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A MODEL REDUCTION METHOD FOR THE EIGENVALUE
PROBLEM OF SEMICLASSICAL RANDOM SCHRODINGER
OPERATORS *

PANCHI LIt AND ZHIWEN ZHANGH

Abstract. In this paper, we compute the eigenvalue problem (EVP) for the semiclassical random
Schrédinger operator. We assume that random potentials can be represented by an infinite series
parameterized by random variables. We first truncate the series and develop the multiscale finite
element method (MsFEM) to approximate the resulting parametric EVP. We then calculate the
empirical statistics with the quasi-Monte Carlo (¢QMC) method in a finite-dimensional random space.
To further reduce the computational costs, we construct the multiscale reduced basis using a set
of low-dimensional proper orthogonal decomposition (POD) basis functions. We also provide the
convergence analysis for the proposed method. With the bounded assumption on potentials, we
prove that the approximation error is a combined form that depends on the truncated dimension s,
the coarse mesh size H, the number of qMC samples N and the POD error p with a particular form
O((H® + \/p)? + s~2/P+1  N=2). Finally, we conduct numerical experiments to validate the error
estimate. In addition, we study the localization of eigenfunctions for the Schrédinger operator with
spatially random potentials. The results show that our method offers a practical and efficient solution
for simulating complex quantum systems governed by semiclassical random Schrédinger operators.

Key words. Eigenvalue problem, Semiclassical random Schrédinger operator, Proper orthogonal
decomposition, multiscale model reduction method, convergence analysis.

MSC codes. 35J10, 66N25, 65D30, 656N30, 81Q05

1. Introduction. The approximation of the eigenvalue problem (EVP) of the
Schrédinger operator is a crucial computation task in quantum physics. When a spa-
tially disordered potential is adopted, eigenfunctions may remain essentially localized
in a small physical domain. A celebrated example is the Anderson localization [1],
which has been extensively used to explain experimental observations, such as the
metal-insulator transition of the cold atomic gas [8, 24], localization of optical [32, 34]
and electromagnetic system [23, 33].

In this paper, we consider the EVP as follows:

(1.1) <—62A LV (x, w)) D(x,w) = Mw)(x, w)

over a bounded convex domain D C R? (d = 1,2,3) with the periodic boundary
condition, where € is the semiclassical constant and V(x,w) is the random potential
with w € Q being the stochastic parameter in an infinity dimensional space 2. Here
the differential operator A is with respect to the spatial variable x.

*Submitted to the editors DATE.

Funding: The research of Z. Zhang is supported by the National Natural Science Foundation
of China (project 12171406), the Hong Kong RGC grant (projects 17307921 and 17304324), the
Outstanding Young Researcher Award of HKU (2020-21), and seed funding from the HKU-TCL Joint
Research Center for Artificial Intelligence. The simulations are performed using research computing
facilities offered by Information Technology Services, University of Hong Kong.

TDepartment of Mathematics, The University of Hong Kong, Hong Kong, P.R. China.
(lipch@hku.hk).

fCorresponding author. Department of Mathematics, The University of Hong Kong, Hong Kong,.
Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P.R.
China. (zhangzw@hku.hk)

This manuscript is for review purposes only.


mailto:lipch@hku.hk
mailto:zhangzw@hku.hk

39

40
41
42
43
14
45

[ S
w N = O ©

~

(&7 BN N SN2 SN2 S S, |
i} at

oo

60
61
62
63
64
65
66
67
68
69
70

2 P. LI, AND Z. ZHANG

We consider the stochastic parameter

11
w = (wj)jen € Q= [*57 i}m

to be the infinite-dimensional vector of i.i.d. uniformly random variables on [—3, 3],
and random potentials are bounded and admit the series expansion

(1.2) V(x,w) = vo(x) + ijvj(x),

where v;(x) (j =1,2,---) are deterministic functions.

We are interested in the statistics of the eigenvalues and linear functionals of
the eigenfunctions in the uncertainty quantification (UQ). More precisely, for the
minimal eigenvalue A : Q — R, we aim to compute the expectation with respect
to the countable product of uniform density, which is an infinite-dimensional integral
defined as

(1.3) Eu [N = / Mw)dw = lim AMwr, -+ yws, 0,0+ )dwy - - - dws,
Q

s—ro0 [7%3%15
as well as the counterpart of the ground state 1 to be

(1.4) Ey[G(¢)] = lim GW) (w1, ,ws, 0, )dwy -+ - dws,

s—00 Jr_1 13s
[ 272]

where G is a linear functional in L?(D; ).

Numerically, the integrals (1.3) and (1.4) are calculated with the setup w; = 0
for j > s, which is consistent with the truncation of the potential (1.2). Then the
Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods are employed to generate
the random points in the high-dimensional random space. Using N i.i.d. random
points, MC method approximates an integral with O(N *%) rate [27]. Instead, using
N carefully chosen (deterministic) points (see example [11, 36]), the convergence rate
of qMC method can reach almost O(N~1).

To declare the challenge in computations of UQ for the random EVP (1.1), we

denote ws = (w1, - ,ws) and apply the parametric potential
°. 1
(1.5) V(z,ws) =vo(x) +0 Zl 7 sin(jrz)w;,
i=

where o controls the strength of the randomness, and ¢ controls the decay rates of the
components with different frequencies. We then need to resolve features with various
frequencies in the parametric problem. For sufficiently large s, the degrees of freedom
(dofs) required for the finite element method (FEM) would be significantly large, and
this poses the computational burden on both the time and memory. Therefore, our
primary task is to efficiently solve the EVP parameterized by (1.5).

When the coefficients of EVP are parameterized by (1.5) with specifically chosen
parameter values, such as the spatially disordered coefficients and multiscale coeffi-
cients, reduced basis methods [13, 18, 29, 30] were developed to decrease the compu-
tational complexity. Some recent progress includes the data-driven proper orthogonal
decomposition (POD) methods for elliptic problems [5, 6, 7], the localized orthogonal
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A MODEL REDUCTION METHOD FOR THE RANDOM SCHRODINGER OPERATOR 3

decomposition (LOD) and the super-LOD for the nonlinear Bose-Einstein conden-
sate [15, 16, 31], and the multiscale FEM (MsFEM) for the Schrédinger operator [26].
On the other hand, when the random Schrédinger operator is specifically considered,
there is a novel approach to efficiently predict the eigenvalues and the localization of
eigenstates by the localization landscape and effective potential [2, 3, 12], in which only
homogeneous elliptic equation is solved. In the further exploration of UQ problems, a
combined approach, the qMC-FEM method, has been developed and thoroughly ana-
lyzed in [14]. Nevertheless, there is rarely work related to the model reduction method
for the UQ problem of random EVPs, even though the model reduction methods for
UQ problems of partial differential equations (PDEs) with random coefficients have
made continuous progress recently, e.g., see [9, 10, 19, 20, 37] and reference therein.

For the UQ problem of (1.1), our approach proposed in this work consists of
several key steps. Firstly, random potentials are approximated by the finite truncated
series with the parameterization of stochastic parameters, and the qMC method is
employed to generate the stochastic parameters. In the offline stage, we prepare the
low-dimensional POD basis, which will be utilized to construct the multiscale basis
corresponding to random potentials. Then in the online stage, we solve the EVP in an
order-reduced system approximated by the multiscale basis. After that, the empirical
statistics of eigenpairs are calculated. The multiscale basis is typically approximated
using the standard FEM on the refined mesh. In our approach, the dofs in constructing
the multiscale basis only rely on the dimensions of the POD basis.

The approximation error of the proposed method, dubbed the MsFEM-POD
method, for the EVP of random Schrédinger operator is a combined form that si-
multaneously depends on the truncated dimension s, the coarse mesh size H, the
number of qMC samples N and the POD error p. In particular, it exhibits the super-
convergence rates with respect to H in the physical space. Hence, we first prove the
error bounds (Theorem 5.3) for the multiscale solution A,,s and v, as

(16) mes - ¢||1 S CHgv mes - 1/)|| S CH4,
and
(1.7) Ams — A < CHP,

where X and ¢ are the minimal eigenvalue and ground state, respectively. Throughout
this paper, we use (-,-) to denote the inner product in L?(D), then || - || and | - ||,
(r = 1,2) denote the norm in L?(D) and H"(D) sense, respectively. In addition, we
denote H5(D) = {v|v € HY(D),and v is periodic over D}.

As random potentials are further considered, the corresponding multiscale basis
is approximated by the POD basis. Hence, two classes of optimal problems will be
repeatedly referred to hereafter in which one has been extensively used in prior studies
with the dofs depending on the mesh, and the other one is proposed here with the
referred dofs relying on the POD basis. Let ¢;(x,w) be the reference basis function
obtained by solving the original optimal problems. Then for the multiscale basis
QASZ-(X, w) approximated by the POD basis, the error bound is

(1.8) I16:(x, w) = di(x, )|l < CV/p,

where i = 1,--- | Ny, and C is a constant independent of the stochastic parameter w
and i. Consequently, the estimates (1.6) and (1.7) are updated with an inclusion of
the POD error ,/p; for the detail see Theorem 5.10.
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4 P. LI, AND Z. ZHANG

The total error of the proposed for the UQ of EVP (1.1) is therefore

(1.9) \/EA [Eu[] - QusMoal?] < C ((H? + /)2 + 572771 4 N2,

where o = min{1—4, 1/p—1/2} for arbitrary § € (0,1/2). This result, presented in its
complete form in Theorem 5.11, is given with similar results for the linear functional
of the eigenfunctions. Compared to the qMC-FEM provided in [14], we developed an
efficient model reduction approach for random EVPs. By leveraging low-dimensional
approximations and constructing reduced basis functions, our approach significantly
reduces computational costs while maintaining high accuracy.

At the end of this paper, we conduct numerical experiments to validate the the-
oretical error estimate and the advantage of the efficiency of the model reduction
method. Furthermore, we investigate the localization of eigenfunctions for spatially
random potentials in 1D and 2D problems. An important observation is that for
parameterized potentials possessing non-decaying amplitudes of high-frequency com-
ponents (¢ = 0), it requires the coarse mesh size such that H < e. On the other hand,
no such constraint is needed for parameterized potentials with ¢ > 1. These results
showcase that our approach offers a practical and efficient solution for simulating
complex quantum systems governed by semiclassical random Schrodinger operators.

The paper is organized as follows. We first give some useful preliminaries in Sec-
tion 2. Numerical algorithms are detailed in Section 3. The regularity of the minimal
eigenvalue and ground state with respect to the stochastic parameter is analyzed in
Section 4. The convergence analysis is given in Section 5. Some experimental results
are in Section 6. Conclusions are drawn in Section 7.

2. Preliminaries on the semiclassical Schrédinger operator with ran-
dom potentials. Let H, = —%A + V(x,w) be the random Hamiltonian operator.

The solutions of (1.1) given by (g, %) are the eigenpairs of H,,, which satisfy the
random weak form

(2.1)
622/Dvw(x,w)qu(x)dX-i-/DV(X7W)1/J(X»“-’)¢( /¢ X, w)

Denote the symmetric bilinear forms A(w;-,-) : H5(D) x H5(D) — R by

(2.2) A(w;, @) = / Vip(x) - Vo(x)dx +/ V(x,w)Y(x)p(x)dx.
Then for each w € Q, we find ¥(w) € HL(D) and A(w) € R such that
(2.3) Alw; ¥(w), ¢) = Aw)(¥(w),9), Vo € Hp(D)

with a normalization constraint ||)(w)| = 1.

In quantum systems, a crucial task involves identifying the minimum eigenvalue
and its corresponding eigenfunction, commonly known as the ground state. We define
the energy functional

1

62
(2.4) BO) =5 [ GIVoP +Vx )i

Then the ground state 1 of the system is characterized as the minimizer of this energy
functional, subject to the normalization constraint ||¢| =1, i.e.,

(2.5) B() = inf B(9)

This manuscript is for review purposes only.
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A MODEL REDUCTION METHOD FOR THE RANDOM SCHRODINGER OPERATOR 5

We will refer to the eigenvalues of —A equipped with the periodic boundary
condition. They are strictly positive and counting multiplicities. We denote them by

(2.6) O<x1<x2<---.

Assume random potentials are uniformly bounded with Vipax > V(x,w) > Vipin > 0
but V(x,w) # 0, and we easily get the coercivity and boundedness of the bilinear
form A(w;-,-), which is uniform with respect to the stochastic parameter w, i.e.,

A(w;v,v) > er|v|)3, for all v € Hp(D)
A(w;u,v) < eallulli|v]1, for all u,v € HH(D).
To establish (2.8), we use the upper bound of potentials and the Poincaré inequality

(2.9) ol < x7 ?lloll,  for v e HA(D).

And we also have ¢y = Vipax (1 + 62/(22(1)).
Since the Hamiltonian operator H,, is self-adjoint and Vi, > 0, the EVP has

countable-many eigenvalues (Ag(w))gen. They are positive, have finite multiplicity,
and accumulate only at infinity. We write them as

with A\g(w) — 0o as k — oo. For the eigenvalue A(w) we define the corresponding
eigenspace

E(w, \w)) := {¢|¢ is an eigenfunction corresponding to A(w)}.

And for the minimal eigenvalue \;(w), we have the following coercive-type estimate.

LEMMA 2.1 ([14], Lemma 3.1). For all w € Q and A € R, define Ax(w;-,-) :
Hp(D) x H5(D) — R to be the shifted bilinear form

(2.10) Ay (w;u,v) = A(w; u,v) — A(u, v).
Restricted to the L?-orthogonal complement of the eigenspace corresponding to A\ (w),
denoted by E(w, A\ (w))L, the A\ (w)-shifted bilinear form is uniformly coercive in w,

i.e., there exists a constant Cgqp such that

(2.11) Ay, (Wi u,u) > Cyapllull? for all u € E(w, A\ (w))*.

Furthermore, according to the min-max principle, the kth eigenvalue is to be a
minimum over all the subspace Sy C Hp(D):

(2.12) Ap(w) = min max M
SxCHL(D) 0£ueSy  (u,u)

where dim(Sy) = k. It can be equivalently written as

2.13 Ar(w) = mi A(w; u,w),
(2.13) k(w) SkCrnI}}ral(D)ﬁfrell%fi (w; u,u)
ul||=
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6 P. LI, AND Z. ZHANG

Consequently, we obtain the bound of the kth eigenvalue

M(w) > ¢ min max ||Vul|?2, Ip(w) <c min  max ||ul/?.
)1 g, B 19 M) Ser i I
ul|= ul|l=

Using the kth eigenvalue of the Laplacian operator, we get the bounds of A\;(w) as

(2.14) Ak = cixk < (W) < ealxr + 1) = .

Furthermore, since \x(w) = A(w;¥r(w), Y (w)), the estimate of the corresponding
eigenfunction satisfies

(2.15) [r(w)]l < VAk(w)/er < Vealxr +1)/c1 = .

3. Numerical approximations.

3.1. Stochastic dimension truncation. As defined in (1.2), the random po-
tential V(x,w) is assumed to be an infinite series expansion. To solve the EVP
(1.1) with the potential (1.2) in numerical, we first truncate the infinite-dimensional
problem into a s-dimensional problem by setting w; = 0 for j > s. Denote ws =

(w1, ,ws), and the random potential is truncated as
(3.1) V(x,ws) =vo+ Y w;v;(x).
j=1

We then deduce a truncated symmetric bilinear form
€2
As(wyu,v) = / §Vu(x) -Vo(x) + V(x, ws)u(x)v(x)dx.
D

The corresponding eigenpairs (As(w), ¥s(w)) satisfy the parametric EVP
(3.2) As(w; s (w),v) = As(w) (s (w),v) for all v € Hp(D)
with [|1hs(w)[| = 1.

3.2. MsFEM approximation. For clarity, we consider the deterministic po-
tential v := vg(x) and the corresponding weak form
2

(83)  al,6) = (V. V) + (wv,6) = A(®.0), V¢ Hp(D).

For the MsFEM, the FE basis on a coarse mesh with mesh size H and the refined
mesh with mesh size h are required simultaneously. We consider the regular mesh Ty
of D and the standard P; FE space on the mesh Ty

Py(Tw) = {v € L*(D)| for all K € Ty, v|k is a polynomial of total degree < 1}.

Then the corresponding H}(D)-confirming FE spaces are V3, = Pi(T,) N Hp(D) and
Vg = Pl(TH) n H};.(D)
The multiscale basis functions are obtained by solving the optimal problems

(3.4) ¢; = argmin a(e, @),
GEHE(D)

(35) S.t./ (b(;stdX = Oé(sij, V1 S] S ]\7].17
D

This manuscript is for review purposes only.
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A MODEL REDUCTION METHOD FOR THE RANDOM SCHRODINGER OPERATOR 7

where qS]H € Vg and a = (1,¢>§{ ). Here « is a factor to eliminate the dependence
of basis functions on the mesh size, which has been elucidated by the Clément-type
quasi-interpolation operator [25]. Define the patches {D,} associated with x; € Ny

Do(x;) :=supp{¢;} = U{K € Ty | x; € K},
Diy:=U{KeTg|KNDp_1#0}, £=1,2,---.

The multiscale basis functions decay exponentially over the domain D; see the Theo-
rem 4.2 in [26].

In this numerical framework, three fundamental assumptions on potentials are
required.

ASSUMPTION 3.1. 1. For the potential in Schrédinger operators, we assume

[Vl oo (D:62) = Vinaz < 00 and Hy/Viae/e S 1.
2. For some 0 < p <1, it holds Zjil [0 1|7 < 0.

3. v; € WH°(D) for j >0 and Zj‘;l |vj][ w100 (D) < 00.
The first assumption gives a necessary condition to the optimal problems (3.4)-

(3.5). And the others ensure that the parameterized EVP is well-posed.
On the refined mesh, the multiscale basis functions are expressed as

Np,

(3.6) b= cidr,

k=1

where ¢ traverses all the coarse grid nodes. The eigenfunction is therefore approxi-
mated by ¥,,s = Zf\;”l u;¢; in the space Vs = span{¢1,--- ,én, }, and the corre-
sponding discretized equations are

€2 Ny Ny Npg
5 (Vi, Vo )u; + Z(Uo@, dj)u; = A Z(f% ;)
i=1 i=1 i=1

with j = 1,---, Ng. Denote the matrices M" = [M}}] with M = (¢}, o), S" = [S]}]
with Cj; = ¢!. The coefficients in multiscale basis function (3.6) are solved from the
equality-constrained quadratic programming

(3.7
s.t. AC = al,

{min crae
where G = %Sh + V" and I is the unit matrix with size of Ny x Np.

With the random potential further considered, the direct combination of the
MsFEM and qMC method is outlined as the following algorithm.

3.3. A POD reduction method. In Algorithm 3.1, the construction of the
multiscale basis is repeated for all realizations of the random potential. In the worst
case, the dofs of each optimal problem are Nj. This takes the computational bur-
den for computations. Here we propose a POD reduction method to construct the
multiscale basis, where the dofs involved are independent of the spatial partitions.

Before the formal algorithm is given, we briefly review the POD method. Let
X be a Hilbert space equipped with the inner product (,-)x and norm | - ||x. For
Uy, -, u, € X we refer to V = span{ui, - ,u,} as ensemble consisting of the

This manuscript is for review purposes only.
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8 P. LI, AND Z. ZHANG

Algorithm 3.1 The qMC-MsFEM for the EVP of the random Schrédinger operator.

Input: Stochastic samples {w’ };,\7:17 coarse mesh 7, refined mesh 7j,

Output: Expectation of eigenpairs (E(Aps), E(tms))
1: for each j € [1, N] do
2:  Solve optimal problems (3.4)-(3.5) and construct multiscale basis {¢;(w’)} N4 ;
3 Find \ps(w?) € RY and ¢ (w?) € Vins == span{p;(w’)} 1V such that

(38> A(wj; wms (wj); ¢ms> = )\ms (Wj>(¢ms (wj)7 ¢ms)7 v(éms S Vms-

4: end for
5: Compute the expectation (E(Ays), E(t¥ms));

snapshots {u;}"_;. Let {¢k};L; be an orthonormal basis of V with m = dim V. Then
the snapshots can be expressed into u; = > *  (uj, ox)xpr for j = 1,--- ,n. The
method consists of choosing the orthonormal basis such that for every ¢ € {1,--- ,m}
the following mean square error is minimized

Y, 2

uj — Z(Uja<Pk)Xsﬁk

k=1

n

.1
(3.9) min — Z

4
{Wk}k:l n j=1

X
st. (@i, j)x =05, for 1 <i,j <UL

A solution {¢y}¢_, is called a POD basis of rank £.

Define the correlation matrix K = [K;;] with K;; = 1(u;,u;)x. It is positive
semi-definite and has rank m. Let o1 > --- > 0, > 0 denote positive eigenvalues of
K and vy, - ,v,, denote eigenvectors. Then a POD basis is given by

1 n
E= Vg )jUyj,
¥ M;( )] J

where (vg); is the j-th component of the eigenvector vy.Consequently, the POD ap-
proximation is described by the proposition as follows.

PROPOSITION 3.1 ([4, 17]). For all of the snapshots, the approximation error of
the POD basis with dimension m satisfies

2
n 0
2j=1 HUJ B Zk:l(u"’%)mex Pkt Ok
n 2 - m :
Zj:l ||u]||X Zk:l Ok
In the POD method, (< n) is typically determined such that

ZZL:ZH Ok <p
21 ok ’
where p is a user-specified tolerance, often taken to be 0.1% or less.
When the POD method is employed, we let {V (x,w’ )}?:1 be the parameterized

potentials with @ the number of samples. Solve the optimal problem (3.4)-(3.5)
and we obtain random multiscale functions ¢;(x,w?), where i = 1,--- Ny and j =

(3.10)

(3.11)

L-,Q. At x;, ¢ = é Z?zl ¢i(x,w’) is the mean of random multiscale functions,
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A MODEL REDUCTION METHOD FOR THE RANDOM SCHRODINGER OPERATOR 9

and ¢;(x,w’) = ¢;(x,w’) — ¢? are fluctuations. For each 4, employ the POD method
to {qi)l(x,wf)}?:l and build the order-reduced set {¢}(x), -+, (™ (x)} with m; < Q.
Then, for a stochastic sample w, the multiscale basis can be approximated as

myg
(3.12) dilx,w) = ) ch(w)cl(x),
1=0
where cl(w) are to be determined with i =1,--- , Ny and [ = 0,--- ,m;. The eigen-

function is approximated by

(3.13) i Z )G (%),

in which u; and c are unknown. Next, we determine the unknowns c , leaving the
discrete EVP w1th dofs Ny to be Solved
Notice that the POD basis can be expressed into

Np,

(3.14) Gix) =) d 9}
j=1

and we can easily get a(¢},(!) = %(VC%,VCJZ-) + (v0¢},¢}). Meanwhile, owing to

=3 Z _ 1 $i(x,w), it holds (¢7,¢¥) = ad; ;. And for k # 0, since

ka (f)lxoﬂ Z ((blxw Z@xw),

there holds (¢F, ¢f) =0forallé,j=1,---, Nyg. We therefore get the reduced optimal
problem that the dofs depend on the dimension of the POD basis:

mina (Zc C Zc ( )
s.t. 3 il (x)pfdx = a.
>

We emphasized that here only one constraint is effective. The formal algorithm is
then outlined as follows.

(3.15)

3.4. The qMC method. The qMC method is a popular approach for approx-
imating high-dimensional integrals, primarily due to its better convergence rate than
the conventional MC method. We consider the s-dimensional integral (s usually very
large)

(3.17) L(f) = /[ S

This integral cannot be analytically calculated and we use a class of qMC rules called
randomly shifted rank-1 lattice rules to calculate it numerically. The integral points
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Algorithm 3.2 The qMC with MsFEM-POD method for the EVP of the random
Schrodinger operator.

Input: Random samples {w]} "1, @, coarse mesh Ty, fine mesh 7p, ¢ =1,--- , Ny
Output: Expectation of eigenpairs (E(Aps), E(¢ms))
: for each j € [1,Q] do
Solve optimal problems (3.4)-(3.5) and generate basis sets {¢/ }Q for all i;
end for
Employ POD (PCA) method to construct the order-reduced set E=; =
{Czo(x)v Cil(x)v e 7sz1 (X)};
Construct the new optimal problems (3.15) by Z;;
6: for each j € [1,N] do
7. For the potential parameterized by w?, solve the optimal problem (3.15) and
generate the multiscale basis {¢;(w?)} N ;
8 Find A\ps(w?) € RT and s (w?) € V2 .= span{¢;(w?)} N such that

o

(316) AW Pms (@), Bms) = Ams (W) (Wms (@), ims), Vs € VIS

9: end for
10: Compute the expectation (E(Aps), E(tms)).

are constructed using a generating vector z € IN* and a uniformly distributed random
shift A € [0, 1]°. We therefore obtain the approximation of (3.17)

Qo) = ]tjff({j@A} ;).

in which the braces indicate that the fractional part of each component is taken.

The error estimate of randomly shifted lattice rules requires the integrand to be-
long to a weighted Sobolev space. Denote W; ., the s-dimensional weighted Sobolev
space in which functions are square-integrable mixed first derivatives, and the con-
cerned norm depends on a set of positive real weights. Let v = {7, > 0 : u C
{1,2,---,s}} be a collection of weights, and W  be the s-dimensional ”unanchored”
weighted Sobolev space equipped the norm

il 2
19 Wla= S (/ _ 8wuf(w)dwu> .

uC{l: e} 23

where {1:s} ={1,2,--- s}, wy = (wj)jen and w_y = (wWj)je{1:s}\u- The root-mean-
square error of such qMC approximation is

1 n <2C(2n)>“ v
3 19 \/EA |I QN,s(f)D < (,D(N) @iug{:l:s} Yu (27‘(2)” Hf”s,’)‘

for all n € (%, 1], where the expectation E is taken with respect to the random shift
A, ¢(N) is the Euler totient function with o(N) = [{1 <& < N : ged(&, N) = 1},
and ((z) = Y., k* for > 1 is the Riemann zeta function. Note that ¢(N) = N—1
for prime N.
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4. Parametric regularity. Asindicated by (3.18), the norms ||Al|s 4 and ||¢]|s~
are required for the error analysis of the qMC approximation. Let m = (m;) jen, ¥ =
(vj)jen. We define the multi-index notations: v! = [[;5, vk v —m = (v; —m;)jen;
m < v if m; < y; for all j € IN. The following lemma gives the bound on the
derivative of minimal eigenvalue A\ with respect to the stochastic variable w, as well
as the L2-bound and H!-bound on the derivative of the ground state.

LEMMA 4.1. Let v be a multi-index satisfying |v| > 0. Then, for all w € Q, the
deriwative of the minimal eigenvalue with respect to w is bounded by

y Ch(Jp|h)tte »
(41) oz < S oy ),
Cgap j

and the derivative of the ground state satisfies

vt o Calll)e v o < CaB(p]) .,
4. 0 —_ illos)™,  l0g < —r illoo) ™
42) 105l < = =TIkl 0501 < T2 00 Tl

gap j (
where € € (0,1), C1, Cy and Cs are finite constants.

Proof. According to the definitions of A and 1, the bounds (4.1) and (4.2) clearly
hold for v = 0. For v # 0, taking the derivatives for the (1.1) with respect to w, and
employing the Leibniz general product rule yields

62 v v = vV—e; v m rv—m
(4.3) — 5 A0+ V (%, W)Y + ; ;0" = ; <m> OPNY ™)
Separating out the 9%\ and using |[¢]| = 1 yields

62

OGN == (VOZ, Vi) + (V(x,w) 051, )

2
> (1)amaez o).

m<v

+ 3 (00l ) —
j=1
Due to 5(VOLw, V) + (V(x,w)5, §) — A(9¢, 1) = 0, we have

05X
0#m<v

ol v - X (2 )omaes o)
12

(4.4)

<2

j=1

= v—e; v m v—m
<Sululelot =+ 5 (2 )lemaies ol

j=1 0£m<v

- = v—e; - v m v—m
1) xS wmluledot g S (2 )omalles el
j=1 0#m<v

This indicates that the bound |0%\| depends on the lower order derivatives of both
the minimal eigenvalue A and the ground state .
Next, we compute the bound of ||0%4|1. Since ||| = 1, we have

0=05@ )= (;) (05, D ~™),

m<v
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which infers that

v —m
@ wl=]-3 ¥ ( )(8::‘1#78: v)|
m
0#m<v
1 v m v—m i v m v—m
an <3 X (L)l mel< g X (1) lemeiles el
0#m<v 0#m<v
In the eigenspace, we have the decomposition
(47) 8V¢ Z ¢k,¢k 7/% - ( :1/’71/’)¢ + 12;7
kEN
so that ¢ € E(w, A(w))*, which infers that
(4.8) 10591 < @5, )| + 191,
as well as
(4.9) 105111 < (850, ) + ||

We first compute the L?-bound. Owing to
AOL, ) = NOL, ) = (950, ) (AW, ) = M, ) + AW, ) = A, )
= AW, ) = A, %) = CoaplldlI = CoaplldII*.
Taking inner product of (4.3) with ¥ yields
A5, 0) =MoL, ) = > ( )amA (057 ™, 00) = > v (0,054, ),
0#Am<v j=1

in which we have used the fact that (1, 1;) = 0. We then arrive at

v —m > v—e;
> (2 )emator il + X vl vl

Coar \ ofmer j=1

(410) [l <

Substituting the two bounds (4.6) and (4.10) into (4.8), we derive the bound on
the derivative of the ground state
(4.11)

oz = 3 (1) (jloz

0£m<v

|3m/\|

)na" mw||+—2ujnv]||oo||a" iyl

Furthermore, applying the Poincaré inequality and repeating the above proce-
dures yields the H'-bound

osuli < Y <m) (tleolh + 2220 oz,

0#m<v

anv]noona” )y

qap

Next, with similar induction steps as Lemma 3.4 in [14], an application of the induction
argument yields (4.1) and (4.2). d
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5. Convergence analysis. The error analysis of this part mainly concerns the
approximation error of Algorithm 3.2. Remove the POD error from the results and
produce the estimate for Algorithm 3.1. To begin with, we derive a priory estimate
for the variational approximation of the deterministic Schrodinger operator.

5.1. Convergence analysis of the MsFEM for the EVP. Denote Vy a
family of finite-dimensional subspace of H}(D) such that

(5.1) min{||) — Yy |1;¢¥n € Vi } oo 0

and define the variational approximation of the deterministic Schrodinger operator
(5.2) inf{EWn);vn € Vu, |vul = 1}.

This problem has at least one minimizer 1)y such that for some A € R

(5.3) (Hu — Mpg,v) =0, Yo € Vy,

where H = %A + vo(x). Assume vo(x) € L>(D), for all v € Hp(D) it holds
3 € 2 2
((H = Xv,v) < S |[VolI” + [lvol[ < [[v]|"-

Meanwhile, let A be the minimal eigenvalue of H. We take the decomposition for
v = (v,¥)Y + v, which implies that ((H — A)v,v) = (¥,%) > 0. Hence, there exists a
nonnegative constant M such that for all v € Hj5(D)

(5.4) 0 < ((H — N, v) < M|,

Before the formal convergence estimate for the EVP is given, we consider the
elliptic problem

(5.5) a(u,v) = f(v),
where a(u,v) = %(Vu, V) + (vou,v) which has been defined in (3.3).
LEMMA 5.1. [35] Given f € L*(D), let uy be the solution of
a(uH,vH) = f(’UH), Yog € V.

The numerical solution ug € Vg satisfies

1 .
(56)  lu—unl <Cllu—unlh  sup {nﬁ”%—v”,
ger2(D),|gllz0 U llgll vEVar

where, for every g € L*(D), ¢, € Hp(D) denotes the corresponding unique solution
of the equation

(5.7) (Hw, ¢g) = a(w, dy) = (g,w), for all w € Hp(D).

Proof. By Riesz Representation Theorem, we can define

(5.8) foll = sup @
g€L2?(D),g#0 lgll
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14 P. LI, AND Z. ZHANG
Letting w = v — ug in (5.7), since a(u — ug,vy) = 0, we get

(9,u—un) = a(u —un, ¢g) = alu — um, ¢y —vn) < Cllu —un|1lldg — vall-

It follows that (g,u —un) < Cllu — uglinfy,evy [|¢g — valli. Then the duality
argument (5.8) implies

Ju—ull < Cllu—unlly  sup { inf ”‘bH}
ger2(D),gz0 Lvaeva  [|g]

Furthermore, since ¢, solves (5.7), if u € H"(D) N HL(D) with 1 <r < 2, we have
0

sup {inf 99 — vl
ger2(D)g#0 lvneve g

} <CcHS L.

Hence, for w € H=*(D), denote ¥,, the unique solution of the adjoint problem
(5.9) (H — N, v) = (w,v) for all v € i,

where ¥, € 1 := {v € H5(D)|(¢),v) = 0}. Since A is the minimal eigenvalue, there
exist a non-negative constant 3 such that

Bl < ((H = No,v).
We then get the existence and uniqueness of the solution to (5.9) and the bound
(5.10) [l < B7Hwll.

LEMMA 5.2. Assume that there exist a family (Vi) mso of finite dimensional sub-
space of Hp(D) such that

(5.11) min{||y — Yu|1,¥u € Vi} oo 0,

then it holds || — Y| ﬁ 0. The FEM approzimation for the EVP satisfies
—

(5.12) E(bn) — E() < Cllvu —¥|3,
and
(5.13) Au = Al < Cllvu — 9|1,

where C' is a constant C' and H > 0. Besides, there exists Hy > 0 and C > 0 such
that for all 0 < H < Hy,

(5.14) [ — ¢l < CH™ u — .

Proof. Let Py € Vi be such that

v — Pl = min{||[¢) — vy |1, You € Vi }.

From (5.11), we deduce that (Pgv)pgso converges to ¢ in Hj(D) with H — 0.
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Since AV, ¥) = (Y, HY) = A (¢, ¥rr), we get
A — A= {((H = N (bm —¥), W — ),

B(u) — BW) = 3 (A, ) = 50, 0) = 57 = Now = ), (6 =),
According to (5.4), we have

1
2 2

E(g) — E@W) < lvg — |3, Ag — A< ||vm — |3

Next, we estimate the error ||¢g — ¢||. Let 9} be the orthogonal projection of ¥y
on the affine space {v € L?(D)|(¢,v) = 1}. One has

(515) i € HE(D). 0 — v € v i — vm = llow — w1,

from which we infer that

I =17 = [ (0= 6wz =)+ [ o = 0)0m = 030
— [ wu = 0@k =)+ o - vl
D
= (= Ny 01— ) + {0 — 9"
= (= M)Wy — )+ (= Ny Yo = 0) + 5l — )

R 1
= ((H = Ny -y, g — ) + Z”"/’H —|*.
Therefore, for all ¥ € Vg, it holds

N . 1
[or =l* = ((H =N ($r =), Gy —p = Vi) + ((H = N) (@ =), Wrr) + 7 [ —9||*.
For the first term of the above equation, we obtain an estimate

(5.16) (H =N (@r =), Uy — Upg) < Cllog — Gl ][y —p — Va1
Furthermore, let ¥ € Vi N4, and we obtain
(H =N (m =), Ya) = (H = Npw, Vi) = (H = N, V)
=((H — Nm, ¥y) — 0= (A — Nom, Tr) — (A — N, Up)
=g —AN) (Ve =), ¥g),

which implies
(H =N (@m =), %5)| < g = N|va —|[|¥al.

Then, for all Uy € Vi N, we get

1
e =11 < Cllvn =l -y = Va1 +llom =l o =1Vl + 1w — 11"

By Lemma 5.1, we have ||y, —y — Wy 1 < CH" ¢y — 3| for v € H"(D)NHp(D)
with 1 < r < 2. Hence, owing to (5.11), we can conclude that there exists Hy > 0
and a positive constant C' such that for all 0 < H < Hy,

(5.17) b — Il < CH™ Hlpu — 1. O
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16 P. LI, AND Z. ZHANG

Next, we estimate the MsFEM approximation error. Let Py be the classical
L2-projection onto Vi and W = ker(Py) = {v € Hp(D)|Py(v) = 0} be the kernel
space. There exists an orthogonal splitting H5(D) = Vi @ W, in which W captures
the fine mesh details from H5L(D) that are not captured by Vy. Similarity, denote

(5.18) Vins = {v € Hh(D)la(v,w) = 0 for all w € W},
and wherein there is another orthogonal decomposition, namely
(5.19) Hp (D) = Vs @ W.

We then seek the eigenvalues and the eigenfunctions in V,,s such that

(5'20) a(d’ms» ¢) = Ams (wm& ¢)a Vo € Vins

with [|1hms | = 1.
We revisit the elliptic problem (5.5). Let u € Hj(D), and we have u — u,,s € W,
ie., a(u — Ums,v) = 0 for any v € V,,5. Owing to this orthogonality,

(5.21) a(Ums — u,w) = f(w), YweW.
Since ums —u € W C Hp(D), we have Py (s —u) = 0, which implies
(5.22) ltms — w|| < [Jums — u — Pr(tms — w)|| < CH||ums — 1.

Furthermore, let 8 > 0 denotes the coercivity constant of a(-,-), and then the varia-
tional equation gives

Blltms — u||% < a(tms = Uy Uns — u) = f(Ums — ).
Meanwhile, we also have

J(Ums—u) = (f7 ums_u) = (f_PH(f)7ums—u—PH(Ums_u)) < CH3||f||2||ums_u”1-

These indicate

(5.23) [ums —ully < CH?||f]l2
and
(5.24) s — w|| < CH||thys — ull; < CH?.

Therefore, we obtain the error estimate of the MSFEM for the EVP of the deter-
ministic Schrédinger operator.

THEOREM 5.3. Let v and s be the ground states of (3.3) and (5.20), respec-
tively. We have the approximation error

(5.25) [thms — ¥l < CH?,  |[thms — || < CH*,
and
(5.26) Ams — A < CHS.

Remark 5.4. The convergence rate O(H®) of the minimal eigenvalue also can be
obtained via a high-order interpolation in Theorem 4.1 of [26].
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5.2. Dimension truncation error. Here we denote Ay = As(ws;0) the trun-
cated eigenvalue and ¥ = ¥s(ws;0) the truncated eigenfunction. The truncation
error with respect to s is described as in the following Proposition 5.5.

PROPOSITION 5.5 (Theorem 4.1, [14]).  Suppose that Assumption 3.1 holds.
There exist constants C1, Co, C3, Cy > 0 such that for sufficiently large s and for
all w € Q, the truncation errors of the minimal eigenvalue and the ground state are
bounded with

(5.27) IA(W) = As(ws)] < Crs™ VP [gh(w) — ths(ws) |1 < Cos™V/PHL
Furthermore, the weak truncation error is bounded by

(5.28) B [X — A]| < C3s2/PFL,

and for any continuous linear functional G € L*(D;)), we have

(5.29) Eu[G(¢) — G(1s)]] < Cas™/PF1.

Here C1, Cy, C3 and Cy are independent of s and w.

5.3. QMC error. Given the regularity as in Lemma 4.1, we derive the upper
bound of the root-mean-square error for the qMC approximation.

PROPOSITION 5.6 (Theorem 4.2, [14]). Let N € IN be prime, G € L?*(D;9).
Suppose that Assumption 3.1 holds. The root-mean-square errors of a component-
by-component generated randomly shifted lattice rule approzimations of Eu[As] and
E,[G(¥s)] are bounded by

(5.30) VEa [Eur] — QuaAdf?] < CLaN ™,
and
(5.31) VEa [Eu[G(0,)] - QnsG ()] < CoaN 70,
where
1—9, for arbitrary 6 € (0, %), p € (0, g],
(5.32) a=471 4 9 3
) pE (ga 1),

and the constants C o and C o are independent of s.

Since a particular case of the elliptic problem, the linear Schrodinger operator,
is considered in this work, the proofs of Proposition 5.5 and Proposition 5.6 are the
same as those of Theorem 4.1 and Theorem 4.2 presented in [14].

5.4. POD error. In the MsSFEM-POD method, the multiscale basis is approx-
imated by the POD basis. Thus, the analysis begins with the estimation of basis
function approximation. Note that we consistently assume the multiscale basis func-
tions exist and are bounded, i.e., the solutions of optimal problems (3.4)-(3.5) exist
and are bounded.
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LEMMA 5.7. Let Assumption 3.1 hold and w',w? € Q. The multiscale basis func-
tions ¢;(w), ¢;(w?) are obtained by solving the optimal problem (3.4)-(3.5) with the
random potentials V(w') and V(w?), respectively. Then it holds that

l9i(w!) = di (@)l < ClIV (") = V(w?)llssllo(@h)]],
wherel =1,2 andi=1,--- ,Ng.

Proof. The optimal problem (3.4)-(3.5) can be equivalently formulated into a
Karush-Kuhn-Tucker (KKT) equation. At x;, the corresponding KKT equation is

G —AT C; o 0
A O i) \b;
where G is positive definite and
G —AT\' (G 1 G LAT(AG-'AT)"1AG™' G-LAT(AG-1AT)~!
A O n (GTLAT(AG—1AT)-H)T —(AG1AT)!

We therefore get the solution ¢; = G AT (AG~1AT)~!b;. The matrix G depends on
the stochastic parameter, i.e.,

(o)) -() (& ) G- )
where G = G(w') and Gy = G(w?).
(75 (e REd) = (%79,
which infers that z 2

(5.33)
ci(wl) — CZ‘(CUQ) = G;l(GQ — Gl)ci(wQ) — G;lAT(AGflAT)ilAGfl(GQ — Gl)ci(wz).

Adopting the truncated expansion of random potentials yields

(w?). A straightforward derivation yields

2 s
Gij = S (VoI Vol + (vosl &) + D wnlvnsl, o).
k=1

Then we get

S

0Gij = Gij(w') = Gij(w?) = > (wi — wi) (vl 1)

k=1
Since ||vk(x)||o is bounded, we have |(vk¢?,¢;’)\ < Che. Let h < ¢, we also have
Gij ~ o(h?). Consequently, for bounded potentials V (w!) and V (w?), it holds

(V(w!) = V(w*)er, ¢))| < CIV (') = V()| (4], 7).

We then deduce that ||G1 — Gal| < C||V (w!) =V (w?)]|eo||M"||. Now go back to (5.33),
and we obtain

_ (112 2 -1
) o < 1= Gl JAIGE)

G IAGT AT

APPIGT
<OV (Wh) = V(w?) oo lci (w? (1 IAITIG .
SOV (w) = Vw)llolles(w)Il {1+ IAGTTAT|
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Since A;; ~ o(h?), there exists a positive constant C' such that

lles(w?) = i)l < ClIV(w!) = V(w?)[lsolles (@)

This bound holds uniformly for i = 1,--- , Nj,. Denote ® = (¢, --- ,gb?vh), and then

#i(w!) = ®c;(w!) (I = 1,2). Since finite-dimensional spaces are considered in this
proof, we readily deduce that

s (") = di(w?)]| < OV (w!) = V(w?)[looll s ()],
where [ = 1,2 and C is independent of potentials. This completes the proof. 0

In the offline stage of Algorithm 3.2, for all ¢ = 1,---, Ny, we construct the
reduced POD basis {¢}(x)," -, (" (x)} with m; < Q. According to the Proposition
1 [22], we have for all £ < m;

Q
(5.34) Z Z ok,

4
Gi(w!) = (di(w’), ¢F) c’“
k=1

£+1
which means that there exists a constant C' such that for all j € {1,---,Q},
¢
(5.35) | )= (dilw?), ¢F gp < CZok
k=1 41

Next, we find the optlmal approximation of the multiscale basis for random po-

tentials in the space Vn’;s ;= span{¢?(x), ¢} (x), -+, (" (x)} with the form
(5.36) dilx,w) =) (@) (x).
=0

For any given stochastic variable w, the optimal problems (3.4)-(3.5) and (3.15) can
be equivalently written as

2
(5.37) dixw)= argmin  S[VE? + (V(x,w)o. ),

pE€HE(D),(¢,65") —a5m

(5.38) biew) = mgmin VO + (Vxw)o.0)
SEVLL (0.0 )=

Due to V,fl‘;dz C H}L(D), we consider the optimal approximation problem

(5.39) bi(x,w) = arg inf p(x, w) — di(x,w)]|,
PEVE ($,01)=a

ms,i’

and get the below lemma.

LEMMA 5.8. Given w € Q, let ¢;(x,w) and ¢;(x,w) be the solutions of (5.37)
and (5.38), respectively. For sufficiently small h, it holds

(5.40) 6:(x, w) = di(x,w)|| < CV/p,

where it =1,--- , Ng and C is a constant independent of w and mesh size h.
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Proof. Denote Qg = {oﬂ} ", C Q, and consider w € Q. According to (5.35), i
is obvious that

3(x, @) — i (3¢, w)|| = || (3, w) Zc )|| < Cvp,

where ¢ (w) = (¢i,¢/). We next consider w € Q/q. For any j € {1,---,Q}, we have
16: (¢, w) = i, )| < (i, w) — i, )| + [|hi (¢, w7) = Pi(x, )|

(bzxw ch

Owing to the boundedness of V(x,w) and ||¢;(x,w’)| < Ch?, it holds

<C|IV (%, w) = V(x,07) |l llds (3, )| +

(5.41) 6i(x, @) = di(x, )| < Cllw = [loo[B + C/p.

Let h be sufficiently small, and we get (5.40). This completes the proof. ]

Furthermore, consider the finite-dimensional representations

Np, N,
gilxw) = (W), dilxw) = &(w)].
j=1 j=1
According to the L2-bound in Lemma 5.8, there exists a constant such that
. C\/p
(5.42) Vi)~ Vilx,w)l < .

Remark 5.9. For the H'-error of the multiscale basis approximation, we can also
consider the POD method in H!(D) (see example in [21]), which shall provide a better
estimation for (5.42).

Next, we consider the approximation of the equation a(u,v) = f(v) by MsFEM
and POD-MsFEM. Similar to [28], we consider the algebraic equations constructed
by the MsFEM and the MsFEM-POD, respectively. Denote G;; = %(V(éi, Vo;) +
(V(x,w)¢;i, ;) and f; = (f, ¢;), and we get the algebraic equation discretized by the
MsFEM as

(5.43) Gu =f,
The counterpart approximated by the MsFEM-POD method is
(5.44) Ga=HT,

where G;; = %(V(ﬁh Vo;) + (V(x,w) i, ¢;) and f; = (f, ;). Owing to the Assump-
tion 3.1, we get

Gij — Gij| = 2h2|<¢z,¢j> (i 6)| +1(V (x, )i, &) = (V(x,w)i, &)
2 ~
< <2h2 +IVix, w>||oo) (leill + l1651)v/p
< CHY?/p.
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Define E as the error between G and G, ie, E=G — G, as well as ey as the
error such that e; = f —f. We can see that |ef’i| < || f|ly/p- Consequently, we obtain

(5.45) lu—af = |G™ (ey —~ Eq)|| < IGH (les [l + IIE([[al]) < C1v/p,

where C depends on the bounds of ||f||, |||, |G| and H. Since w,,s = Zf\g u;d;
and uPod = ZZV”; {;;, we further get

Ny Ny
Z Uiy — Z Ui s
i=1 i=1

l[wms — upOd” <

Ny Ny
Z Uip; — Z Ui s
i=1 i=1

. < A
(5.46) < [lull max o0 - il +

Ny
Dl bill2(ha — all
=1

S 02\/57

where Cy depends on H and ||ul|. Meanwhile, we also have

Ny Ny R
D uiVei = > uiVe;
i=1 i=1

Vs — Vup"d” <

Ny
Vi — > 1,V
=1

Ny
< Jull max [1Vo; = Vil + | DIVl - a
=1

< 03\/57

where C5 depends on |ul|, h and C;. Note that |[V¢;|| are bounded due to the
solvability of optimization problems. Therefore, there exists a constant C' such that

(5.47) [tms — ubydll < C/p.
Next, consider the EVP approximated by the MSFEM-POD and MsFEM

(5.48) Alw; 920! v) = X2 (ghod v), o € VB,
and
(5.49) A(w; Yms, v) = Ams(Vms, V), YU € Vips.

A direct derivation similar to (5.46) and (5.47) yields

(5.50) 187 = s, |19hes — Pmslls < C/p.

The approximation error of the MSFEM-POD for the EVP (2.3) is estimated as
the following theorem.

THEOREM 5.10. Let ¢P°% and NP4 be the solution of the discretized form (5.48),
we have

(5.51) [hed — il < C(H® +/p),  |[whed — || < C(H* + /p),
and
(5.52) (Abod = Al < C(H? + /).
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Proof. Since |57 — [l < ([ — thmsll + [¥ms — [l and [vFd — v <
|04 — sl + |[¥ms — ¥||. A combination of (5.25) and (5.50) yields the error
bounds in (5.51). Additionally, an application of (5.13) yields

(5.53) (AR — A| < Cllgrod — |3 < C(H? + /p)?.

These complete the proof. 0

5.5. Total error. In the above, we outline the error of MSFEM approximation
error in physic space, the truncation error of the model, the qMC approximation
error, and the MsFEM-POD approximation error. Combine these errors and we get
the following theorem for the total error.

THEOREM 5.11. Suppose Assumption 3.1 holds, s € N, N € IN be prime and
z € IN® be a generating vector constructed using the CBC algorithm with weights. The
root-mean-square error with respect to the random shift A € [0,1]%, of the MsFEM-
POD with the ¢gMC method for the minimal eigenvalue X is bounded by

650 \fBa [Bul - QuA ] < O (7 + ) + 504 4 N0,

Meanwhile, for any G € L*(D;Q) applying to the ground state 1), the counterpart
error approximation of its mean is bounded by

(5.55) \/EA [EL[G(0)] - Q. Gt < C (HP + /p+ 572/ 4 N2,

Here a is defined as the (5.32).

6. Numerical experiments. In this section, we numerically check the conver-
gence rates of the proposed method. After that, we investigate the localization of the
eigenstates for the Schrodinger operator with spatially random potentials. In all cases,
we compute the eigenvalues using MATLAB’s eigs with the option smallestabs.

6.1. Superconvergence of the MsFEM discretization. The 1D double-well
potential and 2D checkboard potential are adopted to verify the superconvergence
rates of the MSFEM method. In these experiments, we fix € = 1, and calculate the
reference solution (Arefi;, ¥reri) ({ =1,---,5) by the FEM with mesh size h.

EXAMPLE 6.1. Consider the 1D double-well potential vo(z) = (z* — 4)? over the
domain D = [—4,4]. We fix h = 1/256 and vary Ny = 8,16,32,64 and record the
errors |Arefi — Ams,ils |Urefi — Yms,ill and [|repi — Ums,il|1- As shown in Figure 1,
the second-order convergence rates of FEM approximation and the superconvergence
rates of the MsFEM approximation are depicted. In this experiment, the minimal
eigenvalue and the ground state are calculated.

Furthermore, we check the approximation of the MsFEM method for the first five
eigenvalues and the corresponding eigenfunctions. Numerical results are depicted in
Table 1, Table 2 and Table 3. In Table 2 and Table 3, the convergence rates of
1tVrer — msll and |Yrer — Ymslln are slight worse than the results in Figure 1. This
difference is due to the inclusion of a coarse grid of Ny = 8 in both tables.

EXAMPLE 6.2. In this case, we adopt a checkerboard potential as depicted in Fig-
ure 2(A). Over the domain D = [—0.5,0.5]%, the potential is set to a checkboard with
squares of size 2%, which results in 16 x 16 squares. The values of sub-squares alter-
nate between 0 and 2. We then calculate the reference solution with a uniform mesh
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o & A N o

log,(error)
log,(error)

log,(error)
O

e FEM -3 |[=—FEM
e~ MsFEM ——MsFEM
- &l--—oWgz?) Arl--- O(Ny)

-10¢|--- ----O(Ng*) - O(N*?)

B 5
1 15 2 1 15 2 1 15 2
logyy(N) log,o(N) logo(Ng)
(a) Eigenvalue. (b) L2-error. (c) H'-error.

Fig. 1: Numerical convergence rates of the FEM and MsFEM approximation for the
EVP of the Schrédinger operator with the 1D double-well potential.

Table 1: Numerical convergence rates of the error |Aref; — Amsig| (1 =1,---,5).

A Niy=16 | Ngy=32 | Npg=64 | Ny =128 | order
2.762420126423838 | 4.9166e-04 | 4.2144e-06 | 4.7839¢-08 | 6.8088e-10 | -6.48
2.762436019658617 | 4.9329e-04 | 4.2143e-06 | 4.7835e-08 | 6.8081e-10 | -6.48
7.988965439736671 | 3.4864e-02 | 1.6993e-04 | 1.7874e-06 | 2.4865e-08 | -6.78
7.991063271042746 | 3.5019e-02 | 1.7032e-04 | 1.7901e-06 | 2.4897¢-08 | -6.78
12.596293528481384 | 1.6578e-01 | 9.4183e-04 | 9.1390e-06 | 1.2373e-07 | -6.77

size h = 1/512. Here we check the convergence rates of the minimal eigenvalue and
the ground state, and the results are shown in Figure 2.

It is shown that for the discontinuous potential, both the FEM and MsFEM man-
age to retain near-optimal convergence of the minimal eigenvalue. However, for the
ground state calculations, the MsFEM successfully preserves the convergence rates
while the FEM fails. This showcases the superior resilience of the MsFEM to approx-
imate eigenfunctions for discontinuous potentials.

a4l ~+—-L2(FEM)

= =

Qo Qo

g o- =)

. . oA ) --H'(FEM)

= = 3

g0 O -+ FEM & % 6 O(N, 1)

= o MsFEM 2 —O(N;")

-10 b e s ~+ L*(MsFEM)

O(N %) 3 - H'(MsFEM
. . -12 70(1\[’ U) (A : )
-10
05 15

1 2 05 L 15 2 25
logyo(Nz) logyo(Nz)
(a) Potential. (b) Eigenvalue. (c) Eigenfunction.

Fig. 2: The checkboard potential and the numerical convergence rates of the FEM
and MsFEM methods.
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Table 2: Numerical convergence rates of the error ||{ref; — ¥ms,|| (I = ,5).

l NH:8 NH:16 NH:32 NH:64 NH:128 order

1| 1.2924e-02 | 3.4672e-03 | 1.3316e-04 | 6.3567e-06 | 3.6648e-07 | -3.93

2 | 1.4693e-02 | 3.4861e-03 | 1.3316e-04 | 6.3565e-06 | 3.6646e-07 | -3.97

3 | 4.1625e-01 | 4.0202e-02 | 8.9026e-04 | 3.9427e-05 | 2.2222e-06 | -4.50

4 | 4.6330e-01 | 4.0305e-02 | 8.9142e-04 | 3.9462e-05 | 2.2237e-06 | -4.53

5 | 7.5693e-01 | 1.0805e-01 | 2.2233e-03 | 9.0568e-05 | 4.9787e-06 | -4.46
Table 3: Numerical convergence rates of the error ||res; — Ymsilli ((=1,---,5).

1 | 5.8489e-02 | 3.0251e-02 | 2.9061e-03 | 3.0933e-04 | 3.6920e-05 | -2.79

2 | 6.1666e-02 | 3.0283e-02 | 2.9061e-03 | 3.0931e-04 | 3.6918e-05 | -2.80

3 | 1.6051e-00 | 2.9316e-01 | 1.8688e-02 | 1.8953e-03 | 2.2312e-04 | -3.29

4 | 1.6491e-00 | 2.9374e-01 | 1.8709e-02 | 1.8968e-03 | 2.2327e¢-04 | -3.30

5 | 2.7166e-00 | 7.2761e-01 | 4.4559¢e-02 | 4.2944e-03 | 4.9794e-04 | -3.22

2. Random potentials. Next, we consider the parameterized potentials
sin(jrx)

6.1
(6.1) 1+ (jm)a

Vi(z,ws) _10+Z

where ¢ controls the decaying rates of the high-frequency components. For ¢ # 0, we
have for all j € IN, ||v;]lec = w#)q < ﬁ and hence 372 [[vj]loc < ((g)/7%. In
turn, the value of p in the Proposition 5.5 can be in the interval (1/¢,1).

The reference solutions are computed by

1Y 1Y
= N;)\k(w = N;wk(w

where (A, ¥y) are the FEM solution on a fine mesh. The empirical expectations of nu-
merical solutions (E[Ays k], E[t)ms k]) are calculated similarly. Since the convergence
rate of eigenvalues will be mainly concerned, we define the absolute error

E[]|,

errory = |E[Ans.k] —

where ”error” specifically represent the case of k =1,

EXAMPLE 6.3 (Estimation of sample size for the POD basis.). In the online
stage, the multiscale basis associated with the random potentials is approximated by
the POD basis. The samples for constructing the POD basis are crucial to the quality
of the reduced basis. In this example, we choose the different numbers of ¢MC and
MC samples and record the error as the number of samples varies, to determine the
appropriate number of random samples. We fix ¢ = 0 and N = 4000 to generate
the random potentials. For the 1D case, the coarse mesh size is H = 1—16, and we
set s = 64 and compute the reference solution by the FEM with Ny, = 2048 over the

interval [—1,1]. For the 2D case, the coarse mesh size is H = 32, and we set s = 8 and
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compute the reference solution by the FEM with Ny = 128 over the domain [—%, %]2
In Table 4, we record the errors as the sampling number Q varies. The results show

that when Q is of order 100, the ¢gMC sample provides the best approzimation.

Table 4: The error of the MSFEM-POD method with different sampling numbers in
the offline stage.

Q 10 50 100 200 1000
gMC, 1D | 2.0615e-03 | 1.0235e-03 | 1.3442e-03 1.2612¢-03 | 1.1749e-03
MC, 1D | 2.8781e-03 | 1.8927e-03 | 1.8767e-04 1.6333e-03 | 1.2932e-03
gMC, 2D | 1.6164e-04 | 3.6407e-04 | 7.3920e-07 | 7.1088e-07 -
MC, 2D | 1.1322e-04 | 3.7447e-04 | 3.7448e-04 3.7453e-04 -

Besides, we plot the basis functions constructed by the optimal problems (3.4)-
(3.5) and (3.15), respectively, where 200 gMC samples are generated to construct the
POD basis. We test the potentials parameterized by the random samples chosen in Qg
and Q/Qq, respectively. As shown in Figure 3, we get the accurate multiscale basis by
solving the reduced optimal problems (3.15).

6 6
x10 x10
] ey 61(x) |--- MsFEM, ¢, () 2
——POD, ¢z (x)|--- MSFEM, ¢3(x 2
1 1
= 5 ] 5
<05 zo ! zo
0 v -1
-2
0.5 2
- -05 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
x x x

(a) 1D basis functions and the error distribution over [—1,1].

(b) 2D basis functions and the error distribution over [—%, %]2

Fig. 3: The basis functions and the error between the multiscale basis solved by (3.4)-
(3.5) and (3.15). 1st column: sketches of basis functions. 2nd column: the case for
w € Qp. 3rd column: the case for w € /0.

Next, we check the convergence of the proposed MSsFEM-POD method. We fix
@ = 200 and m; = 3 for all i = 1,--- , Ny in the rest of examples. Notice that the
POD error p is not discussed here. Interested readers can refer to [22] for more details.

EXAMPLE 6.4. Firstly, we check the convergence rate of the MsFEM-POD with
respect to s. Over the interval [—1,1], we take Nj, = 2048 and s = 512 to generate
the reference solution, where 8000 ¢MC samples are generated. For the MsFEM and

This manuscript is for review purposes only.



R0 NN N
N = O ©

-~ =~ =~ =~ =~I-I

=~
S Ot

3

0¢)

-~ =~

N N N NN

©

26 P. LI, AND Z. ZHANG

MsFEM-POD methods, we set Ng = 64. As shown inFigure 4, we record the error as
varies s = 2,4,8,16,32,64,128,256. Here different values q = %,3 are tested. When
q = 3, the reference solution is A = 0.985033892103644, and the solution computed by
the MsFEM is 0.999475730933365. A significant error 5.8349e-09 is then produced,
which can be observed for s > 16 as in Figure 4. Similar errors can be observed with
q= %. Besides, the POD error is also depicted when q = % and s = 256.

5
=
o
: 10 .
= o FEM R
b o MsFEM B,
S .15 + MsFEM-POD 0, pgo

——rate: s73%(q =4/3)
- rate: s7%q=3)

0 1 2
logyo(s)

Fig. 4: Numerical convergence rates with respect to s, where red and blue symbols
denote the results corresponding to ¢ = 4/3 and ¢ = 3, respectively.

Next, we verify the convergence of MsFEM-POD in the physical space. The refer-
ence solution is computed by the FEM with q = %, s =8, N = 8000 and N; = 2048.
We vary H = %7 i, ey (%4, and compare the convergence rates of FEM and MsFEM-
POD as in Figure 5(A). Meanwhile, the corresponding CPU time is also compared in
Figure 5(B). The results demonstrate that the MsFEM-POD method offers an efficient

approach for solving this class of random EVP.

0
— 2 o
N g AN
g8 5 N B .
2 o1
= b & "%e.
0 + FEM “ = a=g e
< .10} » MsFEM-POD % 0 \
rate: Nj? S < | -<-FEM ag
-——rate: Ny, ™ -~ MsFEM-POD K
-1
0.5 1 15 2 25 -12 -10 -8 -6 4 -2
logo(Ng) log,(error)
(a) Convergence rate. (b) CPU time.

Fig. 5: Numerical convergence rates of FEM and MsFEM-POD in physic space and
the comparison of CPU time.

At last, we compare the convergence rates of the ¢gMC and MC methods. Both the
FEM and MsFEM-POD are employed with the same computational setups. As shown
in Figure 6, the convergence rate of the ¢gMC method reaches almost first-order in the
random space.
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-3
4 E * £
e . &
B -5 [
= B
% N ’ " B
g7 >
- + FEM(MC)  » FEM(qMC)
-8 MsFEM(MC) + MsFEM(qMC)
9 rate: N~05 rate: N1
25 3 35 4 4.5
log;(NV)

Fig. 6: Numerical convergence rates of the FEM and the MSFEM-POD with respect
to N. The "MsFEM?” in the figure denotes the results provided by the MsFEM-POD
method.

6.3. Localization of eigenfunctions. At the end of this section, we employ
the random potentials over the domain [0,1]? (d = 1,2):

(6.2) V(z,ws) =vo(x) +0 Z jiq sin(jrz)w;,

j=1

where o denotes the strengthness of randomness. The 2D counterpart is

(6.3) V(x,ws) =vg(x)+ 0o Z jlq sin(jmz) sin(jry)w;.

Here we let vg(x) be a constant that ensures the minimal eigenvalues to be positive.
When ¢ # 0, the high-frequency components of the potential are decaying with power
rates. For ¢ = 0, as s — oo, the potential converges to the spatially white noise. In
the following experiments, we will check the reliability of the proposed method for
both scenarios.

ExXaAMPLE 6.5. We set ¢ = 2 and thus the amplitudes of high-frequency compo-
nents are decaying very fast. Other parameters are s = 32, h = 1/3200, ¢ = 1.0,
and N = 20000. For the MsFEM-POD method, we adopt H = 1/10 and compute
all eigenvalues, while we compute the first 10 eigenvalues of the FEM approximated
form. With 64 cores paralleling, the computational time of FEM is 341.17 seconds,
while the MsFEM-POD method takes 29.72 seconds.

As illustrated in Table 5, the relative error of the mean between the FEM solution
and the MsFEM-POD solution reaches an order of 10~%. Moreover, the MsFEM-POD
method provides an extremely accurate solution for the minimal eigenvalue. Besides,
we record the means of the eigenvalues and the error as the € varies. In Figure 7, when
we reduce the value of €, the accurate solution also can be produced by the MsFEM-
POD method. This infers that for the random potential (6.2) with ¢ = 2, the required
dofs of the MsFEM-POD method are independent of the semiclassical parameter €.

We next consider the 2D case. We set s = 32, and the mesh size h = ﬁ and
H = 1—10. The mean and variance of the minimal eigenvalue as € varies are recorded

in Table 6. Meanwhile, we compare the ground states computed by the FEM and
MsFEM-POD as shown in Figure 8. The numerical results indicate the effectiveness
of our method.
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Table 5: The comparison of mean and variance of first 5 eigenvalues computed by the
FEM and MsFEM-POD methods.

A1 A2 A3 A As
mean (FEM) 0.9979 20.7075 | 20.7723 | 79.9490 | 79.9652
mean (MsFEM-POD) 0.9979 20.7075 | 20.7724 | 79.9694 | 79.9856
error 6.36e-08 | 5.31e-05 | 5.39e-05 | 2.04e-02 | 2.04e-02
variance (FEM) 0.1353 0.1359 0.1351 0.1353 0.1353
variance (MsFEM-POD) 0.1353 0.1359 0.1351 0.1355 0.1354
error 9.69e-11 | 1.49e-06 | 1.46e-06 | 1.32e-04 | 1.32e-04
6 B 2 %1073
—a—1st, FEM - = 1//1
s rEm i
g af e S
7; 5th, MsFEM-POD o Se=1/64
. S 10
M‘:;’._/____ﬁ 5 ° °
YiE & i 0

€ Ist 2nd 3rd 4th 5th

Fig. 7: The first 5 eigenvalues computed by the FEM and MsFEM-POD for different
semiclassical constant e.

EXAMPLE 6.6. Here we consider ¢ = 0 and simulate the spatially white noise,
and then the localized eigenfunctions would be stabilized. For the 1D parameterized
potential (6.2), we fir s = 256, € = %, and h = Wloo' Numerical tests show that
H should be slightly smaller than € but is independent of s. We set the coarse mesh

H= % and obtain the localized eigenfunction as in Figure 9.

Nezxt, for the 2D problem, due to the memory limitation, we fix s = 64, and set
h= ﬁ to ensure that the high-frequency features of the parameterized potential can be

captured. The localization of the eigenfunctions is simulated with the coarse mesh size
H = % as in Figure 10. Here the results computed by the FEM are not depicted, but
we depict the first five eigenvalues to demonstrate the reliability of the MsFEM-POD
method as in Table 7.

Remark 6.1. When we set ¢ = 0 in the parameterized random potentials (6.2)
and (6.3), the bounds of the random potentials directly depend on the truncated di-
mension. For this class of problems, the conditions outlined in Assumption 3.1(2) and
(3) cannot be sustained, resulting in the lack of convergent eigenvalues and eigenfunc-
tions. Nevertheless, when the condition Assumption 3.1(1) is satisfied, i.e. H < ¢,
the localization of eigenfunctions is simulated accurately with lower computational
cost, which demonstrates the application potential of the proposed MsFEM-POD
method on simulating complex quantum systems governed by semiclassical random
Schrédinger operators.

7. Conclusions. In this paper, we present a multiscale reduced method for
the uncertain quantification of the eigenvalue problem for the semiclassical random
Schrédinger operator. The random potential of the Schrédinger operator is parame-
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Table 6: The mean and variance of the minimal eigenvalues computed by the FEM
and the MsFEM-POD methods for different e.

¢ i 5 16 52 1
mean (FEM) 0.9941 0.9777 0.9400 0.9031 0.8793
mean (MsFEM-POD) 0.9941 0.9777 0.9400 0.9034 0.8807
error 4.73e-06 | 5.25e-06 | 1.48e-05 | 2.73e-04 | 1.37e-03
variance (FEM) 1.38¢-02 | 1.48e-02 | 1.89e-02 | 2.20e-02 | 2.34e-02
variance (MSFEM-POD) | 1.38e-02 | 1.48¢-02 | 1.89e-02 | 2.20e-02 | 2.33e-02
error 1.10e-06 | 1.77e-06 | 2.64e-06 | 2.00e-06 | 4.99e-05

e e 1 23

T T T T ! ‘2

A ] ] 1

- -1

P - ~ T _ . 2

0 02 04 06 08 1 xI0°
0.15
0.1
’ 0.05
: 0
- -0.05
0 0 0 02 04 06 08 1

Fig. 8: The 2D ground states for different €. 1st column: FEM solution; 2nd column:
MsFEM-POD solution; 3rd column: error distribution.

terized by truncated series with stochastic parameters. We introduce the multiscale
finite element method (MSsFEM) to approximate the resulting problem, in which the
order-reduced multiscale basis is constructed by an effective approach based on the
proper orthogonal decomposition (POD) method. Theoretically, the approximation
error is a combined form consisting of the model truncation error, the MsFEM approx-
imation error, the POD error, and the integral approximation error of the quasi-Monte
Carlo method. We provide rigorous convergence analysis and conduct numerical ex-
periments to validate the error estimate. Using the proposed method, the Anderson
localization of eigenfunctions for spatially random potentials is resolved accurately.
The results showcase that our approach offers a practical and efficient solution for
simulating complex quantum systems governed by semiclassical random Schroédinger
operators.

Declaration of interest. The authors report no conflict of interest.
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Fig. 9: A realization of the random potential and the localized eigenfunctions corre-
sponding to the first five minimal eigenvalues.
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Fig. 10: A realization of the 2D parameterized random potential and the localized
eigenfunctions computed by the MSFEM-POD method. The corresponding eigenval-
ues are shown in Table 7

Table 7: The first five eigenvalues computed by the FEM and MsFEM-POD methods.

FEM 6.7399 6.7636 6.8224 6.8461 6.8542
MsFEM-POD 6.7819 6.8055 6.8779 6.9018 6.9144
absolute error | 4.1999e-02 4.1919e-02 5.5432e-02 5.5686e-02 6.0148e-02
relative error | 6.2314e-03  6.1977e-03  8.1249e-03  8.1340e-03  8.7753e-03
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