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Abstract. In this paper, we compute the eigenvalue problem (EVP) for the semiclassical random5
Schrödinger operator. We assume that random potentials can be represented by an infinite series6
parameterized by random variables. We first truncate the series and develop the multiscale finite7
element method (MsFEM) to approximate the resulting parametric EVP. We then calculate the8
empirical statistics with the quasi-Monte Carlo (qMC) method in a finite-dimensional random space.9
To further reduce the computational costs, we construct the multiscale reduced basis using a set10
of low-dimensional proper orthogonal decomposition (POD) basis functions. We also provide the11
convergence analysis for the proposed method. With the bounded assumption on potentials, we12
prove that the approximation error is a combined form that depends on the truncated dimension s,13
the coarse mesh size H, the number of qMC samples N and the POD error ρ with a particular form14
O((H3 +

√
ρ)2 + s−2/p+1 +N−α). Finally, we conduct numerical experiments to validate the error15

estimate. In addition, we study the localization of eigenfunctions for the Schrödinger operator with16
spatially random potentials. The results show that our method offers a practical and efficient solution17
for simulating complex quantum systems governed by semiclassical random Schrödinger operators.18
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1. Introduction. The approximation of the eigenvalue problem (EVP) of the22

Schrödinger operator is a crucial computation task in quantum physics. When a spa-23

tially disordered potential is adopted, eigenfunctions may remain essentially localized24

in a small physical domain. A celebrated example is the Anderson localization [1],25

which has been extensively used to explain experimental observations, such as the26

metal-insulator transition of the cold atomic gas [8, 24], localization of optical [32, 34]27

and electromagnetic system [23, 33].28

In this paper, we consider the EVP as follows:29

(1.1)

(
−ϵ

2

2
∆ + V (x,ω)

)
ψ(x,ω) = λ(ω)ψ(x,ω)30

over a bounded convex domain D ⊂ Rd (d = 1, 2, 3) with the periodic boundary31

condition, where ϵ is the semiclassical constant and V (x,ω) is the random potential32

with ω ∈ Ω being the stochastic parameter in an infinity dimensional space Ω. Here33

the differential operator ∆ is with respect to the spatial variable x.34
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2 P. LI, AND Z. ZHANG

We consider the stochastic parameter35

ω = (ωj)j∈N ∈ Ω := [−1

2
,
1

2
]N36

to be the infinite-dimensional vector of i.i.d. uniformly random variables on [− 1
2 ,

1
2 ],37

and random potentials are bounded and admit the series expansion38

(1.2) V (x,ω) = v0(x) +

∞∑
j=1

ωjvj(x),39

where vj(x) (j = 1, 2, · · · ) are deterministic functions.40

We are interested in the statistics of the eigenvalues and linear functionals of41

the eigenfunctions in the uncertainty quantification (UQ). More precisely, for the42

minimal eigenvalue λ : Ω → R+, we aim to compute the expectation with respect43

to the countable product of uniform density, which is an infinite-dimensional integral44

defined as45

(1.3) Eω[λ] =

∫
Ω

λ(ω)dω = lim
s→∞

∫
[− 1

2 ,
1
2 ]

s

λ(ω1, · · · , ωs, 0, · · · )dω1 · · · dωs,46

as well as the counterpart of the ground state ψ to be47

(1.4) Eω[G(ψ)] = lim
s→∞

∫
[− 1

2 ,
1
2 ]

s

G(ψ)(·, ω1, · · · , ωs, 0, · · · )dω1 · · · dωs,48

where G is a linear functional in L2(D; Ω).49

Numerically, the integrals (1.3) and (1.4) are calculated with the setup ωj = 050

for j > s, which is consistent with the truncation of the potential (1.2). Then the51

Monte Carlo (MC) and quasi-Monte Carlo (qMC) methods are employed to generate52

the random points in the high-dimensional random space. Using N i.i.d. random53

points, MC method approximates an integral with O(N− 1
2 ) rate [27]. Instead, using54

N carefully chosen (deterministic) points (see example [11, 36]), the convergence rate55

of qMC method can reach almost O(N−1).56

To declare the challenge in computations of UQ for the random EVP (1.1), we57

denote ωs = (ω1, · · · , ωs) and apply the parametric potential58

(1.5) V (x,ωs) = v0(x) + σ

s∑
j=1

1

jq
sin(jπx)ωj ,59

where σ controls the strength of the randomness, and q controls the decay rates of the60

components with different frequencies. We then need to resolve features with various61

frequencies in the parametric problem. For sufficiently large s, the degrees of freedom62

(dofs) required for the finite element method (FEM) would be significantly large, and63

this poses the computational burden on both the time and memory. Therefore, our64

primary task is to efficiently solve the EVP parameterized by (1.5).65

When the coefficients of EVP are parameterized by (1.5) with specifically chosen66

parameter values, such as the spatially disordered coefficients and multiscale coeffi-67

cients, reduced basis methods [13, 18, 29, 30] were developed to decrease the compu-68

tational complexity. Some recent progress includes the data-driven proper orthogonal69

decomposition (POD) methods for elliptic problems [5, 6, 7], the localized orthogonal70
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A MODEL REDUCTION METHOD FOR THE RANDOM SCHRÖDINGER OPERATOR 3

decomposition (LOD) and the super-LOD for the nonlinear Bose-Einstein conden-71

sate [15, 16, 31], and the multiscale FEM (MsFEM) for the Schrödinger operator [26].72

On the other hand, when the random Schrödinger operator is specifically considered,73

there is a novel approach to efficiently predict the eigenvalues and the localization of74

eigenstates by the localization landscape and effective potential [2, 3, 12], in which only75

homogeneous elliptic equation is solved. In the further exploration of UQ problems, a76

combined approach, the qMC-FEM method, has been developed and thoroughly ana-77

lyzed in [14]. Nevertheless, there is rarely work related to the model reduction method78

for the UQ problem of random EVPs, even though the model reduction methods for79

UQ problems of partial differential equations (PDEs) with random coefficients have80

made continuous progress recently, e.g., see [9, 10, 19, 20, 37] and reference therein.81

For the UQ problem of (1.1), our approach proposed in this work consists of82

several key steps. Firstly, random potentials are approximated by the finite truncated83

series with the parameterization of stochastic parameters, and the qMC method is84

employed to generate the stochastic parameters. In the offline stage, we prepare the85

low-dimensional POD basis, which will be utilized to construct the multiscale basis86

corresponding to random potentials. Then in the online stage, we solve the EVP in an87

order-reduced system approximated by the multiscale basis. After that, the empirical88

statistics of eigenpairs are calculated. The multiscale basis is typically approximated89

using the standard FEM on the refined mesh. In our approach, the dofs in constructing90

the multiscale basis only rely on the dimensions of the POD basis.91

The approximation error of the proposed method, dubbed the MsFEM-POD92

method, for the EVP of random Schrödinger operator is a combined form that si-93

multaneously depends on the truncated dimension s, the coarse mesh size H, the94

number of qMC samples N and the POD error ρ. In particular, it exhibits the super-95

convergence rates with respect to H in the physical space. Hence, we first prove the96

error bounds (Theorem 5.3) for the multiscale solution λms and ψms as97

(1.6) ∥ψms − ψ∥1 ≤ CH3, ∥ψms − ψ∥ ≤ CH4,98

and99

(1.7) λms − λ ≤ CH6.100

where λ and ψ are the minimal eigenvalue and ground state, respectively. Throughout101

this paper, we use (·, ·) to denote the inner product in L2(D), then ∥ · ∥ and ∥ · ∥r102

(r = 1, 2) denote the norm in L2(D) and Hr(D) sense, respectively. In addition, we103

denote H1
P (D) = {v|v ∈ H1(D), and v is periodic over D}.104

As random potentials are further considered, the corresponding multiscale basis105

is approximated by the POD basis. Hence, two classes of optimal problems will be106

repeatedly referred to hereafter in which one has been extensively used in prior studies107

with the dofs depending on the mesh, and the other one is proposed here with the108

referred dofs relying on the POD basis. Let ϕi(x,ω) be the reference basis function109

obtained by solving the original optimal problems. Then for the multiscale basis110

ϕ̂i(x,ω) approximated by the POD basis, the error bound is111

(1.8) ∥ϕi(x,ω)− ϕ̂i(x,ω)∥ ≤ C
√
ρ,112

where i = 1, · · · , NH , and C is a constant independent of the stochastic parameter ω113

and i. Consequently, the estimates (1.6) and (1.7) are updated with an inclusion of114

the POD error
√
ρ; for the detail see Theorem 5.10.115
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4 P. LI, AND Z. ZHANG

The total error of the proposed for the UQ of EVP (1.1) is therefore116

(1.9)

√
E∆

[
|Eω[λ]−QN,sλ

pod
s,ms|2

]
≤ C

(
(H3 +

√
ρ)2 + s−2/p+1 +N−α

)
,117

where α = min{1−δ, 1/p−1/2} for arbitrary δ ∈ (0, 1/2). This result, presented in its118

complete form in Theorem 5.11, is given with similar results for the linear functional119

of the eigenfunctions. Compared to the qMC-FEM provided in [14], we developed an120

efficient model reduction approach for random EVPs. By leveraging low-dimensional121

approximations and constructing reduced basis functions, our approach significantly122

reduces computational costs while maintaining high accuracy.123

At the end of this paper, we conduct numerical experiments to validate the the-124

oretical error estimate and the advantage of the efficiency of the model reduction125

method. Furthermore, we investigate the localization of eigenfunctions for spatially126

random potentials in 1D and 2D problems. An important observation is that for127

parameterized potentials possessing non-decaying amplitudes of high-frequency com-128

ponents (q = 0), it requires the coarse mesh size such that H < ϵ. On the other hand,129

no such constraint is needed for parameterized potentials with q > 1. These results130

showcase that our approach offers a practical and efficient solution for simulating131

complex quantum systems governed by semiclassical random Schrödinger operators.132

The paper is organized as follows. We first give some useful preliminaries in Sec-133

tion 2. Numerical algorithms are detailed in Section 3. The regularity of the minimal134

eigenvalue and ground state with respect to the stochastic parameter is analyzed in135

Section 4. The convergence analysis is given in Section 5. Some experimental results136

are in Section 6. Conclusions are drawn in Section 7.137

2. Preliminaries on the semiclassical Schrödinger operator with ran-138

dom potentials. Let Ĥω = − ϵ2

2 ∆+ V (x,ω) be the random Hamiltonian operator.139

The solutions of (1.1) given by (λk, ψk) are the eigenpairs of Ĥω, which satisfy the140

random weak form141

(2.1)
ϵ2

2

∫
D

∇ψ(x,ω)∇ϕ(x)dx+

∫
D

V (x,ω)ψ(x,ω)ϕ(x)dx = λ(ω)

∫
D

ψ(x,ω)ϕ(x)dx.142

Denote the symmetric bilinear forms A(ω; ·, ·) : H1
P (D)×H1

P (D) → R by143

(2.2) A(ω;ψ, ϕ) =
ϵ2

2

∫
D

∇ψ(x) · ∇ϕ(x)dx+

∫
D

V (x,ω)ψ(x)ϕ(x)dx.144

Then for each ω ∈ Ω, we find ψ(ω) ∈ H1
P (D) and λ(ω) ∈ R such that145

A(ω;ψ(ω), ϕ) = λ(ω)(ψ(ω), ϕ), ∀ϕ ∈ H1
P (D)(2.3)146

with a normalization constraint ∥ψ(ω)∥ = 1.147

In quantum systems, a crucial task involves identifying the minimum eigenvalue148

and its corresponding eigenfunction, commonly known as the ground state. We define149

the energy functional150

(2.4) E(ϕ) =
1

2

∫
D

ϵ2

2
|∇ϕ|2 + V (x,ω)ϕ2dx.151

Then the ground state ψ of the system is characterized as the minimizer of this energy152

functional, subject to the normalization constraint ∥ψ∥ = 1, i.e.,153

(2.5) E(ψ) = inf
∥ϕ∥=1

E(ϕ).154
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A MODEL REDUCTION METHOD FOR THE RANDOM SCHRÖDINGER OPERATOR 5

We will refer to the eigenvalues of −∆ equipped with the periodic boundary155

condition. They are strictly positive and counting multiplicities. We denote them by156

(2.6) 0 < χ1 < χ2 < · · · .157

Assume random potentials are uniformly bounded with Vmax ≥ V (x,ω) ≥ Vmin ≥ 0158

but V (x,ω) ̸≡ 0, and we easily get the coercivity and boundedness of the bilinear159

form A(ω; ·, ·), which is uniform with respect to the stochastic parameter ω, i.e.,160

A(ω; v, v) ≥ c1∥v∥21, for all v ∈ H1
P (D)(2.7)161

A(ω;u, v) ≤ c2∥u∥1∥v∥1, for all u, v ∈ H1
P (D).(2.8)162

To establish (2.8), we use the upper bound of potentials and the Poincaré inequality163

(2.9) ∥v∥ ≤ χ
−1/2
1 ∥v∥1, for v ∈ H1

P (D).164

And we also have c2 = Vmax(1 + ϵ2/(2χ1)).165

Since the Hamiltonian operator Ĥω is self-adjoint and Vmin ≥ 0, the EVP has166

countable-many eigenvalues (λk(ω))k∈N. They are positive, have finite multiplicity,167

and accumulate only at infinity. We write them as168

0 < λ1(ω) ≤ λ2(ω) ≤ · · ·169

with λk(ω) → ∞ as k → ∞. For the eigenvalue λ(ω) we define the corresponding170

eigenspace171

E(ω, λ(ω)) := {ψ|ψ is an eigenfunction corresponding to λ(ω)}.172

And for the minimal eigenvalue λ1(ω), we have the following coercive-type estimate.173

Lemma 2.1 ([14], Lemma 3.1). For all ω ∈ Ω and λ ∈ R, define Aλ(ω; ·, ·) :174

H1
P (D)×H1

P (D) → R to be the shifted bilinear form175

(2.10) Aλ(ω;u, v) = A(ω;u, v)− λ(u, v).176

Restricted to the L2-orthogonal complement of the eigenspace corresponding to λ1(ω),177

denoted by E(ω, λ1(ω))⊥, the λ1(ω)-shifted bilinear form is uniformly coercive in ω,178

i.e., there exists a constant Cgap such that179

(2.11) Aλ1
(ω;u, u) ≥ Cgap∥u∥21 for all u ∈ E(ω, λ1(ω))⊥.180

181

Furthermore, according to the min-max principle, the kth eigenvalue is to be a182

minimum over all the subspace Sk ⊂ H1
P (D):183

(2.12) λk(ω) = min
Sk⊂H1

P (D)
max

0̸=u∈Sk

A(ω;u, u)

(u, u)
,184

where dim(Sk) = k. It can be equivalently written as185

(2.13) λk(ω) = min
Sk⊂H1

P (D)
max
u∈Sk,
∥u∥=1

A(ω;u, u),186
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6 P. LI, AND Z. ZHANG

Consequently, we obtain the bound of the kth eigenvalue187

λk(ω) ≥ c1 min
Sk⊂H1

P (D)
max
u∈Sk,
∥u∥=1

∥∇u∥2, λk(ω) ≤ c2 min
Sk⊂H1

P (D)
max
u∈Sk,
∥u∥=1

∥u∥21.188

Using the kth eigenvalue of the Laplacian operator, we get the bounds of λk(ω) as189

(2.14) λk := c1χk ≤ λk(ω) ≤ c2(χk + 1) := λk.190

Furthermore, since λk(ω) = A(ω;ψk(ω), ψk(ω)), the estimate of the corresponding191

eigenfunction satisfies192

(2.15) ∥ψk(ω)∥1 ≤
√
λk(ω)/c1 ≤

√
c2(χk + 1)/c1 := ψk.193

3. Numerical approximations.194

3.1. Stochastic dimension truncation. As defined in (1.2), the random po-195

tential V (x,ω) is assumed to be an infinite series expansion. To solve the EVP196

(1.1) with the potential (1.2) in numerical, we first truncate the infinite-dimensional197

problem into a s-dimensional problem by setting ωj = 0 for j > s. Denote ωs =198

(ω1, · · · , ωs), and the random potential is truncated as199

(3.1) V (x,ωs) = v0 +

s∑
j=1

ωjvj(x).200

We then deduce a truncated symmetric bilinear form201

As(ω;u, v) =

∫
D

ϵ2

2
∇u(x) · ∇v(x) + V (x,ωs)u(x)v(x)dx.202

The corresponding eigenpairs (λs(ω), ψs(ω)) satisfy the parametric EVP203

(3.2) As(ω;ψs(ω), v) = λs(ω)(ψs(ω), v) for all v ∈ H1
P (D)204

with ∥ψs(ω)∥ = 1.205

3.2. MsFEM approximation. For clarity, we consider the deterministic po-206

tential v0 := v0(x) and the corresponding weak form207

(3.3) a(ψ, ϕ) :=
ϵ2

2
(∇ψ,∇ϕ) + (v0ψ, ϕ) = λ(ψ, ϕ), ∀ ϕ ∈ H1

P (D).208

For the MsFEM, the FE basis on a coarse mesh with mesh size H and the refined209

mesh with mesh size h are required simultaneously. We consider the regular mesh TH210

of D and the standard P1 FE space on the mesh TH211

P1(TH) = {v ∈ L2(D̄)| for all K ∈ TH , v|K is a polynomial of total degree ≤ 1}.212

Then the corresponding H1
P (D)-confirming FE spaces are Vh = P1(Th) ∩H1

P (D) and213

VH = P1(TH) ∩H1
P (D).214

The multiscale basis functions are obtained by solving the optimal problems215

ϕi = argmin
ϕ∈H1

P (D)

a(ϕ, ϕ),(3.4)216

s.t.

∫
D

ϕϕHj dx = αδij , ∀ 1 ≤ j ≤ NH ,(3.5)217

This manuscript is for review purposes only.



A MODEL REDUCTION METHOD FOR THE RANDOM SCHRÖDINGER OPERATOR 7

where ϕHj ∈ VH and α = (1, ϕHj ). Here α is a factor to eliminate the dependence218

of basis functions on the mesh size, which has been elucidated by the Clément-type219

quasi-interpolation operator [25]. Define the patches {Dℓ} associated with xi ∈ NH220

D0(xi) := supp{ϕi} = ∪{K ∈ TH | xi ∈ K},221

Dℓ := ∪{K ∈ TH | K ∩Dℓ−1 ̸= ∅}, ℓ = 1, 2, · · · .222

The multiscale basis functions decay exponentially over the domain D; see the Theo-223

rem 4.2 in [26].224

In this numerical framework, three fundamental assumptions on potentials are225

required.226

Assumption 3.1. 1. For the potential in Schrödinger operators, we assume227

∥V ∥L∞(D;Ω) = Vmax <∞ and H
√
Vmax/ϵ ≲ 1.228

2. For some 0 < p < 1, it holds
∑∞
j=1 ∥vj∥

p
L∞ <∞.229

3. vj ∈W 1,∞(D) for j ≥ 0 and
∑∞
j=1 ∥vj∥W 1,∞(D) <∞.230

The first assumption gives a necessary condition to the optimal problems (3.4)-231

(3.5). And the others ensure that the parameterized EVP is well-posed.232

On the refined mesh, the multiscale basis functions are expressed as233

(3.6) ϕi =

Nh∑
k=1

cikϕ
h
k ,234

where i traverses all the coarse grid nodes. The eigenfunction is therefore approxi-235

mated by ψms =
∑NH

i=1 uiϕi in the space Vms = span{ϕ1, · · · , ϕNH
}, and the corre-236

sponding discretized equations are237

ϵ2

2

NH∑
i=1

(∇ϕi,∇ϕj)ui +
NH∑
i=1

(v0ϕi, ϕj)ui = λ

NH∑
i=1

(ϕi, ϕj)238

with j = 1, · · · , NH . Denote the matricesMh = [Mh
ij ] withM

h
ij = (ϕhi , ϕ

h
j ), S

h = [Shij ]239

with Shij = (∇ϕhi ,∇ϕhj ), V hij = (v0ϕ
h
i , ϕ

h
j ), A = [Aij ] with Aij = (ϕHi , ϕ

h
j ), C = [Cij ]240

with Cij = cji . The coefficients in multiscale basis function (3.6) are solved from the241

equality-constrained quadratic programming242

(3.7)

{
min CTGC

s.t. AC = αI,
243

where G = ϵ2

2 S
h + V h and I is the unit matrix with size of NH ×NH .244

With the random potential further considered, the direct combination of the245

MsFEM and qMC method is outlined as the following algorithm.246

3.3. A POD reduction method. In Algorithm 3.1, the construction of the247

multiscale basis is repeated for all realizations of the random potential. In the worst248

case, the dofs of each optimal problem are Nh. This takes the computational bur-249

den for computations. Here we propose a POD reduction method to construct the250

multiscale basis, where the dofs involved are independent of the spatial partitions.251

Before the formal algorithm is given, we briefly review the POD method. Let252

X be a Hilbert space equipped with the inner product (·, ·)X and norm ∥ · ∥X . For253

u1, · · · , un ∈ X we refer to V = span{u1, · · · , un} as ensemble consisting of the254

This manuscript is for review purposes only.



8 P. LI, AND Z. ZHANG

Algorithm 3.1 The qMC-MsFEM for the EVP of the random Schrödinger operator.

Input: Stochastic samples {ωj}Nj=1, coarse mesh TH , refined mesh Th
Output: Expectation of eigenpairs (E(λms),E(ψms))
1: for each j ∈ [1, N ] do
2: Solve optimal problems (3.4)-(3.5) and construct multiscale basis {ϕi(ωj)}NH

i=1;

3: Find λms(ω
j) ∈ R+ and ψms(ω

j) ∈ Vms := span{ϕi(ωj)}NH
i=1 such that

(3.8) A(ωj ;ψms(ω
j), ϕms) = λms(ω

j)(ψms(ω
j), ϕms), ∀ϕms ∈ Vms.

4: end for
5: Compute the expectation (E(λms),E(ψms));

snapshots {uj}nj=1. Let {φk}mk=1 be an orthonormal basis of V with m = dimV. Then255

the snapshots can be expressed into uj =
∑m
k=1(uj , φk)Xφk for j = 1, · · · , n. The256

method consists of choosing the orthonormal basis such that for every ℓ ∈ {1, · · · ,m}257

the following mean square error is minimized258

(3.9)
min

{φk}ℓ
k=1

1

n

n∑
j=1

∥∥∥∥∥uj −
ℓ∑

k=1

(uj , φk)Xφk

∥∥∥∥∥
2

X

s.t. (φi, φj)X = δij , for 1 ≤ i, j ≤ ℓ.

259

A solution {φk}ℓk=1 is called a POD basis of rank ℓ.260

Define the correlation matrix K = [Kij ] with Kij = 1
n (ui, uj)X . It is positive261

semi-definite and has rank m. Let σ1 ≥ · · · ≥ σm > 0 denote positive eigenvalues of262

K and v1, · · · , vm denote eigenvectors. Then a POD basis is given by263

φk =
1

√
σk

n∑
j=1

(vk)juj ,264

where (vk)j is the j-th component of the eigenvector vk.Consequently, the POD ap-265

proximation is described by the proposition as follows.266

Proposition 3.1 ([4, 17]). For all of the snapshots, the approximation error of267

the POD basis with dimension m satisfies268

(3.10)

∑n
j=1

∥∥∥uj −∑ℓ
k=1(uj , φk)Xφk

∥∥∥2
X∑n

j=1 ∥uj∥
2
X

=

∑m
k=ℓ+1 σk∑m
k=1 σk

.269

In the POD method, ℓ(≪ n) is typically determined such that270

(3.11)

∑m
k=ℓ+1 σk∑m

1 σk
< ρ,271

where ρ is a user-specified tolerance, often taken to be 0.1% or less.272

When the POD method is employed, we let {V (x, ωj)}Qj=1 be the parameterized273

potentials with Q the number of samples. Solve the optimal problem (3.4)-(3.5)274

and we obtain random multiscale functions ϕi(x, ω
j), where i = 1, · · · , NH and j =275

1, · · · , Q. At xi, ζ
0
i = 1

Q

∑Q
j=1 ϕi(x, ω

j) is the mean of random multiscale functions,276
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A MODEL REDUCTION METHOD FOR THE RANDOM SCHRÖDINGER OPERATOR 9

and ϕ̃i(x, ω
j) = ϕi(x, ω

j)− ζ0i are fluctuations. For each i, employ the POD method277

to {ϕ̃i(x, ωj)}Qj=1 and build the order-reduced set {ζ1i (x), · · · , ζ
mi
i (x)} with mi ≪ Q.278

Then, for a stochastic sample ω, the multiscale basis can be approximated as279

(3.12) ϕi(x,ω) ≈
mi∑
l=0

cli(ω)ζli(x),280

where cli(ω) are to be determined with i = 1, · · · , NH and l = 0, · · · ,mi. The eigen-281

function is approximated by282

(3.13) ψϵ(x,ω) ≈
NH∑
i=1

ui

mi∑
l=0

cli(ω)ζli(x),283

in which ui and cli are unknown. Next, we determine the unknowns cli, leaving the284

discrete EVP with dofs NH to be solved.285

Notice that the POD basis can be expressed into286

(3.14) ζli(x) =

Nh∑
j=1

cli,jϕ
h
j .287

and we can easily get a(ζli , ζ
l
j) = ϵ2

2 (∇ζ
l
i ,∇ζlj) + (v0ζ

l
i , ζ

l
j). Meanwhile, owing to288

ζ0i = 1
Q

∑Q
j=1 ϕi(x, ω

j), it holds (ζ0i , ϕ
H
j ) = αδi,j . And for k ̸= 0, since289

ζki =
1

√
σk

Q∑
j=1

(vk)j ϕ̃i(x, ω
j) =

1
√
σk

Q∑
j=1

(vk)j

(
ϕi(x, ω

j)− 1

Q

Q∑
l=1

ϕi(x, ω
l)

)
,290

there holds (ζki , ϕ
H
j ) = 0 for all i, j = 1, · · · , NH . We therefore get the reduced optimal291

problem that the dofs depend on the dimension of the POD basis:292

(3.15)

min a

(
mi∑
l=0

cliζ
l
i(x),

mi∑
l=0

cliζ
l
i(x)

)
,

s.t.

∫
D

mi∑
l=0

cliζ
l
i(x)ϕ

H
i dx = α.

293

We emphasized that here only one constraint is effective. The formal algorithm is294

then outlined as follows.295

3.4. The qMC method. The qMC method is a popular approach for approx-296

imating high-dimensional integrals, primarily due to its better convergence rate than297

the conventional MC method. We consider the s-dimensional integral (s usually very298

large)299

(3.17) Is(f) =

∫
[− 1

2 ,
1
2 ]

s

f(ω)dω.300

This integral cannot be analytically calculated and we use a class of qMC rules called301

randomly shifted rank-1 lattice rules to calculate it numerically. The integral points302
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Algorithm 3.2 The qMC with MsFEM-POD method for the EVP of the random
Schrödinger operator.

Input: Random samples {ωj}Nj=1, Q, coarse mesh TH , fine mesh Th, i = 1, · · · , NH
Output: Expectation of eigenpairs (E(λms),E(ψms))
1: for each j ∈ [1, Q] do

2: Solve optimal problems (3.4)-(3.5) and generate basis sets {ϕji}
Q
j=1 for all i;

3: end for
4: Employ POD (PCA) method to construct the order-reduced set Ξi =

{ζ0i (x), ζ1i (x), · · · , ζ
mi
i (x)};

5: Construct the new optimal problems (3.15) by Ξi;
6: for each j ∈ [1, N ] do
7: For the potential parameterized by ωj , solve the optimal problem (3.15) and

generate the multiscale basis {ϕ̂i(ωj)}NH
i=1;

8: Find λms(ω
j) ∈ R+ and ψms(ω

j) ∈ V podms := span{ϕ̂i(ωj)}NH
i=1 such that

(3.16) A(ωj ;ψms(ω
j), ϕms) = λms(ω

j)(ψms(ω
j), ϕms), ∀ϕms ∈ V podms .

9: end for
10: Compute the expectation (E(λms),E(ψms)).

are constructed using a generating vector z ∈ Ns and a uniformly distributed random303

shift ∆ ∈ [0, 1]s. We therefore obtain the approximation of (3.17)304

QN,s(f) =
1

N

N−1∑
j=1

f

({jz
N

+∆
}
− 1

2

)
,305

in which the braces indicate that the fractional part of each component is taken.306

The error estimate of randomly shifted lattice rules requires the integrand to be-307

long to a weighted Sobolev space. Denote Ws,γ the s-dimensional weighted Sobolev308

space in which functions are square-integrable mixed first derivatives, and the con-309

cerned norm depends on a set of positive real weights. Let γ = {γu > 0 : u ⊂310

{1, 2, · · · , s}} be a collection of weights, and Ws,γ be the s-dimensional ”unanchored”311

weighted Sobolev space equipped the norm312

(3.18) ∥f∥s,γ =
∑

u⊂{1:s}

1

γu

∫
[− 1

2 ,
1
2 ]

|u|

(∫
[− 1

2 ,
1
2 ]

s−|u|

∂|u|

∂ωu
f(ω)dω−u

)2

dωu,313

where {1 : s} = {1, 2, · · · , s}, ωu = (ωj)j∈u and ω−u = (ωj)j∈{1:s}\u. The root-mean-314

square error of such qMC approximation is315

(3.19)
√
E∆ (|Is(f)−QN,s(f)|) ≤

 1

φ(N)

∑
∅̸=u⊂{1:s}

γηu

(
2ζ(2η)

(2π2)η

)|u|
 1

2η

∥f∥s,γ316

for all η ∈ ( 12 , 1], where the expectation E∆ is taken with respect to the random shift317

∆, φ(N) is the Euler totient function with φ(N) = |{1 ≤ ξ ≤ N : gcd(ξ,N) = 1}|,318

and ζ(x) =
∑∞
k=1 k

−x for x > 1 is the Riemann zeta function. Note that φ(N) = N−1319

for prime N .320
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4. Parametric regularity. As indicated by (3.18), the norms ∥λ∥s,γ and ∥ψ∥s,γ321

are required for the error analysis of the qMC approximation. Let m = (mj)j∈N, ν =322

(νj)j∈N. We define the multi-index notations: ν! =
∏
j≥1 νj !; ν −m = (νj −mj)j∈N;323

m ≤ ν if mj ≤ νj for all j ∈ N. The following lemma gives the bound on the324

derivative of minimal eigenvalue λ with respect to the stochastic variable ω, as well325

as the L2-bound and H1-bound on the derivative of the ground state.326

Lemma 4.1. Let ν be a multi-index satisfying |ν| ≥ 0. Then, for all ω ∈ Ω, the327

derivative of the minimal eigenvalue with respect to ω is bounded by328

(4.1) |∂νωλ| ≤
C1(|ν|!)1+ϵ

C
|ν|−1
gap

∏
j

(∥vj∥∞)νj ,329

and the derivative of the ground state satisfies330

∥∂νωψ∥ ≤ C2(|ν|!)1+ϵ

C
|ν|
gap

∏
j

(∥vj∥∞)νj , ∥∂νωψ∥1 ≤ C3ψ(|ν|!)1+ϵ

(Cgapχ1)|ν|

∏
j

(∥vj∥∞)νj ,(4.2)331

where ϵ ∈ (0, 1), C1, C2 and C3 are finite constants.332

Proof. According to the definitions of λ and ψ, the bounds (4.1) and (4.2) clearly333

hold for ν = 0. For ν ̸= 0, taking the derivatives for the (1.1) with respect to ω, and334

employing the Leibniz general product rule yields335

(4.3) −ϵ
2

2
∆∂νωψ + V (x,ω)∂νωψ +

∞∑
j=1

vj∂
ν−ej
ω ψ =

∑
m≤ν

(
ν

m

)
∂mω λ∂

ν−m
ω ψ.336

Separating out the ∂νωλ and using ∥ψ∥ = 1 yields337

∂νωλ =
ϵ2

2
(∇∂νωψ,∇ψ) + (V (x,ω)∂νωψ,ψ)338

+

∞∑
j=1

(vj∂
ν−ej
ω ψ,ψ)−

∑
m<ν

(
ν

m

)
∂mω λ(∂

ν−m
ω ψ,ψ).339

Due to ϵ2

2 (∇∂
ν
ωψ,∇ψ) + (V (x,ω)∂νωψ,ψ)− λ(∂νωψ,ψ) = 0, we have340

|∂νωλ| ≤
∞∑
j=1

νj(vj∂
ν−ej
ω ψ,ψ)−

∑
0̸=m<ν

(
ν

m

)
∂mω λ(∂

ν−m
ω ψ,ψ)341

≤
∞∑
j=1

νj∥vj∥∞∥∂ν−ej
ω ψ∥+

∑
0 ̸=m<ν

(
ν

m

)
|∂mω λ|∥∂ν−m

ω ψ∥(4.4)342

≤ χ
−1/2
1

∞∑
j=1

νj∥vj∥∞∥∂ν−ej
ω ψ∥1 + χ

−1/2
1

∑
0̸=m<ν

(
ν

m

)
|∂mω λ|∥∂ν−m

ω ψ∥1.(4.5)343

This indicates that the bound |∂νωλ| depends on the lower order derivatives of both344

the minimal eigenvalue λ and the ground state ψ.345

Next, we compute the bound of ∥∂νωψ∥1. Since ∥ψ∥ = 1, we have346

0 = ∂νω(ψ,ψ) =
∑
m≤ν

(
ν

m

)
(∂mω ψ, ∂

ν−m
ω ψ),347
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which infers that348

|(∂νωψ,ψ)| =
∣∣∣− 1

2

∑
0̸=m<ν

(
ν

m

)
(∂mω ψ, ∂

ν−m
ω ψ)

∣∣∣349

≤ 1

2

∑
0 ̸=m<ν

(
ν

m

)
∥∂mω ψ∥∥∂ν−m

ω ψ∥ ≤ 1

2χ1

∑
0̸=m<ν

(
ν

m

)
∥∂mω ψ∥1∥∂ν−m

ω ψ∥1.(4.6)350

In the eigenspace, we have the decomposition351

(4.7) ∂νωψ =
∑
k∈N

(∂νωψk, ψk)ψk = (∂νωψ,ψ)ψ + ψ̃,352

so that ψ̃ ∈ E(ω, λ(ω))⊥, which infers that353

∥∂νωψ∥ ≤ |(∂νωψ,ψ)|+ ∥ψ̃∥,(4.8)354

as well as355

∥∂νωψ∥1 ≤ |(∂νωψ,ψ)|ψ + ∥ψ̃∥1.(4.9)356

We first compute the L2-bound. Owing to357

A(∂νωψ, ψ̃)− λ(∂νωψ, ψ̃) = (∂νωψ, ψ̃)(A(ψ, ψ̃)− λ(ψ, ψ̃)) +A(ψ̃, ψ̃)− λ(ψ̃, ψ̃)358

= A(ψ̃, ψ̃)− λ(ψ̃, ψ̃) ≥ Cgap∥ψ̃∥21 ≥ Cgap∥ψ̃∥2.359

Taking inner product of (4.3) with ψ̃ yields360

A(∂νωψ, ψ̃)− λ(∂νωψ, ψ̃) =
∑

0 ̸=m<ν

(
ν

m

)
∂mω λ(∂

ν−m
ω ψ, ψ̃)−

∞∑
j=1

νj(vj∂
ν−ej
ω ψ, ψ̃),361

in which we have used the fact that (ψ, ψ̃) = 0. We then arrive at362

(4.10) ∥ψ̃∥ ≤ 1

Cgap

 ∑
0̸=m<ν

(
ν

m

)
|∂mω λ|∥∂ν−m

ω ψ∥+
∞∑
j=1

νj∥vj∥∞∥∂ν−ej
ω ψ∥

 .363

Substituting the two bounds (4.6) and (4.10) into (4.8), we derive the bound on364

the derivative of the ground state365

(4.11)

∥∂νωψ∥ ≤
∑

0̸=m<ν

(
ν

m

)(
1

2
∥∂mω ψ∥+

|∂mω λ|
Cgap

)
∥∂ν−m

ω ψ∥+ 1

Cgap

∞∑
j=1

νj∥vj∥∞∥∂ν−ej
ω ψ∥.366

Furthermore, applying the Poincaré inequality and repeating the above proce-367

dures yields the H1-bound368

∥∂νωψ∥1 ≤
∑

0 ̸=m<ν

(
ν

m

)(
ψ

2χ1
∥∂mω ψ∥1 +

|∂mω λ|
Cgapχ1

)
∥∂ν−m

ω ψ∥1369

+
1

Cgapχ1

∞∑
j=1

νj∥vj∥∞∥∂ν−ej
ω ψ∥1.370

Next, with similar induction steps as Lemma 3.4 in [14], an application of the induction371

argument yields (4.1) and (4.2).372
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5. Convergence analysis. The error analysis of this part mainly concerns the373

approximation error of Algorithm 3.2. Remove the POD error from the results and374

produce the estimate for Algorithm 3.1. To begin with, we derive a priory estimate375

for the variational approximation of the deterministic Schrödinger operator.376

5.1. Convergence analysis of the MsFEM for the EVP. Denote VH a377

family of finite-dimensional subspace of H1
P (D) such that378

(5.1) min{∥ψ − ψH∥1;ψH ∈ VH} −−−−→
H→0+

0379

and define the variational approximation of the deterministic Schrödinger operator380

(5.2) inf{E(ψH);ψH ∈ VH , ∥ψH∥ = 1}.381

This problem has at least one minimizer ψH such that for some λ ∈ R382

(5.3) ⟨ĤψH − λψH , v⟩ = 0, ∀v ∈ VH ,383

where Ĥ = ϵ2

2 ∆+ v0(x). Assume v0(x) ∈ L∞(D), for all v ∈ H1
P (D) it holds384

⟨(Ĥ − λ)v, v⟩ ≤ ϵ2

2
∥∇v∥2 + ∥v0∥L∞∥v∥2.385

Meanwhile, let λ be the minimal eigenvalue of Ĥ. We take the decomposition for386

v = (v, ψ)ψ+ ψ̃, which implies that ⟨(Ĥ − λ)v, v⟩ = (ψ̃, ψ̃) ≥ 0. Hence, there exists a387

nonnegative constant M such that for all v ∈ H1
P (D)388

(5.4) 0 ≤ ⟨(Ĥ − λ)v, v⟩ ≤M∥v∥21.389

Before the formal convergence estimate for the EVP is given, we consider the390

elliptic problem391

(5.5) a(u, v) = f(v),392

where a(u, v) = ϵ2

2 (∇u,∇v) + (v0u, v) which has been defined in (3.3).393

Lemma 5.1. [35] Given f ∈ L2(D), let uH be the solution of394

a(uH , vH) = f(vH), ∀vH ∈ VH .395

The numerical solution uH ∈ VH satisfies396

(5.6) ∥u− uH∥ ≤ C∥u− uH∥1 sup
g∈L2(D),∥g∦=0

{
1

∥g∥
inf
v∈VH

∥ϕg − v∥
}
,397

where, for every g ∈ L2(D), ϕg ∈ H1
P (D) denotes the corresponding unique solution398

of the equation399

(5.7) ⟨Ĥw, ϕg⟩ := a(w, ϕg) = (g, w), for all w ∈ H1
P (D).400

Proof. By Riesz Representation Theorem, we can define401

(5.8) ∥w∥ = sup
g∈L2(D),g ̸=0

(g, w)

∥g∥
.402
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Letting w = u− uH in (5.7), since a(u− uH , vH) = 0, we get403

(g, u− uH) = a(u− uH , ϕg) = a(u− uH , ϕg − vH) ≤ C∥u− uH∥1∥ϕg − vH∥1.404

It follows that (g, u − uH) ≤ C∥u − uH∥1 infvH∈VH
∥ϕg − vH∥1. Then the duality405

argument (5.8) implies406

∥u− uH∥ ≤ C∥u− uH∥1 sup
g∈L2(D),g ̸=0

{
inf

vH∈VH

∥ϕg − vH∥1
∥g∥

}
.407

Furthermore, since ϕg solves (5.7), if u ∈ Hr(D) ∩H1
P (D) with 1 ≤ r ≤ 2, we have408

sup
g∈L2(D),g ̸=0

{
inf

vH∈VH

∥ϕg − vH∥1
∥g∥

}
≤ CHs−1.409

Hence, for w ∈ H−1(D), denote Ψw the unique solution of the adjoint problem410

(5.9) ⟨(Ĥ − λ)Ψw, v⟩ = (w, v) for all v ∈ ψ⊥,411

where Ψw ∈ ψ⊥ := {v ∈ H1
P (D)|(ψ, v) = 0}. Since λ is the minimal eigenvalue, there412

exist a non-negative constant β such that413

β∥v∥21 ≤
(
(Ĥ − λ)v, v

)
.414

We then get the existence and uniqueness of the solution to (5.9) and the bound415

(5.10) ∥Ψw∥1 ≤ β−1∥w∥.416

Lemma 5.2. Assume that there exist a family (VH)H>0 of finite dimensional sub-417

space of H1
P (D) such that418

(5.11) min{∥ψ − ψH∥1, ψH ∈ VH} −−−−→
H→0+

0,419

then it holds ∥ψ − ψH∥1 −−−−→
H→0+

0. The FEM approximation for the EVP satisfies420

(5.12) E(ψH)− E(ψ) ≤ C∥ψH − ψ∥21,421

and422

(5.13) |λH − λ| ≤ C∥ψH − ψ∥21,423

where C is a constant C and H > 0. Besides, there exists H0 > 0 and C > 0 such424

that for all 0 < H < H0,425

(5.14) ∥ψH − ψ∥ ≤ CHr−1∥ψH − ψ∥1.426

Proof. Let PHψ ∈ VH be such that427

∥ψ − PHψ∥1 = min{∥ψ − vH∥1,∀vH ∈ VH}.428

From (5.11), we deduce that (PHψ)H>0 converges to ψ in H1
P (D) with H → 0.429

This manuscript is for review purposes only.



A MODEL REDUCTION METHOD FOR THE RANDOM SCHRÖDINGER OPERATOR 15

Since λ(ψH , ψ) = (ψH , Ĥψ) = λH(ψ,ψH), we get430

λH − λ = ⟨(Ĥ − λ)(ψH − ψ), (ψH − ψ)⟩,431

E(ψH)− E(ψ) =
1

2
⟨ĤψH , ψH⟩ − 1

2
⟨Ĥψ, ψ⟩ = 1

2
⟨(Ĥ − λ)(ψH − ψ), (ψH − ψ)⟩.432

According to (5.4), we have433

E(ψH)− E(ψ) ≤ ∥ψH − ψ∥21, λH − λ ≤ ∥ψH − ψ∥21.434

Next, we estimate the error ∥ψH − ψ∥. Let ψ∗
H be the orthogonal projection of ψH435

on the affine space {v ∈ L2(D)|(ψ, v) = 1}. One has436

(5.15) ψ∗
H ∈ H1

P (D), ψ∗
H − ψ ∈ ψ⊥, ψ∗

H − ψH =
1

2
∥ψH − ψ∥2ψ,437

from which we infer that438

∥ψH − ψ∥2 =

∫
D

(ψH − ψ)(ψ∗
H − ψ) +

∫
D

(ψH − ψ)(ψH − ψ∗
H)439

=

∫
D

(ψH − ψ)(ψ∗
H − ψ) +

1

4
∥ψH − ψ∥4440

= ⟨(Ĥ − λ)ΨψH−ψ, ψ
∗
H − ψ⟩+ 1

4
∥ψH − ψ∥4441

= ⟨(Ĥ − λ)ΨψH−ψ, ψ
∗
H − ψH⟩+ ⟨(Ĥ − λ)ΨψH−ψ, ψH − ψ⟩+ 1

4
∥ψH − ψ∥4442

= ⟨(Ĥ − λ)ΨψH−ψ, ψH − ψ⟩+ 1

4
∥ψH − ψ∥4.443

Therefore, for all ΨH ∈ VH , it holds444

∥ψH−ψ∥2 = ⟨(Ĥ−λ)(ψH−ψ),ΨψH−ψ−ΨH⟩+⟨(Ĥ−λ)(ψH−ψ),ΨH⟩+ 1

4
∥ψH−ψ∥4.445

For the first term of the above equation, we obtain an estimate446

(5.16) ⟨(Ĥ − λ)(ψH − ψ),ΨψH−ψ −ΨH⟩ ≤ C∥ψH − ψ∥1∥ΨψH−ψ −ΨH∥1.447

Furthermore, let ΨH ∈ VH ∩ ψ⊥, and we obtain448

⟨(Ĥ − λ)(ψH − ψ),ΨH⟩ = ⟨(Ĥ − λ)ψH ,ΨH⟩ − ⟨(Ĥ − λ)ψ,ΨH⟩449

=⟨(Ĥ − λ)ψH ,ΨH⟩ − 0 = ((λH − λ)ψH ,ΨH)− ((λH − λ)ψ,ΨH)450

=(λH − λ) ((ψH − ψ),ΨH) ,451

which implies452 ∣∣∣⟨(Ĥ − λ)(ψH − ψ),ΨH⟩
∣∣∣ ≤ (λH − λ)∥ψH − ψ∥∥ΨH∥.453

Then, for all ΨH ∈ VH ∩ ψ⊥, we get454

∥ψH−ψ∥2 ≤ C∥ψH−ψ∥1∥ΨψH−ψ−ΨH∥1+∥ψH−ψ∥21∥ψH−ψ∥∥ΨH∥+ 1

4
∥ψH−ψ∥4.455

By Lemma 5.1, we have ∥ΨψH−ψ−ΨH∥1 ≤ CHr−1∥ψH−ψ∥ for ψ ∈ Hr(D)∩H1
P (D)456

with 1 ≤ r ≤ 2. Hence, owing to (5.11), we can conclude that there exists H0 > 0457

and a positive constant C such that for all 0 < H < H0,458

(5.17) ∥ψH − ψ∥ ≤ CHr−1∥ψH − ψ∥1.459
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Next, we estimate the MsFEM approximation error. Let PH be the classical460

L2-projection onto VH and W = ker(PH) = {v ∈ H1
P (D)|PH(v) = 0} be the kernel461

space. There exists an orthogonal splitting H1
P (D) = VH ⊕W , in which W captures462

the fine mesh details from H1
P (D) that are not captured by VH . Similarity, denote463

(5.18) Vms = {v ∈ H1
P (D)|a(v, w) = 0 for all w ∈W},464

and wherein there is another orthogonal decomposition, namely465

(5.19) H1
P (D) = Vms ⊕W.466

We then seek the eigenvalues and the eigenfunctions in Vms such that467

(5.20) a(ψms, ϕ) = λms(ψms, ϕ), ∀ϕ ∈ Vms468

with ∥ψms∥ = 1.469

We revisit the elliptic problem (5.5). Let u ∈ H1
P (D), and we have u− ums ∈W ,470

i.e., a(u− ums, v) = 0 for any v ∈ Vms. Owing to this orthogonality,471

(5.21) a(ums − u,w) = f(w), ∀w ∈W.472

Since ums − u ∈W ⊂ H1
P (D), we have PH(ums − u) = 0, which implies473

(5.22) ∥ums − u∥ ≤ ∥ums − u− PH(ums − u)∥ ≤ CH∥ums − u∥1.474

Furthermore, let β > 0 denotes the coercivity constant of a(·, ·), and then the varia-475

tional equation gives476

β∥ums − u∥21 ≤ a(ums − u, ums − u) = f(ums − u).477

Meanwhile, we also have478

f(ums−u) = (f, ums−u) = (f−PH(f), ums−u−PH(ums−u)) ≤ CH3∥f∥2∥ums−u∥1.479

These indicate480

(5.23) ∥ums − u∥1 ≤ CH3∥f∥2481

and482

(5.24) ∥ums − u∥ ≤ CH∥ums − u∥1 ≤ CH4.483

Therefore, we obtain the error estimate of the MsFEM for the EVP of the deter-484

ministic Schrödinger operator.485

Theorem 5.3. Let ψ and ψms be the ground states of (3.3) and (5.20), respec-486

tively. We have the approximation error487

(5.25) ∥ψms − ψ∥1 ≤ CH3, ∥ψms − ψ∥ ≤ CH4,488

and489

(5.26) λms − λ ≤ CH6.490

Remark 5.4. The convergence rate O(H6) of the minimal eigenvalue also can be491

obtained via a high-order interpolation in Theorem 4.1 of [26].492
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5.2. Dimension truncation error. Here we denote λs = λs(ωs;0) the trun-493

cated eigenvalue and ψs = ψs(ωs;0) the truncated eigenfunction. The truncation494

error with respect to s is described as in the following Proposition 5.5.495

Proposition 5.5 (Theorem 4.1, [14]). Suppose that Assumption 3.1 holds.496

There exist constants C1, C2, C3, C4 > 0 such that for sufficiently large s and for497

all ω ∈ Ω, the truncation errors of the minimal eigenvalue and the ground state are498

bounded with499

(5.27) |λ(ω)− λs(ωs)| ≤ C1s
−1/p+1, ∥ψ(ω)− ψs(ωs)∥1 ≤ C2s

−1/p+1.500

Furthermore, the weak truncation error is bounded by501

(5.28) |Eω[λ− λs]| ≤ C3s
−2/p+1,502

and for any continuous linear functional G ∈ L2(D; Ω), we have503

(5.29) |Eω[G(ψ)− G(ψs)]| ≤ C4s
−2/p+1.504

Here C1, C2, C3 and C4 are independent of s and ω.505

5.3. QMC error. Given the regularity as in Lemma 4.1, we derive the upper506

bound of the root-mean-square error for the qMC approximation.507

Proposition 5.6 (Theorem 4.2, [14]). Let N ∈ N be prime, G ∈ L2(D; Ω).508

Suppose that Assumption 3.1 holds. The root-mean-square errors of a component-509

by-component generated randomly shifted lattice rule approximations of Eω[λs] and510

Eω[G(ψs)] are bounded by511

(5.30)
√
E∆ [|Eω[λs]−QN,sλs|2] ≤ C1,αN

−α,512

and513

(5.31)
√
E∆ [|Eω[G(ψs)]−QN,sG(ψs)|2] ≤ C2,αN

−α,514

where515

(5.32) α =


1− δ, for arbitrary δ ∈ (0,

1

2
), p ∈ (0,

2

3
],

1

p
− 1

2
p ∈ (

2

3
, 1),

516

and the constants C1,α and C2,α are independent of s.517

Since a particular case of the elliptic problem, the linear Schrödinger operator,518

is considered in this work, the proofs of Proposition 5.5 and Proposition 5.6 are the519

same as those of Theorem 4.1 and Theorem 4.2 presented in [14].520

5.4. POD error. In the MsFEM-POD method, the multiscale basis is approx-521

imated by the POD basis. Thus, the analysis begins with the estimation of basis522

function approximation. Note that we consistently assume the multiscale basis func-523

tions exist and are bounded, i.e., the solutions of optimal problems (3.4)-(3.5) exist524

and are bounded.525
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Lemma 5.7. Let Assumption 3.1 hold and ω1, ω2 ∈ Ω. The multiscale basis func-526

tions ϕi(ω
1), ϕi(ω

2) are obtained by solving the optimal problem (3.4)-(3.5) with the527

random potentials V (ω1) and V (ω2), respectively. Then it holds that528

∥ϕi(ω1)− ϕi(ω
2)∥ ≤ C∥V (ω1)− V (ω2)∥∞∥ϕ(ωl)∥,529

where l = 1, 2 and i = 1, · · · , NH .530

Proof. The optimal problem (3.4)-(3.5) can be equivalently formulated into a531

Karush-Kuhn-Tucker (KKT) equation. At xi, the corresponding KKT equation is532 (
G −AT
A O

)(
ci
λi

)
=

(
0
bi

)
533

where G is positive definite and534 (
G −AT
A O

)−1

=

(
G−1 −G−1AT (AG−1AT )−1AG−1 G−1AT (AG−1AT )−1

(G−1AT (AG−1AT )−1)T −(AG−1AT )−1

)
.535

We therefore get the solution ci = G−1AT (AG−1AT )−1bi. The matrix G depends on536

the stochastic parameter, i.e.,537 (
G1 −AT
A O

)(
ci(ω

1)
λi(ω

1)

)
=

(
0
bi

)
,

(
G2 −AT
A O

)(
ci(ω

2)
λi(ω

2)

)
=

(
0
bi

)
,538

where G1 = G(ω1) and G2 = G(ω2). A straightforward derivation yields539 (
G1 −AT
A O

)(
ci(ω

1)− ci(ω
2)

λi(ω
1)− λi(ω

2)

)
=

(
(G2 −G1)ci(ω

2)
0

)
,540

which infers that541

(5.33)
ci(ω

1)− ci(ω
2) = G−1

1 (G2 −G1)ci(ω
2)−G−1

1 AT (AG−1
1 AT )−1AG−1

1 (G2 −G1)ci(ω
2).542

Adopting the truncated expansion of random potentials yields543

Gij =
ϵ2

2
(∇ϕhi ,∇ϕhj ) + (v0ϕ

h
i , ϕ

h
j ) +

s∑
k=1

ωk(vkϕ
h
i , ϕ

h
j ).544

Then we get545

δGij = Gij(ω
1)−Gij(ω

2) =

s∑
k=1

(ω1
k − ω2

k)(vkϕ
h
i , ϕ

h
j ).546

Since ∥vk(x)∥∞ is bounded, we have |(vkϕhi , ϕhj )| ≤ Chd. Let h ≤ ϵ, we also have

Gij ∼ o(hd). Consequently, for bounded potentials V (ω1) and V (ω2), it holds

|(V (ω1)− V (ω2)ϕhi , ϕ
h
j )| ≤ C∥V (ω1)− V (ω2)∥∞(ϕhi , ϕ

h
j ).

We then deduce that ∥G1−G2∥ ≤ C∥V (ω1)−V (ω2)∥∞∥Mh∥. Now go back to (5.33),547

and we obtain548

∥ci(ω1)− ci(ω
2)∥ ≤ ∥G1 −G2∥∥ci(ω2)∥

∥G1∥

(
1 +

∥A∥2∥G−1
1 ∥

∥AG−1
1 AT ∥

)
549

≤ C∥V (ω1)− V (ω2)∥∞∥ci(ω2)∥
(
1 +

∥A∥2∥G−1
1 ∥

∥AG−1
1 AT ∥

)
.550
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Since Aij ∼ o(hd), there exists a positive constant C such that551

∥ci(ω1)− ci(ω
2)∥ ≤ C∥V (ω1)− V (ω2)∥∞∥ci(ω2)∥.552

This bound holds uniformly for i = 1, · · · , Nh. Denote Φ = (ϕh1 , · · · , ϕhNh
), and then553

ϕi(ω
l) = Φci(ω

l) (l = 1, 2). Since finite-dimensional spaces are considered in this554

proof, we readily deduce that555

∥ϕi(ω1)− ϕi(ω
2)∥ ≤ C∥V (ω1)− V (ω2)∥∞∥ϕi(ωl)∥,556

where l = 1, 2 and C is independent of potentials. This completes the proof.557

In the offline stage of Algorithm 3.2, for all i = 1, · · · , NH , we construct the558

reduced POD basis {ζ1i (x), · · · , ζ
mi
i (x)} with mi ≪ Q. According to the Proposition559

1 [22], we have for all ℓ ≤ mi560

(5.34)
1

Q

Q∑
j=1

∥∥∥∥∥ϕ̃i(ωj)−
ℓ∑

k=1

(ϕ̃i(ω
j), ζki )ζ

k
i

∥∥∥∥∥
2

=

mi∑
ℓ+1

σk,561

which means that there exists a constant C such that for all j ∈ {1, · · · , Q},562

(5.35)

∥∥∥∥∥ϕ̃i(ωj)−
ℓ∑

k=1

(ϕ̃i(ω
j), ζki )ζ

k
p

∥∥∥∥∥
2

≤ C

mi∑
ℓ+1

σk.563

Next, we find the optimal approximation of the multiscale basis for random po-564

tentials in the space V podms,i = span{ζ0i (x), ζ1i (x), · · · , ζ
mi
i (x)} with the form565

(5.36) ϕ̂i(x,ω) =

mi∑
j=0

cj(ω)ζji (x).566

For any given stochastic variable ω, the optimal problems (3.4)-(3.5) and (3.15) can567

be equivalently written as568

ϕi(x,ω) = argmin
ϕ∈H1

P (D),(ϕ,ϕH
j )=αδij

ϵ2

2
∥∇ϕ∥2 + (V (x,ω)ϕ, ϕ),(5.37)569

ϕ̂i(x,ω) = argmin
ϕ∈V pod

ms,i,(ϕ,ϕ
H
i )=α

ϵ2

2
∥∇ϕ∥2 + (V (x,ω)ϕ, ϕ).(5.38)570

Due to V podms,i ⊂ H1
P (D), we consider the optimal approximation problem571

(5.39) ϕ̂i(x,ω) = arg inf
ϕ∈V pod

ms,i,(ϕ,ϕ
H
i )=α

∥ϕ(x,ω)− ϕi(x,ω)∥,572

and get the below lemma.573

Lemma 5.8. Given ω ∈ Ω, let ϕi(x,ω) and ϕ̂i(x,ω) be the solutions of (5.37)574

and (5.38), respectively. For sufficiently small h, it holds575

(5.40) ∥ϕi(x,ω)− ϕ̂i(x,ω)∥ ≤ C
√
ρ,576

where i = 1, · · · , NH and C is a constant independent of ω and mesh size h.577
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Proof. Denote Ω0 = {ωj}Qj=1 ⊂ Ω, and consider ω ∈ Ω0. According to (5.35), it578

is obvious that579

∥ϕi(x,ω)− ϕ̂i(x,ω)∥ =

∥∥∥∥∥∥ϕ̃i(x,ω)−
mi∑
j=1

cji (ω)ζji (x)

∥∥∥∥∥∥ ≤ C
√
ρ,580

where cji (ω) = (ϕ̃i, ζ
j
i ). We next consider ω ∈ Ω/Ω0. For any j ∈ {1, · · · , Q}, we have581

∥ϕi(x,ω)− ϕ̂i(x,ω)∥ ≤ ∥ϕi(x,ω)− ϕi(x, ω
j)∥+ ∥ϕi(x, ωj)− ϕ̂i(x,ω)∥582

≤C∥V (x,ω)− V (x, ωj)∥∞∥ϕi(x, ωj)∥+

∥∥∥∥∥ϕ̃i(x, ωj)−
mi∑
k=1

ck(ω)ζki (x)

∥∥∥∥∥ .583

Owing to the boundedness of V (x,ω) and ∥ϕi(x, ωj)∥ ≤ Chd, it holds584

(5.41) ∥ϕi(x,ω)− ϕ̂i(x,ω)∥ ≤ C∥ω − ωj∥∞∥hd + C
√
ρ.585

Let h be sufficiently small, and we get (5.40). This completes the proof.586

Furthermore, consider the finite-dimensional representations587

ϕi(x,ω) =

Nh∑
j=1

cji (ω)ϕhj , ϕ̂i(x,ω) =

Nh∑
j=1

ĉji (ω)ϕhj .588

According to the L2-bound in Lemma 5.8, there exists a constant such that589

(5.42) ∥∇ϕi(x,ω)−∇ϕ̂i(x,ω)∥ ≤
C
√
ρ

h2
.590

Remark 5.9. For the H1-error of the multiscale basis approximation, we can also591

consider the POD method in H1(D) (see example in [21]), which shall provide a better592

estimation for (5.42).593

Next, we consider the approximation of the equation a(u, v) = f(v) by MsFEM594

and POD-MsFEM. Similar to [28], we consider the algebraic equations constructed595

by the MsFEM and the MsFEM-POD, respectively. Denote Gij = ϵ2

2 (∇ϕi,∇ϕj) +596

(V (x,ω)ϕi, ϕj) and fi = (f, ϕi), and we get the algebraic equation discretized by the597

MsFEM as598

(5.43) Gu = f ,599

The counterpart approximated by the MsFEM-POD method is600

(5.44) Ĝû = f̂ ,601

where Ĝij =
ϵ2

2 (∇ϕ̂i,∇ϕ̂j) + (V (x,ω)ϕ̂i, ϕ̂j) and f̂i = (f, ϕ̂i). Owing to the Assump-602

tion 3.1, we get603

|Gij − Ĝij | =
ϵ2

2h2
|(ϕi, ϕj)− (ϕ̂i, ϕ̂j)|+ |(V (x,ω)ϕi, ϕj)− (V (x,ω)ϕ̂i, ϕ̂j)|604

≤
(
ϵ2

2h2
+ ∥V (x,ω)∥∞

)
(∥ϕi∥+ ∥ϕ̂j∥)

√
ρ605

≤ CHd/2√ρ.606
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Define E as the error between G and Ĝ, i.e., E = G − Ĝ, as well as ef as the607

error such that ef = f − f̂ . We can see that |ef,i| ≤ ∥f∥√ρ. Consequently, we obtain608

(5.45) ∥u− û∥ = ∥G−1(ef −Eû)∥ ≤ 1

∥G∥
(∥ef∥+ ∥E∥∥û∥) ≤ C1

√
ρ,609

where C1 depends on the bounds of ∥f∥, ∥û∥, ∥G∥ and H. Since ums =
∑NH

i=1 uiϕi610

and upodms =
∑NH

i=1 ûiϕ̂i, we further get611

∥ums − upodms ∥ ≤

∥∥∥∥∥
NH∑
i=1

uiϕi −
NH∑
i=1

uiϕ̂i

∥∥∥∥∥+
∥∥∥∥∥
NH∑
i=1

uiϕ̂i −
NH∑
i=1

ûiϕ̂i

∥∥∥∥∥612

≤ ∥u∥ max
1≤i≤NH

∥ϕi − ϕ̂i∥+

√√√√NH∑
i=1

∥ϕ̂i∥2∥u− û∥(5.46)613

≤ C2
√
ρ,614

where C2 depends on H and ∥u∥. Meanwhile, we also have615

∥∇ums −∇upodms ∥ ≤

∥∥∥∥∥
NH∑
i=1

ui∇ϕi −
NH∑
i=1

ui∇ϕ̂i

∥∥∥∥∥+
∥∥∥∥∥
NH∑
i=1

ui∇ϕ̂i −
NH∑
i=1

ûi∇ϕ̂i

∥∥∥∥∥616

≤ ∥u∥ max
1≤i≤NH

∥∇ϕi −∇ϕ̂i∥+

√√√√NH∑
i=1

∥∇ϕ̂i∥2∥u− û∥617

≤ C3
√
ρ,618

where C3 depends on ∥u∥, h and C1. Note that ∥∇ϕ̂i∥ are bounded due to the619

solvability of optimization problems. Therefore, there exists a constant C such that620

(5.47) ∥ums − upodms ∥1 ≤ C
√
ρ.621

Next, consider the EVP approximated by the MsFEM-POD and MsFEM622

(5.48) A(ω;ψpodms , v) = λpodms (ψ
pod
ms , v), ∀v ∈ V podms ,623

and624

(5.49) A(ω;ψms, v) = λms(ψms, v), ∀v ∈ Vms.625

A direct derivation similar to (5.46) and (5.47) yields626

(5.50) ∥ψpodms − ψms∥, ∥ψpodms − ψms∥1 ≤ C
√
ρ.627

The approximation error of the MsFEM-POD for the EVP (2.3) is estimated as628

the following theorem.629

Theorem 5.10. Let ψpodms and λpodms be the solution of the discretized form (5.48),630

we have631

(5.51) ∥ψpodms − ψ∥1 ≤ C(H3 +
√
ρ), ∥ψpodms − ψ∥ ≤ C(H4 +

√
ρ),632

and633

(5.52) |λpodms − λ| ≤ C(H3 +
√
ρ)2.634
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Proof. Since ∥ψpodms − ψ∥1 ≤ ∥ψpodms − ψms∥1 + ∥ψms − ψ∥1 and ∥ψpodms − ψ∥ ≤635

∥ψpodms − ψms∥ + ∥ψms − ψ∥. A combination of (5.25) and (5.50) yields the error636

bounds in (5.51). Additionally, an application of (5.13) yields637

(5.53) |λpodms − λ| ≤ C∥ψpodms − ψ∥21 ≤ C(H3 +
√
ρ)2.638

These complete the proof.639

5.5. Total error. In the above, we outline the error of MsFEM approximation640

error in physic space, the truncation error of the model, the qMC approximation641

error, and the MsFEM-POD approximation error. Combine these errors and we get642

the following theorem for the total error.643

Theorem 5.11. Suppose Assumption 3.1 holds, s ∈ N, N ∈ N be prime and644

z ∈ Ns be a generating vector constructed using the CBC algorithm with weights. The645

root-mean-square error with respect to the random shift ∆ ∈ [0, 1]s, of the MsFEM-646

POD with the qMC method for the minimal eigenvalue λ is bounded by647

(5.54)

√
E∆

[
|Eω[λ]−QN,sλ

pod
s,ms|2

]
≤ C

(
(H3 +

√
ρ)2 + s−2/p+1 +N−α

)
.648

Meanwhile, for any G ∈ L2(D; Ω) applying to the ground state ψ, the counterpart649

error approximation of its mean is bounded by650

(5.55)

√
E∆

[
|Eω[G(ψ)]−QN,sG(ψpods,ms)|2

]
≤ C

(
H3 +

√
ρ+ s−2/p+1 +N−α

)
.651

Here α is defined as the (5.32).652

6. Numerical experiments. In this section, we numerically check the conver-653

gence rates of the proposed method. After that, we investigate the localization of the654

eigenstates for the Schrödinger operator with spatially random potentials. In all cases,655

we compute the eigenvalues using MATLAB’s eigs with the option smallestabs.656

6.1. Superconvergence of the MsFEM discretization. The 1D double-well657

potential and 2D checkboard potential are adopted to verify the superconvergence658

rates of the MsFEM method. In these experiments, we fix ϵ = 1, and calculate the659

reference solution (λref,l, ψref,l) (l = 1, · · · , 5) by the FEM with mesh size h.660

Example 6.1. Consider the 1D double-well potential v0(x) = (x2 − 4)2 over the661

domain D = [−4, 4]. We fix h = 1/256 and vary NH = 8, 16, 32, 64 and record the662

errors |λref,l − λms,l|, ∥ψref,l − ψms,l∥ and ∥ψref,l − ψms,l∥1. As shown in Figure 1,663

the second-order convergence rates of FEM approximation and the superconvergence664

rates of the MsFEM approximation are depicted. In this experiment, the minimal665

eigenvalue and the ground state are calculated.666

Furthermore, we check the approximation of the MsFEM method for the first five667

eigenvalues and the corresponding eigenfunctions. Numerical results are depicted in668

Table 1, Table 2 and Table 3. In Table 2 and Table 3, the convergence rates of669

∥ψref − ψms∥ and ∥ψref − ψms∥1 are slight worse than the results in Figure 1. This670

difference is due to the inclusion of a coarse grid of NH = 8 in both tables.671

Example 6.2. In this case, we adopt a checkerboard potential as depicted in Fig-672

ure 2(A). Over the domain D = [−0.5, 0.5]2, the potential is set to a checkboard with673

squares of size 2−4, which results in 16× 16 squares. The values of sub-squares alter-674

nate between 0 and 2. We then calculate the reference solution with a uniform mesh675
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Fig. 1: Numerical convergence rates of the FEM and MsFEM approximation for the
EVP of the Schrödinger operator with the 1D double-well potential.

Table 1: Numerical convergence rates of the error |λref,l − λms,l| (l = 1, · · · , 5).

λlh NH = 16 NH = 32 NH = 64 NH = 128 order
2.762420126423838 4.9166e-04 4.2144e-06 4.7839e-08 6.8088e-10 -6.48
2.762436019658617 4.9329e-04 4.2143e-06 4.7835e-08 6.8081e-10 -6.48
7.988965439736671 3.4864e-02 1.6993e-04 1.7874e-06 2.4865e-08 -6.78
7.991063271042746 3.5019e-02 1.7032e-04 1.7901e-06 2.4897e-08 -6.78
12.596293528481384 1.6578e-01 9.4183e-04 9.1390e-06 1.2373e-07 -6.77

size h = 1/512. Here we check the convergence rates of the minimal eigenvalue and676

the ground state, and the results are shown in Figure 2.677

It is shown that for the discontinuous potential, both the FEM and MsFEM man-678

age to retain near-optimal convergence of the minimal eigenvalue. However, for the679

ground state calculations, the MsFEM successfully preserves the convergence rates680

while the FEM fails. This showcases the superior resilience of the MsFEM to approx-681

imate eigenfunctions for discontinuous potentials.

(a) Potential.
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(b) Eigenvalue.
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(c) Eigenfunction.

Fig. 2: The checkboard potential and the numerical convergence rates of the FEM
and MsFEM methods.

682
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Table 2: Numerical convergence rates of the error ∥ψref,l − ψms,l∥ (l = 1, · · · , 5).

l NH = 8 NH = 16 NH = 32 NH = 64 NH = 128 order
1 1.2924e-02 3.4672e-03 1.3316e-04 6.3567e-06 3.6648e-07 -3.93
2 1.4693e-02 3.4861e-03 1.3316e-04 6.3565e-06 3.6646e-07 -3.97
3 4.1625e-01 4.0202e-02 8.9026e-04 3.9427e-05 2.2222e-06 -4.50
4 4.6330e-01 4.0305e-02 8.9142e-04 3.9462e-05 2.2237e-06 -4.53
5 7.5693e-01 1.0805e-01 2.2233e-03 9.0568e-05 4.9787e-06 -4.46

Table 3: Numerical convergence rates of the error ∥ψref,l − ψms,l∥1 (l = 1, · · · , 5).

l NH = 8 NH = 16 NH = 32 NH = 64 NH = 128 order
1 5.8489e-02 3.0251e-02 2.9061e-03 3.0933e-04 3.6920e-05 -2.79
2 6.1666e-02 3.0283e-02 2.9061e-03 3.0931e-04 3.6918e-05 -2.80
3 1.6051e-00 2.9316e-01 1.8688e-02 1.8953e-03 2.2312e-04 -3.29
4 1.6491e-00 2.9374e-01 1.8709e-02 1.8968e-03 2.2327e-04 -3.30
5 2.7166e-00 7.2761e-01 4.4559e-02 4.2944e-03 4.9794e-04 -3.22

6.2. Random potentials. Next, we consider the parameterized potentials683

(6.1) V (x,ωs) = 1.0 +

s∑
j=1

sin(jπx)

1 + (jπ)q
ωj ,684

where q controls the decaying rates of the high-frequency components. For q ̸= 0, we685

have for all j ∈ N, ∥vj∥∞ = 1
1+(jπ)q < 1

(jπ)q and hence
∑∞
j=1 ∥vj∥∞ < ζ(q)/πq. In686

turn, the value of p in the Proposition 5.5 can be in the interval (1/q, 1).687

The reference solutions are computed by688

E[λk] =
1

N

N∑
i=1

λk(ω
i), E[ψk] =

1

N

N∑
i=1

ψk(ω
i),689

where (λk, ψk) are the FEM solution on a fine mesh. The empirical expectations of nu-
merical solutions (E[λms,k],E[ψms,k]) are calculated similarly. Since the convergence
rate of eigenvalues will be mainly concerned, we define the absolute error

errork = |E[λms,k]− E[λk]|,

where ”error” specifically represent the case of k = 1,690

Example 6.3 (Estimation of sample size for the POD basis.). In the online691

stage, the multiscale basis associated with the random potentials is approximated by692

the POD basis. The samples for constructing the POD basis are crucial to the quality693

of the reduced basis. In this example, we choose the different numbers of qMC and694

MC samples and record the error as the number of samples varies, to determine the695

appropriate number of random samples. We fix q = 0 and N = 4000 to generate696

the random potentials. For the 1D case, the coarse mesh size is H = 1
16 , and we697

set s = 64 and compute the reference solution by the FEM with Nh = 2048 over the698

interval [−1, 1]. For the 2D case, the coarse mesh size is H = 1
32 , and we set s = 8 and699
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compute the reference solution by the FEM with Nh = 128 over the domain [− 1
2 ,

1
2 ]

2.700

In Table 4, we record the errors as the sampling number Q varies. The results show701

that when Q is of order 100, the qMC sample provides the best approximation.

Table 4: The error of the MsFEM-POD method with different sampling numbers in
the offline stage.

Q 10 50 100 200 1000
qMC, 1D 2.0615e-03 1.0235e-03 1.3442e-03 1.2612e-03 1.1749e-03
MC, 1D 2.8781e-03 1.8927e-03 1.8767e-04 1.6333e-03 1.2932e-03
qMC, 2D 1.6164e-04 3.6407e-04 7.3920e-07 7.1088e-07 -
MC, 2D 1.1322e-04 3.7447e-04 3.7448e-04 3.7453e-04 -

702

Besides, we plot the basis functions constructed by the optimal problems (3.4)-703

(3.5) and (3.15), respectively, where 200 qMC samples are generated to construct the704

POD basis. We test the potentials parameterized by the random samples chosen in Ω0705

and Ω/Ω0, respectively. As shown in Figure 3, we get the accurate multiscale basis by706

solving the reduced optimal problems (3.15).
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(a) 1D basis functions and the error distribution over [−1, 1].
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(b) 2D basis functions and the error distribution over [− 1
2
, 1
2
]2.

Fig. 3: The basis functions and the error between the multiscale basis solved by (3.4)-
(3.5) and (3.15). 1st column: sketches of basis functions. 2nd column: the case for
ω ∈ Ω0. 3rd column: the case for ω ∈ Ω/Ω0.

707

Next, we check the convergence of the proposed MsFEM-POD method. We fix708

Q = 200 and mi = 3 for all i = 1, · · · , NH in the rest of examples. Notice that the709

POD error ρ is not discussed here. Interested readers can refer to [22] for more details.710

Example 6.4. Firstly, we check the convergence rate of the MsFEM-POD with711

respect to s. Over the interval [−1, 1], we take Nh = 2048 and s = 512 to generate712

the reference solution, where 8000 qMC samples are generated. For the MsFEM and713
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MsFEM-POD methods, we set NH = 64. As shown inFigure 4, we record the error as714

varies s = 2, 4, 8, 16, 32, 64, 128, 256. Here different values q = 4
3 , 3 are tested. When715

q = 3, the reference solution is λ = 0.985033892103644, and the solution computed by716

the MsFEM is 0.999475730933365. A significant error 5.8349e-09 is then produced,717

which can be observed for s ≥ 16 as in Figure 4. Similar errors can be observed with718

q = 4
3 . Besides, the POD error is also depicted when q = 4

3 and s = 256.

0 1 2
-20

-15

-10

-5

Fig. 4: Numerical convergence rates with respect to s, where red and blue symbols
denote the results corresponding to q = 4/3 and q = 3, respectively.

719
Next, we verify the convergence of MsFEM-POD in the physical space. The refer-720

ence solution is computed by the FEM with q = 4
3 , s = 8, N = 8000 and Nh = 2048.721

We vary H = 1
2 ,

1
4 , · · · ,

1
64 , and compare the convergence rates of FEM and MsFEM-722

POD as in Figure 5(A). Meanwhile, the corresponding CPU time is also compared in723

Figure 5(B). The results demonstrate that the MsFEM-POD method offers an efficient724

approach for solving this class of random EVP.

0.5 1 1.5 2 2.5

-10

-5

0

(a) Convergence rate.

-12 -10 -8 -6 -4 -2
-1

0

1

2

(b) CPU time.

Fig. 5: Numerical convergence rates of FEM and MsFEM-POD in physic space and
the comparison of CPU time.

725

At last, we compare the convergence rates of the qMC and MC methods. Both the726

FEM and MsFEM-POD are employed with the same computational setups. As shown727

in Figure 6, the convergence rate of the qMC method reaches almost first-order in the728

random space.729
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Fig. 6: Numerical convergence rates of the FEM and the MsFEM-POD with respect
to N . The ”MsFEM” in the figure denotes the results provided by the MsFEM-POD
method.

6.3. Localization of eigenfunctions. At the end of this section, we employ730

the random potentials over the domain [0, 1]d (d = 1, 2):731

(6.2) V (x,ωs) = v0(x) + σ

s∑
j=1

1

jq
sin(jπx)ωj ,732

where σ denotes the strengthness of randomness. The 2D counterpart is733

(6.3) V (x,ωs) = v0(x) + σ

s∑
j=1

1

jq
sin(jπx) sin(jπy)ωj .734

Here we let v0(x) be a constant that ensures the minimal eigenvalues to be positive.735

When q ̸= 0, the high-frequency components of the potential are decaying with power736

rates. For q = 0, as s → ∞, the potential converges to the spatially white noise. In737

the following experiments, we will check the reliability of the proposed method for738

both scenarios.739

Example 6.5. We set q = 2 and thus the amplitudes of high-frequency compo-740

nents are decaying very fast. Other parameters are s = 32, h = 1/3200, ϵ = 1.0,741

and N = 20000. For the MsFEM-POD method, we adopt H = 1/10 and compute742

all eigenvalues, while we compute the first 10 eigenvalues of the FEM approximated743

form. With 64 cores paralleling, the computational time of FEM is 341.17 seconds,744

while the MsFEM-POD method takes 29.72 seconds.745

As illustrated in Table 5, the relative error of the mean between the FEM solution746

and the MsFEM-POD solution reaches an order of 10−4. Moreover, the MsFEM-POD747

method provides an extremely accurate solution for the minimal eigenvalue. Besides,748

we record the means of the eigenvalues and the error as the ϵ varies. In Figure 7, when749

we reduce the value of ϵ, the accurate solution also can be produced by the MsFEM-750

POD method. This infers that for the random potential (6.2) with q = 2, the required751

dofs of the MsFEM-POD method are independent of the semiclassical parameter ϵ.752

We next consider the 2D case. We set s = 32, and the mesh size h = 1
320 and753

H = 1
10 . The mean and variance of the minimal eigenvalue as ϵ varies are recorded754

in Table 6. Meanwhile, we compare the ground states computed by the FEM and755

MsFEM-POD as shown in Figure 8. The numerical results indicate the effectiveness756

of our method.757
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Table 5: The comparison of mean and variance of first 5 eigenvalues computed by the
FEM and MsFEM-POD methods.

λ1 λ2 λ3 λ4 λ5
mean (FEM) 0.9979 20.7075 20.7723 79.9490 79.9652

mean (MsFEM-POD) 0.9979 20.7075 20.7724 79.9694 79.9856
error 6.36e-08 5.31e-05 5.39e-05 2.04e-02 2.04e-02

variance (FEM) 0.1353 0.1359 0.1351 0.1353 0.1353
variance (MsFEM-POD) 0.1353 0.1359 0.1351 0.1355 0.1354

error 9.69e-11 1.49e-06 1.46e-06 1.32e-04 1.32e-04

Fig. 7: The first 5 eigenvalues computed by the FEM and MsFEM-POD for different
semiclassical constant ϵ.

Example 6.6. Here we consider q = 0 and simulate the spatially white noise,758

and then the localized eigenfunctions would be stabilized. For the 1D parameterized759

potential (6.2), we fix s = 256, ϵ = 1
16 , and h = 1

15000 . Numerical tests show that760

H should be slightly smaller than ϵ but is independent of s. We set the coarse mesh761

H = 1
30 and obtain the localized eigenfunction as in Figure 9.762

Next, for the 2D problem, due to the memory limitation, we fix s = 64, and set763

h = 1
400 to ensure that the high-frequency features of the parameterized potential can be764

captured. The localization of the eigenfunctions is simulated with the coarse mesh size765

H = 1
20 as in Figure 10. Here the results computed by the FEM are not depicted, but766

we depict the first five eigenvalues to demonstrate the reliability of the MsFEM-POD767

method as in Table 7.768

Remark 6.1. When we set q = 0 in the parameterized random potentials (6.2)769

and (6.3), the bounds of the random potentials directly depend on the truncated di-770

mension. For this class of problems, the conditions outlined in Assumption 3.1(2) and771

(3) cannot be sustained, resulting in the lack of convergent eigenvalues and eigenfunc-772

tions. Nevertheless, when the condition Assumption 3.1(1) is satisfied, i.e. H < ϵ,773

the localization of eigenfunctions is simulated accurately with lower computational774

cost, which demonstrates the application potential of the proposed MsFEM-POD775

method on simulating complex quantum systems governed by semiclassical random776

Schrödinger operators.777

7. Conclusions. In this paper, we present a multiscale reduced method for778

the uncertain quantification of the eigenvalue problem for the semiclassical random779

Schrödinger operator. The random potential of the Schrödinger operator is parame-780
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Table 6: The mean and variance of the minimal eigenvalues computed by the FEM
and the MsFEM-POD methods for different ϵ.

ϵ 1
4

1
8

1
16

1
32

1
64

mean (FEM) 0.9941 0.9777 0.9400 0.9031 0.8793
mean (MsFEM-POD) 0.9941 0.9777 0.9400 0.9034 0.8807

error 4.73e-06 5.25e-06 1.48e-05 2.73e-04 1.37e-03
variance (FEM) 1.38e-02 1.48e-02 1.89e-02 2.20e-02 2.34e-02

variance (MsFEM-POD) 1.38e-02 1.48e-02 1.89e-02 2.20e-02 2.33e-02
error 1.10e-06 1.77e-06 2.64e-06 2.00e-06 4.99e-05

(a) ϵ = 1
4
.

(b) ϵ = 1
64

.

Fig. 8: The 2D ground states for different ϵ. 1st column: FEM solution; 2nd column:
MsFEM-POD solution; 3rd column: error distribution.

terized by truncated series with stochastic parameters. We introduce the multiscale781

finite element method (MsFEM) to approximate the resulting problem, in which the782

order-reduced multiscale basis is constructed by an effective approach based on the783

proper orthogonal decomposition (POD) method. Theoretically, the approximation784

error is a combined form consisting of the model truncation error, the MsFEM approx-785

imation error, the POD error, and the integral approximation error of the quasi-Monte786

Carlo method. We provide rigorous convergence analysis and conduct numerical ex-787

periments to validate the error estimate. Using the proposed method, the Anderson788

localization of eigenfunctions for spatially random potentials is resolved accurately.789

The results showcase that our approach offers a practical and efficient solution for790

simulating complex quantum systems governed by semiclassical random Schrödinger791

operators.792
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Fig. 9: A realization of the random potential and the localized eigenfunctions corre-
sponding to the first five minimal eigenvalues.

Fig. 10: A realization of the 2D parameterized random potential and the localized
eigenfunctions computed by the MsFEM-POD method. The corresponding eigenval-
ues are shown in Table 7.

Table 7: The first five eigenvalues computed by the FEM and MsFEM-POD methods.

FEM 6.7399 6.7636 6.8224 6.8461 6.8542
MsFEM-POD 6.7819 6.8055 6.8779 6.9018 6.9144
absolute error 4.1999e-02 4.1919e-02 5.5432e-02 5.5686e-02 6.0148e-02
relative error 6.2314e-03 6.1977e-03 8.1249e-03 8.1340e-03 8.7753e-03
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[8] J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser, and J. C. Garreau,812
Experimental observation of the Anderson metal-insulator transition with atomic matter813
waves, Phys. Rev. Lett., 101 (2008), p. 255702.814

[9] P. Chen, A. Quarteroni, and G. Rozza, Reduced basis methods for uncertainty815
quantification, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 813–869.816

[10] E. T. Chung, Y. Efendiev, W. T. Leung, and Z. Zhang, Cluster-based generalized multiscale817
finite element method for elliptic PDEs with random coefficients, J. Comput. Phys., 371818
(2018), pp. 606–617.819

[11] J. Dick, F. Y. Kuo, and I. H. Sloan, High-dimensional integration: The quasi-Monte Carlo820
way, Acta Numer., 22 (2013), p. 133–288.821

[12] M. Filoche and S. Mayboroda, Universal mechanism for anderson and weak localization,822
Proc. Natl. Acad. Sci. USA, 109 (2012), pp. 14761–14766.823

[13] I. Fumagalli, A. Manzoni, N. Parolini, and M. Verani, Reduced basis approximation and824
a posteriori error estimates for parametrized elliptic eigenvalue problems, ESAIM: M2AN,825
50 (2016), pp. 1857–1885.826

[14] A. D. Gilbert, I. G. Graham, F. Y. Kuo, R. Scheichl, and I. H. Sloan, Analysis of827
quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients,828
Numer. Math., 142 (2019), pp. 863–915.829
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