+2,- -, Yarit1 ), where yp = u(- tg—1), k=1,...,M + 1, and yx, =
Qu-ytyni—1), k=M +2,...,2m + 1 with du(-, ty) = “eb=ullea) 1y —q 0

The POD basis functions {wk}kN:id are constructed by minimizing the following
projection error:

M Npoa
(A.1) . <Z [|lu(t;) Z )s ) L2(9)¢k||L2(9)
7=0 k=1
M Npoda
(A.2) +Z | Oult;) Z )s Ui L2(Q)¢k||L2(Q )
j=1 k=1

subject to the constraints that (v, (), ¥, (- ))L2 (@) = Okakas L < k1, Ky < Npoa, where

Okiky, = 1 if k1 = ko, otherwise 0y, = 0. Here, Npoq denotes the number of POD
basis functions that will be extracted from solution snapshots.
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Let Vyoa = span{t1,...,¥n,.,} denote the finite-dimensional space spanned by
the POD basis functions. Using the method of snapshot proposed by Sirovich [33],
we know that the minimizing problem can be reduced to the following eigenvalue
problem:

(A.3) Kv = pw,

where the correlation matrix K is computed from the solution snapshots {y1,ya,. ..,
Yo 41} with entries Kij = (yi,y5)12(0), 4, = 1,...,2M +1, and K is symmetric and
semi-positive definite. We sort the eigenvalues in a decreasing order as A\; > Ay >
... 2 Aom+1 and the corresponding eigenvectors are denoted by vy, k= 1,...,2M + 1.
It can be shown that if the POD basis functions are constructed by

2M+1
1

(A.4) or() = I (vg)jul,t5), 1<k < Npod,

j=

—

where (vg); is the j-th component of the eigenvector vy, they minimize the projection
error.

The approximation error for the POD method has been studied extensively in the
literature, particularly in the works [21] and [3].

PROPOSITION A.1 (Section 3.3.2, [21] or p. 502, [3]). Let A\y > Xy > ... >
Aoni+1 > 0 denote the non-negative eigenvalues of the correlation matriz K in the
eigenvalue problem (A.3). Then, {1/Jk}kN£°{l constructed according to the method of
snapshots (A.4) is the set of POD basis functions, and we have the following error

formula:

2
2M+1 |~ S~ Npod (= . . 2M+1
(A 5) Zi=1 ’ Yi k=1 (yu ¢k( ))L2(Q¢k( )’ L@ k:[\‘}_pnd"rl Ak
. 2M+1 )~ (|2 - 2M+1 J
2i-1 ||yi||L2(Q) k=1 Ak
Y
where the number Nyoq is determined by the decay of the ratio p = %
k=1
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