
A NOVEL METHOD AVOIDING INVERSE CRIME IN SOLVING1

INVERSE PROBLEMS OF PARABOLIC TYPE USING MODEL2

REDUCTION METHODS∗3

WENLONG ZHANG† AND ZHIWEN ZHANG‡4
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1. Introduction. Inverse problems associated with parabolic equations have19

garnered significant attention in mathematics and engineering research fields [25, 19].20

These problems can be broadly categorized into several types: recovering source terms21

in the PDEs, determining the system’s initial state, identifying physical parameters,22

and determining the boundary conditions. In this paper, we focus on the first two23

types of inverse problems and leave the other types as future work. We will refer24

to the first two types of inverse problems as inverse source problems and backward25

problems, respectively.26

Inverse source problems, which involve reconstructing the source from final time27

observation, have attracted much attention from researchers in recent decades [23]28

and references therein. These problems have been extensively studied in the litera-29

ture and applied to various physical and engineering source identification problems,30

such as groundwater migration, groundwater pollution detection, pollution source31

control, and environmental protection [8, 12, 16, 11, 23] and references therein. Ac-32

curately recovering pollutant sources is crucial for ensuring environmental safeguards33

in densely populated cities [9]. The estimation of the strength of acoustic sources34

from measurements can be found in e.g. [23, 13, 31]. Given the importance of inverse35

source problems in practical applications, numerous numerical methods have been36

extensively explored [8, 6, 29, 15, 16] and references therein.37

For inverse source problems, iteration optimization methods are typically used to38

determine the true source term [6, 10, 24]. The forward parabolic equation must be39

solved one or two times in each iteration. However, as the size of discrete problems40
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2 W. ZHANG, AND Z. ZHANG

increases (e.g. using the finite element method (FEM) or finite difference method41

(FDM)), the computational time increases rapidly, especially for time-evolution prob-42

lems. As a result, the computation of the forward equation will consume the most43

time throughout the entire process.44

To address the computational challenges associated with solving parabolic inverse45

source problems, we propose a data-driven model reduction method [35]. Our method46

consists of offline and online stages. In the offline stage, we exploit the low-dimensional47

structures in the solution space of parabolic equations in the forward problem, given48

a class of source functions, and construct a small number of POD basis functions49

to achieve significant dimension reduction. With the POD basis functions, we can50

rapidly solve the forward problem in the online stage. Consequently, we developed51

a fast algorithm called the POD algorithm to solve the optimization problem in the52

parabolic inverse source problems. Moreover, we derive an error estimate for the POD53

algorithm in parabolic inverse source problems. Numerical results demonstrate that54

the POD algorithm offers significant computational savings compared to the FEM55

while maintaining the same level of accuracy. However, we have to point out that56

our POD algorithm has a limitation: it requires assuming that the true source term57

belongs to a known function class, leading to the inverse crime [25, 22]. In this paper,58

we aim to develop novel model reduction methods to solve parabolic inverse problems59

and eliminate the inverse crime issue.60

Backward problems are another important type of parabolic inverse problem that61

has been extensively studied in physics and engineering, particularly in the field of62

heat transfer. The main focus of these problems is to determine the initial condition63

from transient temperature measurements at the final time T . The main difficulty in64

solving the backward problems arises from the exponential decay of forward solutions65

of the parabolic equations with respect to the initial data. Therefore, backward66

problems are also ill-posed in the sense of Hadamard [23, 18], as the eigenvalues of67

elliptic operators decay exponentially fast, making them particularly unstable with68

respect to measurement data uncertainties. This lack of stability poses a significant69

challenge for numerical inversions, as even small changes in the data can lead to70

substantial differences in the reconstructed source strength.71

In response to these challenges, many regularization techniques have been devel-72

oped for solving backward problems. For instance, in [26], Sobolev error estimates73

and a prior parameter selection for semi-discrete Tikhonov regularization were de-74

rived. A backward problem for the one-dimensional heat conduction equation, with75

the measurements on a discrete set, was considered in [7], and the uniqueness of recov-76

ering the initial value was proved using the analytic continuation method. It is worth77

noting that in [30], a comparison of various inverse methods for estimating the initial78

condition of the heat equation was studied, demonstrating that explicit approaches79

to the backward problem yield disastrous results unless some form of regularization80

is utilized.81

In our recent work [36], we study the stochastic convergence of regularized solu-82

tions for backward problems. We derive an error estimate for the least-squares reg-83

ularized minimization problem within the framework of stochastic convergence. Our84

analysis reveals that the optimal error of the Tikhonov-type least-squares optimization85

problem depends on the noise level, the number of sensors, and the underlying ground86

truth. Additionally, we propose a self-adaptive algorithm to identify the optimal reg-87

ularization parameter for the optimization problem without requiring knowledge of88

the noise level or any other prior information, which would be highly practical in ap-89

plications. Numerical results demonstrate the effectiveness of our method in solving90
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A NOVEL METHOD AVOIDING INVERSE CRIME 3

backward problems. By assuming the initial condition belongs to a known function91

class, it is straightforward to develop a POD method to solve backward problems92

using the stochastic convergence developed in [36]. However, the corresponding POD93

method also suffers from the issue of inverse crime [25, 22]. Once again, this motivates94

us to develop new model reduction methods to solve parabolic backward problems and95

eliminate the inverse crime issue.96

As we have discussed, the issue of inverse crime arises when we develop the POD97

method for solving inverse problems [35], where the forward model used for generating98

the data is identical to the one employed for solving the inverse problem. This scenario99

can lead to overly optimistic results and underestimates the uncertainties associated100

with the solution. The inverse crime poses a significant challenge in inverse problem101

solving, as it fails to account for model errors and uncertainties that are inherent in102

real-world applications.103

Motivated by an interesting observation in our previous work on numerical simu-104

lation of parabolic equations, we propose a novel POD-based model reduction method105

to address the issue of inverse crime encountered in solving inverse problems associated106

with parabolic equations. Specifically, we aim to develop a novel POD methodology107

that can be applied to both the inverse source problems and backward problems of108

the parabolic type. To start with, we consider a generic parabolic equation as follows:109

110

(1.1)


ut + Lu = f(x) in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = g(x) in Ω ,

111

where Ω ⊂ Rd (d = 1, 2, 3) is a bounded domain with a C2 boundary or a convex112

domain satisfying the uniform cone condition, L denotes a second-order elliptic oper-113

ator given by Lu = −∇ · (q(x)∇u) + c(x)u, f(x) is the source term, and g(x) is the114

initial condition. We assume the elliptic operator L is uniform elliptic, i.e., there exist115

qmin, amax > 0 such that qmin < q(x) < qmax for all x ∈ Ω. Additionally, we assume116

q(x) ∈ C1(Ω̄), c(x) ∈ C(Ω̄) and c(x) ≥ 0.117

Let u represent the solution of the parabolic equation (1.1). We define the forward118

operator S : S(f, g) = u(·, T ). The forward problem involves computing the solution119

u(·, t) for t > 0 given the source term f(x) and initial condition g(x). The inverse120

problem, on the other hand, aims to reconstruct f(x) or g(x) from the final time121

measurement m = u(·, T ). We will solve two types of inverse problems as follows:122

1. Inverse source problem: recover the source term f(x) using the final time123

measurement m = u(·, T ) and the known initial term g(x).124

2. Backward problem: recover the initial term g(x) using the final time mea-125

surement m = u(·, T ) and the known source term f(x).126

In this paper, we develop a novel POD-based model reduction method, called the127

adjoint-POD method, for solving inverse problems of parabolic types. We begin by128

developing the adjoint-POD method to solve the inverse source problem and construct129

basis functions for this problem. Specifically, we study the convergence of the POD130

basis functions obtained by our adjoint-POD method and prove their approximation131

property in Theorem 2.3. By leveraging this property, we derive the convergence132

analysis of the adjoint-POD method in solving inverse parabolic source problems133

in Theorem 2.4 and Theorem 2.5. We then extend our approach to the parabolic134

backward problem, where we construct the POD basis functions by solving the adjoint135

equation with the given final time measurement as the initial condition. We also prove136
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4 W. ZHANG, AND Z. ZHANG

the approximation property of the corresponding POD basis functions in Theorem137

3.2 and the convergence analysis of the adjoint-POD method in solving the parabolic138

backward problem in Theorem 3.3 and Theorem 3.4. Finally, we present numerical139

experiments that demonstrate the effectiveness of our adjoint-POD method in solving140

parabolic inverse problems and its ability to overcome inverse crime.141

The rest of the paper is organized as follows. In Section 2, we introduce the142

adjoint-POD method for solving parabolic inverse source problems and provide the143

error estimate for the proposed methods. Similarly, in Section 3, we propose the144

adjoint-POD method for solving parabolic backward problems and provide the cor-145

responding error estimate. In Section 4, we present numerical results to demonstrate146

the accuracy of our methods. Finally, concluding remarks are made in Section 5.147

2. Adjoint-POD method for parabolic inverse source problems. Regu-148

larization methods are commonly used to solve inverse problems, where one applies149

iterative methods to solve the forward problem one or more times in each iterative150

step. As a result, most computational time is spent on solving the forward problem.151

To address this issue, it is natural to develop model reduction methods to decrease152

the computational cost of solving the forward problems.153

One of the model reduction ideas in solving time-evolution problems is the POD154

method [33, 4]. The POD method uses data from an experiment or an accurate nu-155

merical simulation and extracts the most energetic modes in the system by using the156

singular value decomposition. This approach generates low-dimensional structures157

that can approximate the solutions to the time-evolution problem with high accu-158

racy. The POD method has been applied successfully to solve many types of PDEs,159

including linear parabolic equations [34, 27], Navier-Stokes equations [27], viscous160

G-equations [17], Hamilton–Jacobi–Bellman (HJB) equations [28], and optimal con-161

trol problems [2]. The interested reader is referred to [32, 3, 20] for a comprehensive162

introduction to the model reduction methods.163

The traditional POD method has a significant drawback: to construct the POD164

basis functions, one must know the source term f(x) or the initial condition g(x).165

Therefore, directly using the POD method to solve inverse problems may result in166

the inverse crime issue. In our previous work [35], we mitigated this issue by assuming167

that the true source term belongs to a known function class. However, this approach168

does not fully address the issue of the inverse crime.169

To tackle this challenge, we propose a novel method for model reduction in inverse170

problems: the adjoint-POD method. Unlike the traditional POD method, our method171

does not require any prior knowledge of the source or initial term. By integrating172

the adjoint method with the model reduction capabilities of the POD method, we173

will show that the adjoint-POD method can efficiently solve inverse problems while174

avoiding the inverse crime issue.175

2.1. Adjoint POD method. To demonstrate the idea of the adjoint-POD176

method, we will first apply it to solve the inverse source problem. This problem177

involves recovering the unknown source term f(x) of the parabolic equation, given178

the final time measurement m(x) = S(f) = u(·, T ). Here, u satisfies the following179

equation:180

(2.1)


ut + Lu = f(x) in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = 0 in Ω .

181
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Here we assume that u(x, t) = 0 and u(x, 0) = 0 for simplicity, otherwise, one182

just needs to subtract the background solution from the measurementm(x). Since the183

source term f(x) is unknown, we cannot use the traditional POD method to obtain184

snapshots. Instead, we will obtain the snapshots from the following equation:185

(2.2)


ũt + Lũ = m(x) in Ω× (0, T ),

ũ(x, t) = 0 on ∂Ω× (0, T ),

ũ(x, 0) = 0 in Ω .

186

We denote the snapshots as ỹk = ũ(·, tk−1), k = 1, . . . ,M + 1 with M = T
∆t , and187

ỹk = ∂ũ(·, tk−M−1), k =M + 2, . . . , 2m+ 1. Here, ∂ũ(·, tk) = ũ(·,tk)−ũ(·,tk−1)
∆t for k =188

1, . . . ,M . We then construct the new POD basis functions {ψ1, ..., ψNpod
} using the189

method described in Appendix A from the adjoint equation (2.2). Finally, we denote190

the linear space spanned by the POD basis functions as VPOD = span{ψ1, ..., ψNpod
}.191

We can use these new POD basis functions {ψ1, ..., ψNpod
} to approximate the192

forward problem and speed up the computation. We construct the fully discrete193

scheme on Vpod, and we denote the solution by Uk for k = 1 · · ·M . Specifically, we194

seek numerical solutions Uk such that:195

(2.3) (∂̄Uk, ψ) + a(Uk, ψ) = (f, ψ), ∀ψ ∈ Vpod.196

Here the bilinear form a(u, v) = (q∇u,∇v) + (cu, v). We define the solution operator197

from the source term f to the final time solution UM as Spod, such that Spodf = UM .198

By using the new POD basis functions and the reduced-order model represented by199

Spod, we can efficiently solve the forward problem for each time step. This significantly200

reduces the computational cost compared to using the full-scale model. This approach201

is particularly useful when solving inverse problems, where multiple forward problem202

evaluations are required.203

2.2. Convergence of the adjoint-POD method. We will first revisit an im-204

portant property of the eigenvalue distribution for the classical elliptic operator L205

[1, 14].206

Proposition 2.1. Suppose Ω is a bounded domain in Rd and a(x), c(x) ∈ C0(Ω̄),207

c(x) ≥ 0. Then, the eigenvalue problem208

Lψ = µψ with ψ∂Ω = 0(2.4)209

has a countable set of positive eigenvalues µ1 ≤ µ2 ≤ · · · , with corresponding eigen-210

functions {ϕk}∞k=1 forming an orthogonal basis of L2(Ω). Moreover, there exist posi-211

tive constants C1, C2 > 0 such that C1k
2/d ≤ µk ≤ C2k

2/d for all k = 1, 2, · · · .212

According to the Proposition above, the eigenfunction set {ϕk}∞k=1 forms an or-213

thogonal basis of L2(Ω). Thus, for any f ∈ L2(Ω), we can write f =
∑∞

k=1 fkϕk,214

where fk’s are coefficients. Similarly, let u =
∑∞

k=1 uk(t)ϕk be the solution of the215

problem (2.1). Substituting these expressions of f and u into the first equation of216

(2.1) and noting that Lϕk = µkϕk, we can compare the coefficients of ϕk on both217

sides of the equation to obtain uk(0) = 0 and218

(2.5) u′k(t) + µkuk = fk in (0, T ) .219
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6 W. ZHANG, AND Z. ZHANG

This equation expresses the time evolution of the coefficients uk(t) in terms of the220

coefficients fk of the source term f . We can write the solution as uk(T ) = αk fk, where221

αk = e−µkT
∫ T

0
eµksds = 1

µk
(1− e−µkT ). Noting that Sf = u(·, T ) =

∑∞
k=1 uk(T )ϕk,222

we can formally write223

S
( ∞∑

k=1

fkϕk

)
=

∞∑
k=1

αkfkϕk.224

This representation of the solution operator S provides a convenient way to com-225

pute the solution u(·, T ) using the eigenfunctions ϕk and the coefficients αk. To226

simplify the problem, we approximate the source term f(x) by truncating it to a227

finite-dimensional space, i.e.228

(2.6) fapp =

L∑
k=1

fkϕk.229

Using this truncation, the solution u(x, t) of the parabolic equation can be written230

as:231

(2.7) u(·, T ) =
L∑

k=1

1

µk
(1− e−µkT )fkϕk.232

After simple calculation, we will also derive that233

(2.8) ũ(x, t) =

L∑
k=1

1

µk
(1− e−µkT )(1− e−µkt)fkϕk.234

It is worth noting that the POD basis (A.4) is simply the singular value decom-235

position of the matrix Ã = (ỹ1, ..., ỹM ), where ỹj = (ũ(x1, tj), ..., ũ(xN , tj))
T and236

x1, ..., xN are the finite element nodes in Ω. Specifically, if A has the singular value237

decomposition A = UΣV , then the first M columns of U correspond exactly to the238

POD basis {ψk}Mk=1.239

Let us denote A = (y1, ..., yM ), Ã = (ỹ1, ..., ỹM ), the matrix Φ = (ϕ1(x⃗, t1), ...240

, ϕL(x⃗, t1)), F = diag(f1, ..., fL), and D = diag( 1
µk

(1 − e−µkT ), ..., 1
µL

(1 − e−µLT )).241

In addition, let J be an L ×M matrix with entries J(i, j) = 1
µi
(1 − e−µitj ). Φ is a242

column orthogonal matrix due to the normal orthogonality of the eigenfunctions ϕk.243

Using the formulations of u and ũ, we can represent the matrices A and Ã as follows:244

245

(2.9) A = ΦFJ, and Ã = ΦDFJ.246

Proposition A.1 shows that the low-rank space Vpod provides the best Npod-247

rank approximation of the column space of Ã. Our objective is to demonstrate that248

Vpod is also a good approximation of the column space of A, which will validate the249

effectiveness of the new POD method. To begin, we need to establish the relationship250

between the matrices A and Ã.251

Lemma 2.2. If L ≤ M , then span{y1, ..., yM} = span{ỹ1, ..., ỹM}, i.e. C(A) =252

C(Ã).253
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A NOVEL METHOD AVOIDING INVERSE CRIME 7

Proof. We will provide a concise proof for the case when the eigenvalues µj are254

distinct from each other. The proof for the case of repeated eigenvalues follows a255

similar approach. To demonstrate the desired results, we need to show that there256

exist matrices P and P̃ such that257

(2.10) ΦDFJP = ΦFJ, and ΦDFJ = ΦFJP̃ .258

We will only present a brief proof for the first equality, as the second can be259

derived similarly. Since the columns of Φ are independent and the diagonal matrix F260

is invertible, we can show the existence of a matrix P by proving that the following261

equation holds262

(2.11) JP = DJ.263

First, we will prove that the matrix J ′
L×L with entries J ′(i, j) = 1 − e−µitj is264

invertible. To do this, we introduce the vector e = (1, ..., 1)T . It follows that we can265

write J ′ as the difference between the outer product of e and its transpose, eeT , and266

the Vandermonde matrix VL, where VL(i, j) = e−µitj . Namely, we have J ′ = eeT−VL.267

Next, we aim to show the invertibility of J ′ by contradiction. Suppose that J ′ is268

singular, which implies that there exists a nonzero vector c = (c1, ..., cL)
T satisfying269

J ′c = 0. Equivalently, we can express this as VLc = eeT c.270

Let us consider the function f(x) =
∑L

j=1 cje
xtj . With this assumption, we have271

that272

(2.12) f(0) = f(µ1) = f(µ2) = · · · = f(µL),273

which implies that the function f has L + 1 distinct zeros. Therefore, its derivative274

f ′(x) =
∑L

j=1 cjtje
xtj must has L distinct zeros. Since c is nonzero, and all µjs are275

also nonzero, this implies that the Vandermonde matrix VL is singular. However,276

this contradicts the fact that VL is an invertible matrix. Consequently, J ′ must be a277

nonsingular matrix.278

Since the invertibility of J ′, the first L columns of J are independent and thus279

form a basis for RL. Similarly, the matrix DJ also has independent columns that form280

a basis for RL. Therefore, there must exist a matrix P such that JP = DJ . This281

result establishes that the spaces spanned by the sets {y1, ..., yM} and {ỹ1, ..., ỹM} are282

equivalent, i.e., span{y1, . . . , yM} = span{ỹ1, . . . , ỹM}. This completes the proof.283

Proposition A.1 suggests that the new POD basis provides an effective approxi-284

mation of the set {ỹ1, ..., ỹM}. Given the previous results, we can now show that the285

new POD basis also serves as a good approximation for the original set {y1, ..., yM}.286

Theorem 2.3. Using the same notation as in Proposition A.1, we can derive287

an approximation error bound if a sufficient number of snapshots are available, i.e.288

L ≤M . In this case, the following error bound holds:289

(2.13)

∑M
i=1 ||yi − Ppodyi||2L2(Ω)∑M

i=1 ||yi||
2
L2(Ω)

≤ CL4/dρ,290

where Ppod is the projection operator onto the adjoint-POD space span{ψ1, . . . , ψNpod
}291

and ρ =

∑2M+1
k=Npod+1 λk∑2M+1

k=1 λk
is a parameter that depends on the decay speed of the eigenvalues292

of the correlation matrix.293
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Proof. In the following proof, we assume L = M for simplicity. For the case294

L < M , the proof is similar. Using the same notation of Lemma 2.2, Φ and J are295

both invertible square matrices. Then there exists a unique matrix P such that,296

(2.14) ΦDFJP = ΦFJ,297

where P = J−1D−1J .298

Hence, we have yj =
∑L

i=1 Pij ỹi. Using the Cauchy-Schwarz inequality, we can299

show that for any 1 ≤ j ≤ L,300

∥yj − Ppodyj∥2 ≤
L∑

i=1

P 2
ij

L∑
i=1

∥ỹi − Ppodỹi∥2.(2.15)301

Moreover, we can get that302

L∑
j=1

∥yj − Ppodyj∥2 ≤
L∑

i,j=1

P 2
ij

L∑
i=1

∥ỹi − Ppodỹi∥2 = ∥P∥2F
L∑

i=1

∥ỹi − Ppodỹi∥2.(2.16)303

The rest is to estimate the Frobenius norm of P . Since P = J−1D−1J , we can304

define ∥P∥d = ∥D−1∥2. It is easy to verify that ∥ · ∥d is a matrix norm. Then, we305

have306

(2.17) ∥P∥F ≤ C∥P∥d = C∥D−1∥2 ≤ CµL.307

On the other hand, since Φ is an orthogonal matrix, we have,308

L∑
j=1

∥ỹj∥2 = ∥ΦDFJ∥2F(2.18)309

= ∥DFJ∥2F ≤ ∥D∥2F ∥FJ∥2F(2.19)310

≤ C∥FJ∥2F ≤ C

L∑
j=1

∥yj∥2.(2.20)311

Aligning with Proposition A.1, we can combine the previous inequalities to obtain312 ∑M
i=1 ||yi − Ppodyi||2L2(Ω)∑M

i=1 ||yi||
2
L2(Ω)

≤ C∥P∥2F

∑M
i=1 ||ỹi − Ppodỹi||2L2(Ω)∑M

i=1 ||ỹi||
2
L2(Ω)

(2.21)313

≤ µ2
Lρ.(2.22)314

The conclusion follows from the estimation µi ≤ Ci2/d.315

2.3. Convergence of inverse parabolic source problem. To solve this in-316

verse source problem, we use the well-established Tikhonov regularization method,317

which is expressed as318

min
f∈X

∥S(f)−m∥2L2(Ω) + λ∥f∥2L2(Ω).(2.23)319

However, in the conventional application of the POD method, the source term f320

must be determined initially to generate snapshots and obtain the POD basis func-321

tions. In the context of inverse problems, the only available information is the mea-322

surement m(x). This predicament, referred to as the inverse crime, makes the conven-323

tional POD method impossible to implement in practice. Our new method overcomes324
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this vital drawback by using the POD forward solver as the forward solver in the325

Tikhonov regularization method.326

In the general discrete approximation of problem (2.23), we seek to solve the327

following least-squares regularized optimization problem:328

min
f∈Vpod

∥Spod(f)−m∥2L2(Ω) + λ∥f∥2L2(Ω).(2.24)329

Consider the functional Jpod[f ] = ∥Spodf −m∥2L2(Ω) + λ∥f∥2L2(Ω). By computing330

the Fréchet derivative of Jpod[f ], we can derive the subsequent iterative scheme:331

fk+1 = fk − βdJpod[fk], ∀k ∈ N,(2.25)332

where β is the step size, dJpod[f ] = S∗
pod(Spodf − m) + λf denotes the Fréchet333

derivative, and f0 is an initial guess [35].334

The above theory is based on the noise-free case, where the final time measurement335

m = u(·, T ) is assumed to be precisely known. However, in practical applications,336

measurement data often contains uncertainties. We assume that the measurement337

data is blurred by noise and takes the discrete form338

mn
i = u(di, T ) + ei, i = 1, · · · , n,(2.26)339

where dis represent the positions of detectors, and {ei}ni=1 are independent and340

identically distributed (i.i.d.) random variables on an appropriate probability space341

(X,F ,P).342

Based on [6] and the analysis therein, we know that ∥u∥C([0,T ];H2(Ω)) ≤ C∥f∥L2(Ω).343

According to the embedding theorem of Sobolev spaces, we know that H2(Ω) is344

continuously embedded into C(Ω̄) so that u(·, T ) is well defined point-wisely for all345

di ∈ Ω. Without loss of generality, we assume that the scattered locations {di}ni=1346

are uniformly distributed in Ω. That is, there exists a constant B > 0 such that347

dmax/dmin ≤ B, where dmax and dmin are defined by348

dmax = sup
x∈Ω

inf
1≤i≤n

|x− di| and dmin = inf
1≤i ̸=j≤n

|di − dj |.(2.27)349

We will first use the technique developed in [5] to recover the final time mea-350

surement u(·, T ) from the noisy data mn
i , for i = 1, ..., n. We approximate u(·, T ) by351

solving the following minimization problem:352

m = argmin
u∈X

1

n

n∑
i=1

(u(xi)−mn
i )

2 + α|u|2H2(Ω).(2.28)353

The choice of the optimal parameter α typically depends on both the noise level354

and the unknown function u∗. In the case of measured data with uncertainty, an a355

posteriori method has been proposed and discussed in previous literature [5, 6, 36].356

We list the algorithm below.357

Assuming the pointwise noise ei has a bounded variance σ, which is referred to as358

the noise level, [5] analyzed this problem and provided optimal convergence results.359

Moreover, they proposed an a posteriori algorithm to obtain the best approximation360

without knowing the true solution m and noise level σ. Here, we list their main361

results. If one chooses the optimal regularization parameter362

α1/2+d/8 = O(σn−1/2∥u(·, T )∥−1
H2(Ω)),(2.29)363
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10 W. ZHANG, AND Z. ZHANG

Algorithm 2.1 A self-consistent algorithm for finding the optimal α

Given an initial guess of α0; for j = 0, 1, · · · , do the following
Solve (2.28) for uh with α replaced by the current value of αj on the mesh;

Update αj+1: α
1/2+d/8
j+1 = n−1/2∥uh −mn∥n |uh|−1

H2(Ω).

The algorithm stops if |αj − αj+1| < 10−10.

then the solution m of (2.28) achieves the optimal convergence364

(2.30) E
[
∥u(·, T )−m∥L2(Ω)

]
≤ Cα1/2∥u(·, T )∥H2(Ω).365

If the noise {ei}ni=1 are independent Gaussian random variables with variance σ,366

we further have,367

(2.31) P(∥u(·, T )−m∥L2(Ω) ≥ α1/2∥u(·, T )∥H2(Ω)z) ≤ 2e−Cz2

.368

Using this recovered function m(x), we generate the adjoint POD basis functions369

in Section 2.1. It can be easily shown that, with uncertainty, the POD basis functions370

are still a good low-rank approximation of the snapshots {y1, ..., yM}. Combining371

Theorem 2.3 and (2.30), we have that for any 1 ≤ i ≤M ,372

(2.32) ||yi − Ppodyi||2L2(Ω) ≤ C(ML4/dρ+ α)∥f∥2L2(Ω).373

Since we replace the source term by a finite truncation (2.6) and if f ∈ H1(Ω),374

we have375

(2.33) ∥f − fapp∥L2 ≤ C
∥∇f∥L2

√
µL

≤ C
∥∇f∥L2

L1/d
.376

If f ∈ L2(Ω), then fapp → f as L→ +∞. We assume377

(2.34) ∥f − fapp∥2L2 ≤ ε,378

where ε depends on L. With these results, using a similar technique to prove Theorem379

4.1 in [35], we can obtain the following convergence results.380

Theorem 2.4. Let {ei}ni=1 be independent random variables satisfying E[ei] = 0381

and E[e2i ] ≤ σ2 for i = 1, · · · , n. Set α1/2+d/8 = O(σn−1/2∥u∗(·, T )∥−1
H2(Ω)) in (2.28),382

and λ = O(ML4/dρ+ α). Then, we have the following error estimates383

E
[
∥Sf∗ − Spodfpod∥2L2(Ω)

]
≤ Cλ∥f∗∥2L2(Ω) + Cε,(2.35)384

385

E
[
∥f∗ − fpod∥2L2(Ω)

]
≤ C∥f∗∥2L2(Ω) + Cε,(2.36)386

and387

E
[
∥f∗ − fpod∥2H−1(Ω)

]
≤ Cλ1/2∥f∗∥2L2(Ω) + Cε.(2.37)388

Furthermore, if we assume the noise {ei}ni=1 are independent Gaussian random389

variables with variance σ, we can obtain a stronger type of convergence. A similar390

proof can be found in [6]. We list the results here for completeness.391
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Theorem 2.5. Let {ei}ni=1 be independent Gaussian random variables with vari-392

ance σ. Set α1/2+d/8 = O(σn−1/2∥u∗(·, T )∥−1
H2(Ω)) in (2.28), and λ = O(ML4/dρ+α).393

Then, there exists a constant C, for any z > 0, such that394

P(∥Spodfpod − Sf∗∥L2(Ω) ≥ (λ1/2∥f∗∥L2 + ε)z) ≤ 2e−Cz2

,(2.38)395
396

P(∥fpod − f∗∥L2(Ω) ≥ (∥f∗∥L2 + ε)z) ≤ 2e−Cz2

,(2.39)397

and398

P(∥fpod − f∗∥H−1(Ω) ≥ (λ1/4∥f∗∥L2 + ε)z) ≤ 2e−Cz2

.(2.40)399

Theorems 2.4 and 2.5 provide the stochastic convergence rate for the error ∥Sf∗−400

Spodfpod∥2L2(Ω) = Op(λ∥f∗∥2L2(Ω)+ε), and ∥f∗−fpod∥2H−1(Ω) = Op(λ
1/2∥f∗∥2L2(Ω)+ε)401

in terms of the values λ and ε. These results provide useful guidance for practical402

numerical simulations.403

3. Parabolic backward problem. For the backward problem of the parabolic404

equation, our goal is to recover the initial condition g(x), given the final time mea-405

surement m = S(g) = u(·, T ). In this case, u satisfies the following equation:406

(3.1)


ut + Lu = 0 in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = g(x) in Ω ,

407

Unlike the traditional POD method, we obtain the snapshots from the adjoint408

equation as follows:409

(3.2)


ũt + Lũ = 0 in Ω× (0, T ),

ũ(x, t) = 0 on ∂Ω× (0, T ),

ũ(x, 0) = m(x) in Ω ,

410

In this case, the snapshots are generated by solving the adjoint equation (3.2)411

with the given final time measurement m(x) as the initial condition.412

Following the standard procedure in section 2.2, we generate the new POD basis413

functions ψk’s from the snapshots
{
ũ(·, t0), ũ(·, t1), . . . , ũ(·, tM )

}
, where tk = k∆t with414

∆t = T
M and k = 0, . . . ,M . Then, we obtain the following error formula, similar to415

Proposition A.1:416

(3.3)

∑2M+1
i=1

∣∣∣∣∣∣ỹi −∑Npod

k=1

(
ỹi, ψk(·)

)
L2(Ω

ψk(·)
∣∣∣∣∣∣2
L2(Ω)∑2M+1

i=1 ||ỹi||2L2(Ω)

= ρ,417

where the number Npod is determined according to the decay of the ratio ρ =418 ∑2M+1
k=Npod+1 λk∑2M+1

k=1 λk
.419

We consider using these new POD basis functions to approximate the forward420

problem to accelerate the computation. The fully discrete scheme is constructed on421

Vpod, and the solution is denoted by Uk for k = 1 · · ·M with M = T
∆t . Specifically,422

we seek numerical solutions Uk such that423

(3.4) (∂̄Uk, ψ) + a(Uk, ψ) = 0, ∀ψ ∈ Vpod,424

with U0 = g(x). We define the solution operator from the initial condition g(x) to425

the final time solution UM as Spod, i.e., Spodg = UM .426
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12 W. ZHANG, AND Z. ZHANG

3.1. Convergence of the adjoint-POD method. For any g ∈ L2(Ω), we427

can write g =
∑∞

k=1 gkϕk for a set of coefficients gk. Let u =
∑∞

k=1 uk(t)ϕk be the428

solution of the problem (2.1). Substituting these two expressions of g and u into the429

first equation of (2.1), we get, by noting the fact that Lϕk = µkϕk and comparing430

the coefficients of ϕk on both sides of the equation, that uk(0) = gk and431

u′k(t) + µkuk = 0 in (0, T ).432

We can write the solution as uk(T ) = αk gk, with αk = e−µkT . Noting that433

Sg = u(·, T ) =
∑∞

k=1 uk(T )ϕk, we can formally write434

S
( ∞∑

k=1

gkϕk

)
=

∞∑
k=1

αkgkϕk.435

This representation shows the relationship between the initial condition g and the436

solution u(·, T ) at the final time T . The operator S maps the initial condition to the437

solution at time T through the coefficients αk, which depend on the eigenvalues µk438

of the operator L and the final time T . This relationship can be used to analyze the439

properties of the solution and the backward problem.440

For simplicity, we approximate the source term g(x) by a finite-dimensional trun-441

cation, i.e.442

(3.5) gapp =

L∑
k=1

gkϕk.443

Then, the solution u(x, t) of the parabolic equation has the form:u(·, T ) =
∑L

k=1444

e−µkT fkϕk. After simple calculation, we can also have that ũ(x, t) =
∑L

k=1 e
−µkT445

e−µktfkϕk. Constructing the POD basis functions is equivalent to computing the446

singular value decomposition of the matrix Ã = (ỹ1, ..., ỹM ), where ỹj = (ũ(x1, tj), ...447

, ũ(xN , tj))
T . Here x1, ..., xN are the finite element nodes in Ω. Suppose A has the448

singular value decomposition: A = UΣV , then the ψks are exactly the firstM columns449

of U .450

Let us denote A = (y1, ..., yM ) and Ã = (ỹ1, ..., ỹM ), the matrix Φ = (ϕ1(x⃗, t1), ...451

, ϕL(x⃗, t1)), F = diag(f1, ..., fL) and D = diag(e−µ1T , ..., e−µLT ). We also define the452

L×M matrix J with entries J(i, j) = e−µitj . Since the normal orthogonality of the453

eigenfunctions ϕk’s, Φ is a column orthogonal matrix. Using the formulations of u454

and ũ, we can represent the matrix A and Ã as follows:455

(3.6) A = ΦFJ, and Ã = ΦDFJ.456

The matrix representations of A and Ã provide a concise way to express the457

relationship between the coefficients of the eigenfunctions ϕk and the solutions u(x, t)458

and ũ(x, t).459

Proposition A.1 shows that the low-rank space Vpod provides the best Npod-rank460

approximation of the column space of Ã. We aim to prove that Vpod is also a good461

approximation of the column space of A, which will confirm the effectiveness of the462

new POD method. To begin, we establish the connection between the matrices A and463

Ã.464

Lemma 3.1. If L ≤M , it follows that span{y1, ..., yM} = span{ỹ1, ..., ỹM}. Con-465

sequently, the column spaces of A and Ã are identical, i.e., C(A) = C(Ã).466
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Proof. The proof of this statement is analogous to that of Lemma 2.2, using the467

fact that the matrix J is a Vandermonde matrix.468

Using (3.3), we observe that the new POD basis provides a good approximation469

of {ỹ1, ..., ỹM}. With the preceding analysis, we aim to demonstrate that the new470

POD basis is also an effective approximation of {y1, ..., yM}.471

Theorem 3.2. Using the same notation in this section, we note that if a sufficient472

number of snapshots are available, i.e., L ≤M , then we have473

(3.7)

∑M
i=1 ||yi − Ppodyi||2L2(Ω)∑M

i=1 ||yi||
2
L2(Ω)

≤ Ce2µLT ρ,474

where Ppod denotes the projection operator on the adjoint-POD space span{ψ1, ...,475

ψNpod
}, and ρ =

∑M
k=Npod+1 λk∑M

k=1 λk
.476

Proof. In the following proof, we assume L = M for simplicity. For the case477

L < M , the proof is similar. Using the same notation of Lemma 3.1, Φ and J are478

both invertible square matrices. Then, there exists a unique matrix P such that,479

(3.8) ΦDFJP = ΦFJ,480

where P = J−1D−1J . Therefore, we have yj =
∑L

i=1 Pij ỹi.481

Using the Cauchy-Schwarz inequality, we obtain the following estimate for any482

1 ≤ j ≤ L,483

∥yj − Ppodyj∥2 ≤
L∑

i=1

P 2
ij

L∑
i=1

∥ỹi − Ppodỹi∥2.(3.9)484

Hence, we can obtain that485

L∑
j=1

∥yj − Ppodyj∥2 ≤
L∑

i,j=1

P 2
ij

L∑
i=1

∥ỹi − Ppodỹi∥2 = ∥P∥2F
L∑

i=1

∥ỹi − Ppodỹi∥2.(3.10)486

The remaining part is to estimate the Frobenius norm of P . Since P = J−1D−1J ,487

we define that ∥P∥d = ∥D−1∥2. It is easy to verify that ∥ ·∥d is a matrix norm. Then,488

we obtain489

∥P∥F ≤ C∥P∥d = C∥D−1∥2 ≤ CeµLT .(3.11)490

On the other hand, since Φ is an orthogonal matrix, we have491

L∑
j=1

∥ỹj∥2 = ∥ΦDFJ∥2F = ∥DFJ∥2F ≤ ∥D∥2F ∥FJ∥2F(3.12)492

≤ C∥FJ∥2F ≤ C

L∑
j=1

∥yj∥2.(3.13)493

Aligned with the equation (3.3), we can derive the following estimate:494 ∑M
i=1 ||yi − Ppodyi||2L2(Ω)∑M

i=1 ||yi||
2
L2(Ω)

≤ C∥P∥2F

∑M
i=1 ||ỹi − Ppodỹi||2L2(Ω)∑M

i=1 ||ỹi||
2
L2(Ω)

(3.14)495

≤ Ce2µLT ρ.(3.15)496

Therefore, we can conclude the inequality with the estimated value of µi ≤ Ci2/d.497
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3.2. Stochastic convergence of backward problem. To solve this backward498

problem, we use the traditional Tikhonov regularization method,499

min
g∈X

∥S(g)−m∥2L2(Ω) + λ∥g∥2L2(Ω),(3.16)500

where λ is the regularization parameter.501

In the discrete approximation of the regularization problem (3.16), we solve the502

following least-squares regularized optimization problem:503

min
g∈Vpod

∥Spod(g)−m∥2L2(Ω) + λ∥g∥2L2(Ω).(3.17)504

We define the functional Jpod[g] = ∥Spodg−m∥2L2(Ω)+λ∥g∥
2
L2(Ω). We can compute505

the Fréchet derivative of Jpod[g] and obtain the following iterative scheme:506

gk+1 = gk − βdJpod[gk], ∀k ∈ N,(3.18)507

where β is the step size, dJpod[g] = S∗
pod(Spodg −m) + λf , and g0 is an initial guess.508

The above theory is based on the assumption of a noise-free case, where the final509

time measurement m = u(·, T ) is known exactly. However, in practical applications,510

the measurement data often contains uncertainty. To account for this uncertainty,511

we assume that the measurement data takes the discrete form mn
i = u(di, T ) + ei for512

i = 1, · · · , n, where ei denotes the measurement error at the i-th point. Based on the513

properties of parabolic equations [36], we know that ∥u∥C([0,T ];H2(Ω)) ≤ C∥g∥L2(Ω).514

Furthermore, according to the embedding theorem of Sobolev spaces, we know that515

H2(Ω) is continuously embedded into C(Ω̄), ensuring that u(·, T ) is well-defined point-516

wise for all di ∈ Ω.517

We repeat the procedure of (2.28) in section 2.3. If we choose the optimal regu-518

larization parameter α1/2+d/8 = O(σn−1/2∥u(·, T )∥−1
H2(Ω)) (in practice, we chose the519

optimal parameter using Algorithm 2.3), then the denoised solution m achieves the520

optimal convergence with noise of bounded variance σ2 given by521

(3.19) E
[
∥u(·, T )−m∥L2(Ω)

]
≤ Cα1/2∥u(·, T )∥H2(Ω).522

Assuming that the noise {ei}ni=1 are independent Gaussian random variables with523

a variance of σ, we can obtain a further result. Specifically, we have:524

(3.20) P(∥u(·, T )−m∥L2(Ω) ≥ α1/2∥u(·, T )∥H2(Ω)z) ≤ 2e−Cz2

.525

In practice, the noise level and the true initial term may be unknown. To deter-526

mine the optimal regularization parameter α for denoising, we can apply Algorithm527

2.3. This algorithm will select a value of α that balances the trade-off between re-528

ducing noise and preserving important features of the solution. Using the recovered529

function m(x), we generate the adjoint POD basis in Section 2.1. It can be shown530

that, even with uncertainty, the POD basis still provides a good low-rank approxima-531

tion of the snapshots {y1, ..., yM}. Combining Theorem 3.2 and (3.19), we can deduce532

that for any 1 ≤ i ≤M , the following inequality holds:533

(3.21) ||yi − Ppodyi||2L2(Ω) ≤ C(Me2µLT ρ+ α)∥g∥2L2(Ω).534

Since we replace the source term with a finite truncation (3.5), we make the535

assumption that:536

(3.22) ∥g − gapp∥2L2 ≤ ε(L).537
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Using similar techniques to those employed in the proof of Theorem 3.7 in [36], we can538

derive the following convergence results based on the aforementioned assumptions.539

Theorem 3.3. Let {ei}ni=1 be independent random variables satisfying E[ei] = 0540

and E[e2i ] ≤ σ2 for i = 1, · · · , n. If we set α1/2+d/8 = O(σn−1/2∥u(·, T )∥−1
H2(Ω)) in541

(2.28) and λ = O(Me2µLT ρ+ α), then we obtain:542

E
[
∥Sg∗ − Spodgpod∥2L2(Ω)

]
≤ Cλ∥g∗∥2L2(Ω) + Cε,(3.23)543

and544

E
[
∥g∗ − gpod∥2L2(Ω)

]
≤ C∥g∗∥2L2(Ω) + Cε.(3.24)545

Furthermore, if we assume that the noise {ei}ni=1 are independent Gaussian ran-546

dom variables with a variance of σ, we can obtain a stronger type of convergence. A547

similar proof can be found in [36]. Here, we only present the resulting convergence548

results.549

Theorem 3.4. Let {ei}ni=1 be independent Gaussian random variables with a550

variance of σ. If we set α1/2+d/8 = O(σn−1/2∥u(·, T )∥−1
H2(Ω)) in (2.28) and λ =551

O(Me2µLT ρ+ α), then for any z > 0, there exists a constant C such that:552

P(∥Spodgpod − Sg∗∥L2(Ω) ≥ (λ1/2∥g∗∥L2(Ω) + ε)z) ≤ 2e−Cz2

,(3.25)553

and554

P(∥gpod − g∗∥L2(Ω) ≥ (∥g∗∥L2(Ω) + ε)z) ≤ 2e−Cz2

.(3.26)555

Theorem 3.3 and Theorem 3.4 provide the stochastic convergence rate as ∥Sg∗ −556

Spodgpod∥2L2(Ω) = Op(λ∥g∗∥2L2(Ω) + ε) in terms of the values λ and ε. These results557

also provide useful guidance for practical numerical simulations.558

4. Numerical examples. This section presents several numerical examples to559

demonstrate the reconstruction results for the inverse source problem and the back-560

ward problem discussed in this paper. Specifically, we consider a parabolic equation561

as follows:562

(4.1)


ut −∆u = f(x) in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = g(x) in Ω ,

563

where the domain Ω = [0, π]2, f(x) is the source term, and g(x) is the initial condition.564

For each observation data set, we first use the backward Euler scheme in time and the565

linear finite element method (specifically, the P1 element) in space with a mesh size566

of h = 1/50 and a time step of ∆t = T/400. We use 9 POD basis functions (usually567

less basis is enough) to compute the inverse problems unless otherwise specified. For568

the FEM, there are approximately 2500 basis functions.569

In [35], the authors have already compared the efficiency of the POD method and570

the finite element method for solving this inverse problem. They have demonstrated571

that the POD method achieves a speed-up of at least 6 times, even with 400 finite572

element basis functions. Therefore, we do not include a comparison with the finite573

element method in this paper. However, it is worth noting that as the number of574

finite element basis functions increases, the potential for the POD method to achieve575

greater speed-up also grows correspondingly.576
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4.1. Numerical results for inverse source problems. In the following ex-577

amples, we use the adjoint POD method to recover the source term f as described in578

Section 2. We obtain the data for the forward problem with the exact source term f579

at the final time T = 1.580

Example 4.1 We first demonstrate the importance of choosing the appropriate581

POD basis functions. For the same source term, we apply different right-hand sides of582

equation (2.1) to obtain the POD basis functions. Subsequently, we solve the inverse583

source problem using these different POD basis functions.584

Figure 1 illustrates this process. The true source term is sin(2x) sin(2y)e
x+y
π , and585

its surface plot is shown in Figure 1 (a). Figure 1 (b) presents the reconstruction586

result obtained using the adjoint POD method proposed in this paper, indicating587

that our new method effectively and efficiently recovers the source term. Figure 1588

(c) displays the result when an incorrect right-hand side is used to generate the POD589

basis functions. In this case, we use sin(x) sin(y) as the right-hand side in (2.1) to590

generate the POD basis functions. Figure 1 (d) shows the result when we use an591

A-shaped function as the right-hand side to derive the POD basis.592

As can be seen, Figure 1 (b) provides a good reconstruction, whereas Figures 1593

(c) and (d) yield inaccurate results. The result in Figure 1 (d) is particularly striking,594

as the recovered image deviates significantly from the exact source term.595

In this example, we demonstrate the importance of selecting appropriate basis596

functions for solving inverse problems. Using an unsuitable set of basis functions can597

lead to incorrect results. Our proposed adjoint POD method offers a set of suitable598

basis functions for such problems. In the following examples, we will compare our599

adjoint POD basis functions with the original true POD basis to validate Theorem600

2.3.601

(a) Exact source term (b) Reconstructed by the ad-
joint POD method

(c) Using the POD basis gen-
erated with the right hand side
sin(x) sin(y)

(d) Using the POD basis gener-
ated with the right hand side of
A shaped function

Fig. 1. The importance of choice of POD basis
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Example 4.2 In this example, we first use the true source term as the right-hand602

side in (2.1) to generate the POD basis. Then, we generate the POD basis using our603

proposed adjoint POD method. To validate Theorem 2.3, we compare both sets of604

basis functions and assess their similarity. Figure 2 shows the results when using the605

exact source term f∗ = sin(2x) sin(2y). Figure 2 (b) and Figure 2 (c) show that both606

the traditional POD method and our adjoint POD method recover the true source607

term accurately. However, our adjoint POD method does not require prior knowledge608

of the exact source term, while the traditional POD method does, leading to the609

so-called inverse crime.610

Figure 3 presents the results for an exact source term f∗ in the form of a Z-shaped611

function. This example also illustrates the efficiency of the POD method in solving612

inverse problems compared to the finite element method. Figure 3 (c) and Figure 3 (e)613

show that both traditional POD and our adjoint POD method yield basis functions614

that contain critical information about the exact source term we aim to recover. In615

contrast, the basis functions of the finite element method do not contain any prior616

information about the true function we need to recover.617

(a) Exact source term (b) Recovered result by tradi-
tional POD with exact right
hand side

(c) Result by the adjoint POD

Fig. 2. Comparison of basis between traditional POD and the adjoint POD for f =
sin(2x) sin(2y).

(a) Exact source term (b) Recovered result by tradi-
tional POD with exact right
hand side

(c) Result by the adjoint POD

Fig. 3. Comparison of basis between traditional POD and the adjoint POD for f∗ of Z-shaped
function.

In the previously mentioned cases, all measured data were noise-free. We will618

now examine highly challenging cases with noise levels ranging from 10% to 50% to619

test the denoising method described in Section 2.3.620
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Example 4.3 In this example, we will evaluate the robustness of the adjoint621

POD method in the presence of noise. We consider the measurement data to be622

mn
i = u(di, T )+σei, i = 1, · · · , n, where di represents positions within the domain Ω,623

and {ei}ni=1 are independent standard normal random variables. We will take 2500624

positions di uniformly distributed over the domain Ω.625

Figure 4 demonstrates the robustness of our method in the presence of significant626

noise. Even with a 50% noise level, where the measured data is entirely obscured by627

noise as shown in Figure 4 (c), our method is still able to recover the source term as628

depicted in Figure 4 (f).629

(a) Exact source term (b) Measured data with 25%
noise

(c) Measured data with 50%
noise

(d) Recovered result for 10%
noise

(e) Recovered result for 25%
noise

(f) Recovered result for 50%
noise

Fig. 4. Robustness of the adjoint POD against the noise for f = sin(2x)sin(2y)e
x+y
π .

Example 4.4 In this example, we demonstrate the effect of choosing different630

numbers of our new POD basis and verify the convergence of our POD method. Figure631

5 illustrates this test. We see that as the number of our POD basis increases, the632

reconstruction error decays rapidly; see Figure 5 (f). We observe exponential decay633

from our numerical experiments. Even for a complicated function with a ’Z’ shape, we634

can obtain satisfactory results with just 10 POD basis functions. As the number of our635

POD basis increases, the reconstruction becomes increasingly accurate, as depicted636

in Figure 5 (a) - (e).637

4.2. Numerical results for backward problems. In this subsection, we ap-638

ply the new POD method to recover the initial condition g, as discussed in Section 3.639

We collect the data at the time T = 0.05. Since most of the examples are similar to640

what we did in section 4.1, we may not explain the setting of numerical examples in641

detail.642

Example 4.5 In this example, we demonstrate the importance of POD basis,643

similar to what we did in Example 4.1. We solve the backward problem using different644

POD basis functions.645
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(a) 1 POD basis (b) 2 POD basis (c) 4 POD basis

(d) 7 POD basis (e) 10 POD basis (f) Error decay as the number of
POD basis grows

Fig. 5. Effects of the numbers of POD basis.

Figure 6 illustrates the corresponding results. The true initial condition is sin(2x)646

sin(2y)e
x+y
π , and its surface plot is shown in Figure 6 (a). Figure 6 (b) presents the647

reconstruction result using our adjoint POD method. Figure 6 (c) shows the result648

when we use an incorrect initial condition to generate the POD basis functions, and649

Figure 6 (d) displays the result when we use an A-shaped function as the initial650

condition to generate the POD basis functions.651

Example 4.6 In the following two examples, we adopt the approach of example652

4.2. We first use the true initial condition as the initial condition in Eq. (3.1) to653

generate the POD basis functions. Then, we generate the POD basis functions using654

our proposed adjoint POD method.655

Figure 7 shows the results obtained by using the exact source term g∗ = sin(2x)656

sin(2y)e
x+y
π . Figures 7 (b) and 7 (c) demonstrate that both the traditional POD657

and our adjoint POD methods work well in recovering the true initial condition.658

However, our adjoint POD method does not require prior knowledge of the exact659

initial condition. Figure 8 shows the results using the exact initial condition g∗ of the660

A-shaped function.661

In the above numerical examples in this subsection, all the measured data are662

noise-free. Now, we test the denoising method discussed in Section 3.2 by examining663

very challenging cases with noise levels ranging from 10% to 50%.664

Example 4.7 Similar to Example 4.3, we test the robustness of the adjoint POD665

method against noise. We take the measurement data as mn
i = u(di, T ) + σei, for666

i = 1, · · · , n, where dis represent the positions inside Ω, {ei}ni=1 are independent667

standard normal random variables, and σ is the noise level. We use 2500 positions668

di uniformly distributed over the domain Ω. Figure 9 demonstrates that our method669

is robust even in the presence of significant noise. Remarkably, even with 50% noise,670

when the measured data is completely obscured by noise as shown in Figure 9 (c), we671
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(a) Exact initial condition (b) POD method proposed in
this paper

(c) Using the POD basis gen-
erated with the initial term
sin(x)sin(y)

(d) Using the POD basis gener-
ated with the initial term of A-
shaped function

Fig. 6. The importance of choice of POD basis

(a) Exact initial condition (b) Recovered result by tradi-
tional POD with exact initial
term

(c) Result by the adjoint POD

Fig. 7. Comparison of basis between traditional POD and the adjoint POD for f =

sin(2x)sin(2y)e
x+y
π .

can still recover the initial condition, as seen in Figure 9 (f).672

Example 4.8 Finally, we study a more interesting case. Although the inverse673

source problem and the backward problem are two distinct problems, we have ob-674

served from the previous numerical examples that they share some commonalities.675

Specifically, the POD basis functions for both problems contain critical information676

about the functions one wants to recover. As a result, we employ the POD basis677

functions derived from the inverse source problem to solve the backward problem.678

Please refer to Figure 10 for the reconstruction results. This example also shows that679

the inverse source problem and the backward problem share similar basis functions680

from the point of view of the POD method. This similarity can also be explained by681

the theory of semi-groups and spectral analysis.682
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(a) Exact initial condition (b) Recovered result by tradi-
tional POD with exact initial
term

(c) Result by the adjoint POD

Fig. 8. Comparison of basis between traditional POD and the adjoint POD for f∗ of A shaped
function.

(a) Exact initial condition (b) Measured data with 25%
noise

(c) Measured data with 50%
noise

(d) Recovered result for 10%
noise

(e) Recovered result for 25%
noise

(f) Recovered result for 50%
noise

Fig. 9. Robustness of the adjoint POD against the noise for g = sin(2x)sin(2y).

5. Conclusion. In this paper, we have developed a novel POD-based model re-683

duction method for solving parabolic inverse problems, specifically focusing on inverse684

source and inverse initial value problems. By leveraging the intrinsic low-dimensional685

structures in the parabolic equations, we have successfully developed POD basis func-686

tions that reduce computational costs while maintaining accuracy in solving parabolic687

inverse problems. Our primary contribution is the effective addressing of the inverse688

crime issue associated with traditional model reduction methods for solving PDEs,689

which is a common challenge encountered by traditional POD methods for solving in-690

verse problems. Furthermore, we have provided convergence analysis for our proposed691

method and demonstrated its accuracy and efficiency through numerical examples.692

The results show that our proposed method overcomes the inverse crime issue and693

produces superior results compared to traditional methods. Therefore, our proposed694
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(a) Exact initial condition (b) Recovered result using the
POD basis from backward prob-
lem

(c) Recovered result using the
POD basis from inverse source
problem

Fig. 10. Solve the backward problem using the basis from the inverse source problem.

method provides a promising avenue for solving parabolic inverse problems with high695

accuracy and computational efficiency.696
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Appendix A. Proper orthogonal decomposition (POD) method. As-704

suming that u ∈ H1
0 (Ω) is the solution to the weak formulation of the parabolic705

equation (1.1), the construction of POD basis functions requires solution snapshots.706

These solution snapshots can be obtained through various technological means related707

to a specific application, such as experimental data or numerical methods. For in-708

stance, one can measure the solution at different times using sensors in experimental709

settings to obtain the solution snapshots. Alternatively, one can use FEM to solve710

the parabolic equation numerically and obtain the solution snapshots.711

Given a set of solutions at different time instances
{
u(·, t0), u(·, t1), . . . , u(·, tM )

}
,712

where tk = k∆t with ∆t = T
M and k = 0, . . . ,M , we first obtain the solution snapshots713

{y1, . . . , yM+1, yM+2, . . . , y2M+1}, where yk = u(·, tk−1), k = 1, . . . ,M + 1, and yk =714

∂u(·, tk−M−1), k =M + 2, . . . , 2m+ 1 with ∂u(·, tk) = u(·,tk)−u(·,tk−1)
∆t , k = 1, . . . ,M .715

The POD basis functions {ψk}
Npod

k=1 are constructed by minimizing the following716

projection error:717

1

2m+ 1

( M∑
j=0

∥∥u(tj)− Npod∑
k=1

(u(tj), ψk)L2(Ω)ψk

∥∥2
L2(Ω)

(A.1)718

+

M∑
j=1

∥∥∂u(tj)− Npod∑
k=1

(∂u(tj), ψk)L2(Ω)ψk

∥∥2
L2(Ω)

)
(A.2)719

subject to the constraints that
(
ψk1(·), ψk2(·)

)
L2(Ω)

= δk1k2 , 1 ≤ k1, k2 ≤ Npod, where720

δk1k2
= 1 if k1 = k2, otherwise δk1k2

= 0. Here, Npod denotes the number of POD721

basis functions that will be extracted from solution snapshots.722
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Let Vpod = span{ψ1, . . . , ψNpod
} denote the finite-dimensional space spanned by723

the POD basis functions. Using the method of snapshot proposed by Sirovich [33],724

we know that the minimizing problem can be reduced to the following eigenvalue725

problem:726

(A.3) Kv = µv,727

where the correlation matrix K is computed from the solution snapshots {y1, y2, . . . ,728

y2M+1} with entries Kij = (yi, yj)L2(Ω), i, j = 1, . . . , 2M +1, and K is symmetric and729

semi-positive definite. We sort the eigenvalues in a decreasing order as λ1 ≥ λ2 ≥730

... ≥ λ2m+1 and the corresponding eigenvectors are denoted by vk, k = 1, ..., 2M + 1.731

It can be shown that if the POD basis functions are constructed by732

(A.4) φk(·) =
1√
λk

2M+1∑
j=1

(vk)ju(·, tj), 1 ≤ k ≤ Npod,733

where (vk)j is the j-th component of the eigenvector vk, they minimize the projection734

error.735

The approximation error for the POD method has been studied extensively in the736

literature, particularly in the works [21] and [3].737

Proposition A.1 (Section 3.3.2, [21] or p. 502, [3]). Let λ1 ≥ λ2 ≥ ... ≥738

λ2M+1 ≥ 0 denote the non-negative eigenvalues of the correlation matrix K in the739

eigenvalue problem (A.3). Then, {ψk}
Npod

k=1 constructed according to the method of740

snapshots (A.4) is the set of POD basis functions, and we have the following error741

formula:742

(A.5)

∑2M+1
i=1

∣∣∣∣∣∣ỹi −∑Npod

k=1

(
ỹi, ψk(·)

)
L2(Ω

ψk(·)
∣∣∣∣∣∣2
L2(Ω)∑2M+1

i=1 ||ỹi||2L2(Ω)

=

∑2M+1
k=Npod+1 λk∑2M+1
k=1 λk

,743

where the number Npod is determined by the decay of the ratio ρ =

∑2M+1
k=Npod+1 λk∑2M+1

k=1 λk
.744
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