
Neural Network Poisson–Boltzmann Electrostatics for
Biomolecular Interactions

Zunding Huang1, Bo Li2,5, Zhongming Wang3, and Zhiwen Zhang4,5

1 Department of Mathematics, University of California, San Diego, La Jolla, California, USA. Email:
zuhuang@ucsd.edu

2 Department of Mathematics and Quantitative Biology Ph.D. Program, University of California, San
Diego, La Jolla, California, USA. Email: bli@math.ucsd.edu

3 Department of Mathematics and Statistics, Florida International University, Miami, USA. Email:
zwang6@fiu.edu

4 Department of Mathematics, The University of Hong Kong, Hong Kong, China. Email:
zhangzw@hku.hk

5Corresponding authors

February 6, 2025

Abstract

We develop a neural network approach to solving the dielectric-boundary Poisson–
Boltzmann (PB) equation (PBE) and estimating the electrostatic free energy of charged
molecules in aqueous solvent. Such equation is the Euler–Lagrange equation of the classi-
cal PB electrostatic free-energy functional with the presence of a dielectric boundary. We
construct a penalized dielectric-boundary PB functional to remove the constraint imposed
by the boundary condition for the boundary of the computational region and show that
such penalized functionals converge to the classical PB functional. We represent electro-
static potentials by fully connected feed-forward neural network functions with sigmoidal
activation, use the penalized functional and Monte Carlo integration method to construct
a neural network loss function, and minimize it by a stochastic gradient-descent (SGD)
method. Numerical results are presented to show the convergence of the neural network
simulations with varying learning rates, batch size, and network architecture. Moreover,
the relation between the boundedness of network weights and learning rates in the loss
optimization is explored. The neural network PB method is applied to the calculation
of electrostatic free energy of the solvation of single ions and protein BphC, demonstrat-
ing that the new approach can handle both simple and complex geometries and predict
qualitatively well the electrostatic energy. In particular, we find that using the trained
neural network weights from one simulation as the initial weights for simulations with
different settings significantly increases the simulation efficiency. Such transferability of
network weights provides an advantage of our neural network PB approach to complex
biomolecular systems.

Keywords. Poisson–Boltzmann equation, biomolecular electrostatic energy, neural net-
works, Monte Carlo simulations, stochastic gradient descent, weight transferability.

1

1 Introduction

We develop a neural network approach to solving the dielectric boundary Poisson–Boltzmann
(PB) equation (PBE) and estimating the electrostatic energy of the solvation of charged solute
molecules such as single ions and proteins.

Let us denote by Ω ⊂ R3 the region of solvation and by Γ a smooth and closed surface that
divides Ω into the solute molecular region Ω− and the solvent region Ω+, inside and outside Γ,
respectively; cf. Figure 1. The solute region Ω−, which may have multiple connected compo-
nents, contains solute atoms located at x1, . . . , xN and carrying charges Q1, . . . , QN , respectively.
Mobile ions in the solvent are assumed to be excluded from the solute region. We denote by ε−
and ε+, two positive numbers, the dielectric coefficients of the solute region Ω− and the solvent
region Ω+, respectively. Typically, ε− ≈ 1 and ε+ ≈ 80 in the unit of vacuum permittivity. We
call Γ a solute-solvent interface or a dielectric boundary.

Figure 1: A schematic diagram of charged molecules immersed in aqueous solvent, where Ω
is divided into the solute and solvent regions Ω− and Ω+, respectively, by the solute-solvent
interface or dielectric boundary Γ. Dots represent solute atoms.

In a continuum model, the equilibrium electrostatic potential ϕΓ : Ω → R is uniquely
determined by the dielectric-boundary PBE [6, 10, 37]

∇ · εΓ∇ϕΓ − χ+B
′(ϕΓ) = −f in Ω, (1.1)

together with some boundary conditions, e.g., ϕΓ = g on ∂Ω for some given function g, when
Ω is chosen to be a bounded region. Here and below, εΓ : Ω → R is the dielectric coefficient,
defined by

εΓ =

{
ε− in Ω−,

ε+ in Ω+,
(1.2)

χ+ = χΩ+ denotes the indicator function of Ω+: χ+(x) = 1 if x ∈ Ω+ and χ+(x) = 0 otherwise,

and the function f approximates the point charges
∑N

i=1Qiδxi
, where δa denotes the Dirac

measure centered at a ∈ R3. The term −B′(ϕΓ) describes the charge density of mobile ions in
the solvent. Typically, the function B : R → R is given by

B(ϕ) = β−1

M∑
j=1

c∞j (e−βqjϕ − 1), (1.3)

2

where M ≥ 1 is the number of ionic species, β−1 = kBT with kB the Boltzmann constant
and T temperature, qj = Zje with e the elementary charge, and c∞j and Zj are the bulk ionic
concentration and valence of ions of the jth ionic species, respectively. Note that the function
B is smooth, convex, and bounded below. We shall assume some qj > 0 and some other
qj < 0. Consequently, we have B(∞) = B(−∞) = ∞, B′(−∞) = −∞, and B′(∞) = ∞. Two
commonly used forms of the function B are: (1) A hyperbolic cosine function

B(ϕ) = 2β−1c∞ [cosh(βϕ)− 1] ,

which models a 1 : 1 salt with the same charge q1 = −q2 = 1 and the same bulk ionic concen-
tration c∞1 = c∞2 = c∞; and (2) The linearized PB model for a charge-neutralized ionic solution
(i.e.,

∑M
k=1 qkc

∞
k = 0)

B(ϕ) =
β

2

(
M∑
j=1

c∞j q
2
j

)
ϕ2.

There are two distinguished features of the PBE (1.1). One is the nonlinearity and the other
is the specific piecewise constant structure of εΓ due to the presence of the dielectric boundary
Γ. However, it is known that the PBE (1.1) is the Euler–Lagrange equation of the classical PB
electrostatic energy functional. This variational structure helps the mathematical analysis of
the well-posedness and other properties of the PBE [22, 23, 24]. Many numerical methods have
been developed to solve the boundary-value problem of the PBE. Finite-element methods are
based on the weak formulation of the PBE. Moreover, within such a framework, the nonlinearity
is often treated using Newton’s iteration [29, 32]. Most finite-difference methods are designed
for solving the equivalent, elliptic interface problem [9, 34, 44]

ε−∆ϕ = −f in Ω−,

ε+∆ϕ−B′(ϕ) = −f in Ω+,

JϕK = JεΓ∇ϕ · nK = 0 on Γ,

ϕ = g on ∂Ω,

(1.4)

where JuK = u|Ω+ − u|Ω− denotes the jump of a function u across the dielectric boundary Γ and
n denotes the unit normal at the dielectric boundary Γ pointing from Ω− to Ω+. The linearized
PBE can be reformulated using boundary integrals, and the related fast algorithms have been
well developed [28, 45].

In this work, we explore the ability of neural networks in simulating complex biological
molecular systems with solving the dielectric-boundary PBE being the first step. We utilize the
variational structure of our underlying system and follow the Deep-Ritz framework [13] (cf. also
[26]) with certain modifications. The key components of our neural network approach include:
(1) We reformulate the problem of solving the dielectric-boundary PBE (1.1) into a varia-

tional problem of minimizing a penalized dielectric-boundary PB electrostatic free-energy
functional. We shall show the convergence of such penalized functionals to the classical
PB functional;

(2) We represent admissible electrostatic potentials by fully connected feed-forward neural
network functions with a fixed network architecture and construct from the penalized
functional a neural network loss function by Monte Carlo integration; and

(3) We minimize the loss function using a method of stochastic gradient descent (SGD).

3

We test the convergence and efficiency of our neural network method in terms of learning
rates, batch size, and network architecture. We also examine the growth of network weights
during the SGD iteration. We apply our approach to estimating of solvation electrostatic free
energies for single ions and also for the protein BphC. Such application is closely connected
to an advanced, variational implicit-solvent model (VISM) [11, 12, 42, 47] that determines the
dielectric boundaries and provides estimates of the solvation free energies for charged molecules
in aqueous solvent. We examine the transferability of network weights to increase the simulation
efficiency demanded by large-scale and multiple simulations in these applications.

There has been a growing interest in using neural networks for solving partial differential
equations (PDEs), but it is speculated that such an approach may only be effective for high-
dimensional PDEs [15, 16, 38]. In general, classical numerical methods, such as finite-element,
finite-difference, and boundary-integral methods, can solve low-dimensional PDEs very accu-
rately and efficiently. We are motivated, however, by some of the progress in using neural
networks to solve low-dimensional PDEs. For instance, such a method can treat complex do-
mains and also interface problems with very high contrast, which corresponds to ε+/ε− being
very large for our case [3, 18, 40, 43]. Moreover, dielectric boundaries of charged molecules can
be very complicated. As modeling and simulations of biomolecular systems remain a highly
challenging scientific problem, it is natural to explore a new, machine-learning approach to com-
plex biomolecular systems. We notice that a multiscale neural network approach is developed
in [27] for solving the PB equation. In [21], the authors developed a neural network method for
solving the PB equation using the interface formulation (1.4).

The rest of the paper is organized as follows: In Section 2, we present the dielectric-boundary
PBE and the penalized PB electrostatic free-energy functional. We also prove the convergence
of the penalized functional. In Section 3, we introduce our neural network structures, construct
a loss function based on the Monte Carlo approximation of the penalized PB functional, and
detail a SGD method for minimizing the loss function. In Section 4, we present numerical results
to demonstrate the performance of our neural network simulations with respect to the learning
rate, batch size, and network architecture. We also validate numerically our penalty method
and examine the growth of network weights during the SGD iteration. In Section 5, we apply
our neural network approach to the solvation of charged molecules, such as single ions and the
protein BphC, in aqueous solvent. We particularly present results of simulated potential of mean
electrostatic force between two domains of BphC. In addition, we show the strong transferability
of network weights in these simulations. Finally, in Section 6, we conclude our studies with some
discussions.

2 The Dielectric-Boundary Poisson–Boltzmann Equation

and a Penalized Functional

Let us assume the system region Ω is bounded and regular (e.g., its boundary ∂Ω is Lipschitz-
continuous). We fix g ∈ H1(Ω) and denote H1

g (Ω) = {ϕ ∈ H1(Ω) : ϕ = g on ∂Ω}. (The space
H1(Ω) consists of all functions u on Ω such that u2 and |∇u|2 are both integrable on Ω [1, 14].)
We introduce the functional IΓ : H1

g (Ω) → R ∪ {+∞} by

IΓ[ϕ] =

∫
Ω

[εΓ
2
|∇ϕ|2 − fϕ+ χ+B(ϕ)

]
dx. (2.1)

4

Note that this is a convex functional and its Euler–Lagrange equation is exactly the dielectric-
boundary PBE (1.1). If ϕΓ ∈ H1

g (Ω) is the (weak) solution to the dielectric-boundary PBE
(1.1), then ϕΓ is the unique minimizer of IΓ : H1

g (Ω) → R∪{+∞}; cf. Theorem 2.1 below which
is proved in [23, 24, 25]. Moreover, the electrostatic energy is given by [6]

Eele[Γ] = −IΓ[ϕΓ] = max
ϕ∈H1

g (Ω)
−IΓ[ϕ]. (2.2)

We refer to [6] for discussions on the negative sign.

Theorem 2.1. Let Ω ⊂ R3 be a bounded domain with a Lipschitz-continuous boundary ∂Ω and
Γ as above be a C1 closed surface. Let f ∈ L2(Ω) and g ∈ H1(Ω) ∩ L∞(Ω). Then there exists a
unique ϕΓ ∈ H1

g (Ω) such that IΓ[ϕΓ] = minϕ∈H1
g (Ω) IΓ[ϕ] which is finite. Moreover, ϕΓ ∈ L∞(Ω)

and ϕΓ is also the unique weak solution to the PBE (1.1). Equivalently, ϕΓ is the unique solution
to the system of equations (1.4).

Let λ > 0. We define the penalized PB electrostatic free-energy functional IΓ,λ : H1(Ω) →
R ∪ {+∞} by

IΓ,λ[ϕ] =

∫
Ω

[εΓ
2
|∇ϕ|2 − fϕ+ χ+B(ϕ)

]
dx+ λ

∫
∂Ω

(ϕ− g)2 dS ∀ϕ ∈ H1(Ω). (2.3)

Note that we approximate the electrostatic energy by supϕ∈H1(Ω)(−IΓ,λ[ϕ]) with a large λ > 0;
cf. (2.2). The following theorem indicates that the penalty functional approximates the PB
functional well for a large penalty parameter λ > 0.

Theorem 2.2. Let Ω ⊂ R3 be a bounded domain with a Lipschitz-continuous boundary ∂Ω and
Γ as above be a closed C1-surface. Let f ∈ L2(Ω) and g ∈ H1(Ω)∩L∞(Ω). For any λ > 0, there
exists a unique ϕΓ,λ ∈ H1(Ω) such that IΓ,λ[ϕΓ,λ] = minϕ∈H1(Ω) IΓ,λ[ϕ]. Moreover, ϕΓ,λ → ϕΓ in
H1(Ω) and minϕ∈H1(Ω) IΓ,λ[ϕ] → minϕ∈H1

g (Ω) IΓ[ϕ] as λ→ +∞.

Proof. Fix λ > 0. Since B : R → R defined in (1.3) is bounded below, we have by the definition
of εΓ (cf. (1.2)) and IΓ,λ : H1(Ω) → R ∪ {+∞} (cf. (2.3)), and Friedrichs’ inequality [39] that

IΓ,λ[ϕ] ≥ C1∥ϕ∥2H1(Ω) − C2 ∀ϕ ∈ H1(Ω), (2.4)

where C1 > 0 and C2 > 0 are two constants that may depend on ε−, ε+, f , g, λ, B, Ω, and Γ.
Now, let αΓ,λ = infϕ∈H1(Ω) IΓ,λ[ϕ]. By (2.4), it is clear that αΓ,λ ∈ R. Moreover, there exist

ϕk ∈ H1(Ω) (k = 1, 2, . . .) such that IΓ,λ[ϕk] → αΓ,λ as k → ∞. It follows from (2.4) that,
there exist a subsequence of {ϕk}, not relabeled, and some ϕΓ,λ ∈ H1(Ω) such that ϕk → ϕΓ,λ

weakly in H1(Ω), strongly in L2(Ω), and strongly in L2(∂Ω), and almost everywhere in Ω. These
convergence results and Fatou’s lemma imply that,

lim inf
k→∞

[∫
Ω

(εΓ
2
|∇ϕk|2 − fϕk

)
dx+ λ

∫
∂Ω

(ϕk − g)2 dS

]
≥
∫
Ω

(εΓ
2
|∇ϕΓ,λ|2 − fϕΓ,λ

)
dx+ λ

∫
∂Ω

(ϕΓ,λ − g)2 dS,

lim inf
k→∞

∫
Ω

χ+B(ϕk) dx ≥
∫
Ω

χ+B(ϕΓ,λ) dx.

5

Consequently, αΓ,λ ≥ IΓ,λ[ϕΓ,λ] ≥ αΓ,λ, and IΓ,λ[ϕΓ,λ] = minϕ∈H1(Ω) IΓ,λ[ϕ]. Since IΓ,λ : H1(Ω) →
R ∪ {+∞} is strictly convex, the minimizer ϕΓ,λ ∈ H1(Ω) of IΓ,λ : H1(Ω) → R is unique.

It follows from the definition of IΓ,λ : H1(Ω) → R ∪ {+∞} that IΓ,λ[ϕ] increases as λ >
0 increases for each ϕ ∈ H1(Ω), and hence αΓ,λ = IΓ,λ[ϕΓ,λ] = minϕ∈H1(Ω) IΓ,λ[ϕ] is also an
increasing function of λ. Moreover, since g ∈ H1(Ω) ∩ L∞(Ω) and IΓ,λ[g] = IΓ[g] is independent
of λ, we have supλ>0 αΓ,λ ≤ IΓ[g] <∞. Let λ ≥ 1. Since B(s) ≥ 0 for any s ∈ R, we have∫

Ω

(εΓ
2
|∇ϕΓ,λ|2 − fϕΓ,λ

)
dx+

∫
∂Ω

(ϕΓ,λ − g)2 dS ≤ IΓ,λ[ϕΓ,λ] = αΓ,λ ≤ IΓ[g] <∞.

With this and Friedrichs’ inequality, we infer that

sup
λ≥1

∥ϕΓ,λ∥H1(Ω) <∞, (2.5)

and further that

sup
λ≥1

λ

∫
∂Ω

(ϕΓ,λ − g)2 dS <∞. (2.6)

Consequently,
ϕΓ,λ → g in L2(∂Ω) as λ→ ∞. (2.7)

Given any {ϕΓ,λk
}∞k=1 in H1(Ω) with 0 < λk → ∞. By (2.5), there exists uΓ ∈ H1(Ω) and

a possibly further subsequence, not relabelled, such that ϕΓ,λk
→ uΓ weakly in H1(Ω), strongly

in both L2(Ω) and L2(∂Ω), and almost everywhere in Ω. Moreover, by the same argument used
above, we have lim infk→∞ IΓ[ϕΓ,λk

] ≥ IΓ[uΓ]. By (2.7), uΓ = g on ∂Ω. Hence uΓ ∈ H1
g (Ω). Since

ϕΓ ∈ H1
g (Ω), IΓ[ϕΓ] = IΓ,λ[ϕΓ] ≥ IΓ,λ[ϕΓ,λ] for all λ > 0. Consequently,

IΓ[ϕΓ] ≥ lim sup
k→∞

IΓ,λk
[ϕΓ,λk

] ≥ lim inf
k→∞

IΓ,λk
[ϕΓ,λk

] ≥ lim inf
k→∞

IΓ[ϕΓ,λk
] ≥ IΓ[uΓ]. (2.8)

Hence, uΓ is also a minimizer of IΓ : H1
g (Ω) → R ∪ {+∞}. Since such a minimizer is unique by

Theorem 2.1, we have uΓ = ϕΓ. This and (2.8) imply that IΓ,λk
[ϕΓ,λk

] → IΓ[ϕΓ].
To finally show that ϕΓ,λk

→ ϕΓ = uΓ strongly in H1(Ω) as k → ∞, we observe that

0 ≤ IΓ,λk
[ϕΓ]− IΓ,λk

[ϕΓ,λk
] = IΓ[ϕΓ]− IΓ,λk

[ϕΓ,λk
] ≤ IΓ[ϕΓ]− IΓ[ϕΓ,λk

]

=

∫
Ω

εΓ
2

(
|∇ϕΓ|2 − |∇ϕΓ,λk

|2
)
dx−

∫
Ω

f (ϕΓ − ϕΓ,λk
) dx+

∫
Ω+

[B(ϕΓ)−B(ϕΓ,λk
)] dx

:= Ak +Bk + Ck ∀k ≥ 1.

Since ϕΓ,λk
→ ϕΓ weakly in H1(Ω), we have

lim inf
k→∞

Ak = lim inf
k→∞

∫
Ω

εΓ
2

(
|∇ϕΓ|2 − |∇ϕΓ,λk

|2
)
dx

= lim inf
k→∞

[
−
∫
Ω

εΓ
2
|∇ϕΓ,λk

−∇ϕΓ|2 dx−
∫
Ω

εΓ(∇ϕΓ,λk
−∇ϕΓ) · ∇ϕΓ

]
= − lim sup

k→∞

∫
Ω

εΓ
2
|∇ϕΓ,λk

−∇ϕΓ|2 dx,

6

and

lim
k→∞

Bk = lim
k→∞

[
−
∫
Ω

f(ϕΓ − ϕΓ,λk
) dx

]
= 0.

Since B : R → R (1.3) is smooth, strictly convex, and bounded below, ϕΓ ∈ L∞(Ω) (cf.
Theorem 2.1) which implies that B(ϕΓ) ∈ L∞(Ω+), and ϕΓ,λk

→ ϕΓ weakly in H1(Ω) and
almost everywhere in Ω, we have by Jensen’s inequality and Fatou’s lemma that

lim sup
k→∞

Ck = lim sup
k→∞

∫
Ω+

[B(ϕΓ)−B(ϕΓ,λk
)] dx ≤ lim sup

k→∞

∫
Ω+

B′(ϕΓ)(ϕΓ − ϕΓ,λk
) dx = 0,

lim inf
k→∞

Ck ≥
∫
Ω+

lim inf
k→∞

[B(ϕΓ)−B(ϕΓ,λk
)] dx = 0.

Thus, limk→∞Ck = 0. It follows now that

0 ≤ lim inf
k→∞

(Ak +Bk + Ck) = lim inf
k→∞

Ak = − lim sup
k→∞

∫
Ω

εΓ
2
|∇ϕΓ,λk

−∇ϕΓ|2 dx ≤ 0.

Hence

lim sup
k→∞

∫
Ω

εΓ
2
|∇ϕΓ,λk

−∇ϕΓ|2 dx = 0,

and therefore ∇ϕΓ,λk
→ ∇ϕΓ in [L2(Ω)]3. This and the convergence of ϕΓ,λk

→ ϕΓ strongly
in L2(Ω) imply that ϕΓ,λk

→ ϕΓ in H1(Ω). Finally, the arbitrariness of the sequence λk → ∞
implies the designed convergence.

3 Neural Networks, Loss Function, and Stochastic Opti-

mization

Neural networks. We use the standard fully-connected feed-forward neural network (FFNN)
functions to represent electrostatic potentials [5, 17]. Given positive integersm,n0, n1, . . . , nm+1,
we denote S = [n0, . . . , nm+1]. Given additionally a function σ : R → R, we define ΨS,σ to be the
class of FFNN functions of m + 1 layers and the activation function σ, with an input layer, an
output layer, and m hidden layers and with the dimension (i.e., the number of nodes or neurons)
of these layers being n0, nm+1, and ni (1 ≤ i ≤ m), respectively. We call S = [n0, . . . , nm+1] the
neural network architecture. Let us define

ΘS = {θ = (Wi, bi)
m+1
i=1 : Wi ∈ Rni×ni−1 , bi ∈ Rni , i = 1, . . . ,m+ 1}, (3.1)

where Rp×q denotes the set of real p × q matrices. For each θ = (Wi, bi)
m+1
i=1 ∈ ΘS, we define

ψθ : Rn0 → Rnm+1 by

ψθ(x) = Tm+1 ◦ σ ◦ · · · ◦ σ ◦ T1(x) = Tm+1(σ(· · · (σ(T1(x))))) ∀x ∈ Rn0 , (3.2)

where each Ti : Rni−1 → Rni is an affine mapping defined by Ti(x) = Wix+ bi (1 ≤ i ≤ m+ 1).
The class of FFNN functions ΨS,σ is exactly defined by

ΨS,σ = {ψθ : Rn0 → Rnm+1 : θ ∈ ΘS}.

7

If θ = (Wi, bi)
m+1
i=1 ∈ ΘS, then all the entries of the matrices Wi and vectors bi (or −bi) (i =

1, . . . ,m+ 1) are called, respectively, the weights and biases, or collectively just the weights or
trainable parameters, of the neural network function ψθ.

Throughout, we set the input dimension n0 = 3 and the output dimension nm+1 = 1, and
we use the standard sigmoid function σ(x) = 1/(1 + e−x) (x ∈ R) as the activation function,
unless otherwise stated. If a = (a1, . . . , ak) ∈ Rk for some integer k ≥ 1, then we denote
σ(a) =

(
σ(a1), . . . , σ(ak)

)
.

The neural network loss function and its gradient. We recall the penalized PB electro-
static energy functional IΓ,λ : H1(Ω) → R ∪ {+∞} defined in (2.3) with a fixed λ > 0 and all
f , g, Ω, Ω−, Ω+, Γ, εΓ, and B given in Theorem 2.1 and Theorem 2.2. We note that, for a
given network architecture S = [n0, n1, . . . , nm+1], the class of FFNN functions ΨS,σ with σ the
standard sigmoid activation is a subclass of functions of H1(Ω) ∩ L∞(Ω) as Ω is bounded. We
define the neural network penalized PB functional JΓ,λ : ΘS → R by

JΓ,λ[θ] = IΓ,λ[ψθ] =

∫
Ω

[εΓ
2
|∇ψθ|2 − fψθ + χ+B(ψθ)

]
dx+ λ

∫
∂Ω

(ψθ − g)2 dS ∀θ ∈ ΘS. (3.3)

Note that the electrostatic energy is approximated by supθ∈ΘS
(−JΓλ[θ]) with a large λ > 0; cf.

(2.2) and (2.3).
We remark that H1(Ω) is a vector space, and hence convex set, of functions and the original

penalized functional IΓ,λ : H1(Ω) → R ∪ {+∞} is a convex functional. However, the functional
JΓ,λ : ΘS → R may not be convex on ΘS. First, the functional JΓ,λ is equivalently defined
on ΨS,σ, and the set of neural network functions ΨS,σ may not be a convex set. For instance,
with the simplest possible architecture S = [1, 1, 1], both ψ1(x) = σ(x) and ψ2(x) = σ(−2x)
are functions in ΨS,σ but ψ(x) = (ψ1(x) + ψ2(x))/2 is not in ΨS,σ. This is because any function
in ΨS,σ with σ the standard sigmoid function must be a monotonic function while ψ is not as
ψ′(0) = −1/4 < 0 and ψ′(±∞) = 0. By scaling, this argument applies to treating ΨS,σ as a class
of functions defined on a finite interval. Second, a convex, even linear, functional on ΨS,σ may
not be a convex function on ΘS. For example, with S = [1, 1, 1] and σ the sigmoid function, the
functional F : ΨS,σ → R, defined by

F [θ] =

∫ 1

0

ψ′
θ(x)dx ∀θ ∈ ΘS,

is not convex. This is because generally θ = [a, b, c, d] (a, b, c, d ∈ R), ψθ(x) = cσ(ax + b) + d,
and F [θ = c[σ(a+ b)− σ(b)] =: f(a, b, c, d). Setting b = 0 and c = 1, we see that f(a, 0, 1, d) =
σ(a)− 1/2 is not convex in a.

A Monte Carlo approximation of the integral JΓ,λ[θ] is given by ĴΓ,λ[θ] ≈ JΓ,λ[θ], where

ĴΓ,λ[θ] =
vol(Ω)

NΩ,total

NΩ,total∑
i=1

(
εΓ(xi)

2
|∇ψθ(xi)|2 − fψθ(xi)

)
+

NΩ,total∑
i=1,xi∈Ω+

B(ψθ(xi))


+ λ

area(∂Ω)

N∂Ω,total

N∂Ω,total∑
j=1

[ψθ(yj)− g(yj)]
2 ∀θ ∈ ΘS. (3.4)

Here, NΩ,total and N∂Ω,total are positive integers, x1, . . . , xNΩ,total
∈ Ω and y1, . . . , yN∂Ω,total

∈ ∂Ω
are independently and uniformly sampled, and vol (Ω) and area (∂Ω) are the volume and surface

8

area of the region Ω and its boundary ∂Ω, respectively. We call ĴΓ,λ a neural network loss
function. Note that the discontinuity presented in the inhomogeneous dielectric coefficient εΓ is
treated naturally in the Monte Carlo approximation. Thus, a neural network approach may be
advantageous in solving problems with complex geometries.

To apply the SGD algorithm to minimize the loss function, we need to calculate the gradient
of the loss function with respect to the network weights. With a fixed ordering, each set of
network weights θ = (Wi, bi)

m+1
i=1 ∈ ΘS can be identified as a vector of dimension

∑m+1
i=1 (ni−1 +

1)ni. If we denote by θk the kth component of this long vector, then

∂θk ĴΓ,λ[θ] =
vol(Ω)

NΩ,total

[NΩ,total∑
i=1

(εΓ(xi)∇ψθ(xi) · ∇∂θkψθ(xi)− f∂θkψθ(xi))

+

NΩ,total∑
i=1,xi∈Ω+

B′(ψθ(xi))∂θkψθ(xi)

]
+ 2λ

area(∂Ω)

N∂Ω,total

N∂Ω,total∑
j=1

[ψθ(yj)− g(yj)] ∂θkψθ(yj),

where ∂θkψθ for all k are computed using the back-propagation [5, 17, 35]. The gradient (or

steepest) descent updates θ(n) to θ(n+1) by θ
(n+1)
k = θ

(n)
k −η∂θk ĴΓ,λ[θ(n)] for all k, where η denotes

the learning rate, i.e., the step size in a step of steepest descent.

Numerical algorithm. We use the SGD algorithm ADAM [20] to minimize the loss function
(3.4). This is an iteration with two loops, an outer (or global) and inner (or local) loop with
the total number of steps Nglobal and Nlocal, respectively. An initial set of weights θ(0) ∈ ΘS

are generated randomly with a multi-variate Gaussian distribution. For the kth global step
(1 ≤ k ≤ Nglobal), we select NΩ sample points xi ∈ Ω and N∂Ω sample points yj ∈ ∂Ω uniformly

at random and independently, and denote by Ĵ
(k)
Γ,λ[θ] the sum of those corresponding terms in

the loss function ĴΓ,λ[θ]. The expression of Ĵ
(k)
Γ,λ[θ] is the same as that of ĴΓ,λ[θ], with NΩ,total

and N∂Ω,total replaced by NΩ and N∂Ω, respectively. Here, NΩ and N∂Ω are two pre-selected and
fixed positive numbers. All the numbers NΩ, N∂Ω, NΩ,total, N∂Ω,total, and Nglobal are so chosen
such that NΩ,total/NΩ = N∂Ω,total/N∂Ω = Nglobal. The number NΩ +N∂Ω is the batch size.

We minimize Ĵ
(k)
Γ,λ[θ] using the ADAM optimizer [20], which is another iteration through the

inner loop with Nlocal steps using the trained weights from minimizing Ĵ
(k−1)
Γ,λ [θ] if k ≥ 2 or using

θ(0) if k = 1 as the initial weights. Note that Nlocal is the number of epochs. Note also that the
total number Niter of overall iteration steps is Niter = Nglobal ·Nlocal. In our implementation, we
do not generate all the NΩ,total+N∂Ω,total sample points at once. Rather, we generate NΩ+N∂Ω

sample points in each global step. Our algorithm is summarized in Algorithm 1.

4 Numerical Tests

We construct a radially symmetric model system of a dielectric-boundary PBE and boundary
value for which we have the exact solution. With such a model system, we conduct our neural
network simulations for minimizing the corresponding penalized PB energy functional (2.3) in a
three-dimensional setting. We numerically examine the validity of our penalty model, test the
convergence of our algorithm with respect to the learning rate, batch size, and network architec-
ture, and study the growth of network weights during the iteration of stochastic optimization.

9

Algorithm 1 Neural network method for minimizing the PB energy functional
Input

• Model parameters: Ω, Γ, ε−, ε+, the function B, f , g, and the penalty coefficient λ.
• Neural network hyper-parameters: architecture S, activation function σ, learning rate η,
number of sample points NΩ and N∂Ω, and total number of steps Nglobal and Nlocal.

Initialization
• Initialize all the neural network weights.

for k = 1 to Nglobal do
• Generate NΩ random sample points x1, . . . , xNΩ

∈ Ω and N∂Ω random sample points
y1, . . . , yN∂Ω

∈ ∂Ω, all uniformly and independently.

• Formulate Ĵ
(k)
Γ,λ[θ], the part of the loss function using the sampled points.

for j = 1 to Nlocal do
• Compute the gradient ∇θĴ

(k)
Γ,λ.

• Use the ADAM optimizer to minimize Ĵ
(k)
Γ,λ and update the weights θ.

end for
end for
Output: Electrostatic potential and the PB energy.

A model system and simulation set up. We set Ω = (−L,L)3 for some L > 0, Γ = {x ∈
R3 : |x| = R} for some R ∈ (0, L), Ω− = {x ∈ R3 : |x| < R}, and Ω+ = Ω \ (Γ ∪ Ω−), We define

B(s) = cosh(s)− 1 if s ∈ R,

f(x) =


f0 if x ∈ Ω−,

sinh

(
f0R

3 exp(αR)

3ε+(αR + 1)
· exp(−α|x|)

|x|

)
− f0R

3 exp(αR)

3ε+(αR + 1)
· exp(−α|x|)

|x|
if x ∈ Ω+,

g(x) =
f0R

3 exp(αR)

3ε+(αR + 1)
· exp(−α|x|)

|x|
if x ∈ ∂Ω,

ϕΓ(x) =


− f0

6ε−
|x|2 + f0

6ε−
R2 +

f0
3ε+(αR + 1)

R2 if x ∈ Ω−,

f0R
3 exp(αR)

3ε+(αR + 1)
· exp(−α|x|)

|x|
if x ∈ Ω+.

Here, ε− and ε+ are two distinct positive numbers, α = 1/
√
ε+, and f0 ∈ R is a constant. We

verify that ϕΓ is a solution to the dielectric PBE (1.1) with the boundary condition ϕΓ = g
on ∂Ω. Equivalently, ϕΓ minimizes the PB energy functional (2.1) among all functions ϕ that
satisfy the boundary condition ϕ = g on ∂Ω.

We set L = 1, R = 0.75, ε− = 1, ε+ = 80, and f0 = 10, and minimizing the loss function
(3.4) using our neural network algorithm. Unless otherwise stated, the maximum number of
local steps is Nlocal = 10. By numerical integration based on a finite-difference grid of grid
size h = 0.005, we obtain the minimum energy IΓ[ϕΓ] ≈ −3.6172, where IΓ is the PB energy
functional (2.1). We define the relative error Err-P of the electrostatic potential and Err-E of
the minimum energy to be

Err-P =
∥Φ− ϕΓ∥2
∥ϕΓ∥2

and Err-E =
|IΓ[Φ]− IΓ[ϕΓ]|

|IΓ[ϕΓ]|
, (4.1)

10

respectively, where Φ is a simulated neural network approximation of the potential ϕΓ.

Test on the validity of the penalty method. We compare the errors Err-E and Err-P defined
in (4.1) with different penalty coefficients λ = 25, 100, and 250 with the network architecture
S = [3, 30, 20, 15, 10, 1], batch size = 6144 (NΩ = N∂Ω = 3072), and learning rate = 10−2. Our
numerical simulation results are presented in Table 1 and Figure 2. We observe that, with the
same λ, both Err-E and Err-P decrease as the total number of steps Niter increases. With the
same Niter and as the value of λ increases, the relative error Err-P decreases while the relative
error Err-E does not decrease. This may be due to a higher initial energy value of the penalty
term with a larger value of λ, requiring more iteration steps to reduce the total energy. In fact,
all the relative errors Err-E for λ = 25 and Niter = 100, 000, λ = 100 and Niter = 200, 000, and
λ = 250 and Niter = 300, 000 are very close to each other. It is interesting to see that the sum
of Err-E and Err-P is roughly independent of λ. Overall, the convergence with respect to the
increase of the penalty coefficient is achieved, which validates our penalty method.

Total Number of Steps Niter
λ = 25 λ = 100 λ = 250

Err-E Err-P Err-E Err-P Err-E Err-P
100,000 4.68% 7.36% 5.61% 5.51% 8.68% 4.39%
200,000 3.44% 7.38% 5.33% 3.50% 5.38% 2.89%
300,000 1.68% 6.88% 3.80% 2.34% 4.18% 1.96%

Table 1: Results of neural network minimization of the three-dimensional penalized PB energy
functional with different penalty coefficient λ and total number of steps Niter.

0 50000 100000 150000 200000 250000 300000
Steps

0.0

0.2

0.4

0.6

0.8

Er
ro

r

Err-E vs Steps
Penalty coefficient = 25
Penalty coefficient = 100
Penalty coefficient = 250

0 50000 100000 150000 200000 250000 300000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Err-P vs Steps
Penalty coefficient = 25
Penalty coefficient = 100
Penalty coefficient = 250

Figure 2: Err-E (left) and Err-P (right) vs. the overall iteration step in our neural network
optimization of the three-dimensional PB functional with the penalty coefficient λ = 25, 100,
and 250, respectively.

Convergence test: Effects of learning rate, batch size, and network architecture. We
fix the penalty coefficient to be λ = 250 and the network architecture S = [3, 30, 20, 15, 10, 1].
We run our neural network simulations with Niter = 300, 000 and Nlocal = 10, the batch size
6144 (NΩ = N∂Ω = 3072) or 3072 (NΩ = N∂Ω = 1536), and the learning rate 10−2 or 10−3.
All the simulation results are summarized in Table 2. We observe the convergence in each case
with a large or small learning rate and a large or small batch size. Moreover, for a fixed batch
size, our neural network simulation with a larger learning rate leads to faster convergence and
smaller errors. Note that a very large learning rate may lead to unstable iterations. Similarly,

11

for a fixed learning rate, simulations with a larger batch size perform better than those with a
smaller batch size. This is because a large batch size means more sample points for Monte Carlo
integration.

Batch size Learning Rate Err-E Err-P

6144
1e-03 6.35% 3.56%
1e-02 4.18% 1.96%

3072
1e-03 6.18% 4.16%
1e-02 5.79% 3.68%

Table 2: Relative errors in the neural network minimization of the penalized PB energy func-
tional in the three-dimensional setting with different learning rates and batch sizes.

In Figure 3, we plot the neural network penalized PB energy and the relative L2-error of the
electrostatic potential ϕ vs. the overall iteration step in the optimization process. It is clear that
all the simulations converge despite some oscillations. As before, we observe that simulations
with relatively larger learning rates and larger batch sizes perform better. In addition, we also
observe that more oscillations appear in iteration with a larger learning rate.

0 50000 100000 150000 200000 250000 300000
Steps

3.5

3.0

2.5

2.0

1.5

1.0

0.5

En
er

gy
 (k

BT
)

Energy vs Steps
Learning rate = 1e-03
Learning rate = 1e-02

0 50000 100000 150000 200000 250000 300000
Steps

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

En
er

gy
 (k

BT
)

Energy vs Steps
Learning rate = 1e-03
Learning rate = 1e-02

0 50000 100000 150000 200000 250000 300000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Er
r-P

Err-P vs Steps
Learning rate = 1e-03
Learning rate = 1e-02

0 50000 100000 150000 200000 250000 300000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Er
r-P

Err-P vs Steps
Learning rate = 1e-03
Learning rate = 1e-02

Figure 3: The neural network optimization of the penalized PB energy (top) and the relative
error L2-Err-P of the electrostatic potential ϕ (bottom) vs. the overall iteration step. The batch
sizes are 6144 (left) and 3072 (right), respectively.

Finally, we fix the penalty coefficient λ = 250 and the batch size 6144 (NΩ = N∂Ω =
3072) to test the effect of learning rate and network architecture on the convergence of our
algorithm. We use our neural network algorithm to minimize the loss function that is constructed
from the penalized PB energy functional for a shallow network [3, 30, 15, 1] and a deep network
[3, 20, 10, 10, 5, 1] with a learning rate 10−3 or 10−2. Note that these networks have the same

12

total number of neurons. We show in Table 3 the relative error of the simulated energy and the
relative L2-error of the simulated electrostatic potential. In Figure 4, we plot the neural network
energy relaxation and relative error of the electrostatic potential vs. the overall iteration step.
We see clearly from this table and these plots that with the same learning rate, a deep network
performs better than a shallow one in terms of convergence.

Network Architecture Learning Rate Err-E Err-P

[3, 30, 15, 1]
1e-03 13.33% 9.71%
1e-02 6.76% 3.57%

[3, 20, 10, 10, 5, 1]
1e-03 5.27% 3.62%
1e-02 5.11% 3.83%

Table 3: Relative errors of the neural network simulated electrostatic energy and potential with
two different network architectures and two different learning rates.

0 50000 100000 150000 200000 250000 300000
Steps

3.5

3.0

2.5

2.0

1.5

1.0

0.5

En
er

gy

Energy vs Steps
Architecture = [3, 30, 15, 1]
Architecture = [3, 20, 10, 10, 5, 1]

0 50000 100000 150000 200000 250000 300000
Steps

3.5

3.0

2.5

2.0

1.5

1.0

0.5
En

er
gy

Energy vs Steps
Architecture = [3, 30, 15, 1]
Architecture = [3, 20, 10, 10, 5, 1]

0 50000 100000 150000 200000 250000 300000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Err-P vs Steps
Architecture = [3, 30, 15, 1]
Architecture = [3, 20, 10, 10, 5, 1]

0 50000 100000 150000 200000 250000 300000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Err-P vs Steps
Architecture = [3, 30, 15, 1]
Architecture = [3, 20, 10, 10, 5, 1]

Figure 4: The neural network optimization of the penalized PB energy (top) and the relative
L2-error Err-P of the electrostatic potential ϕ (bottom) vs. the overall iteration step for learning
rate 10−3 (left) and 10−2 (right) for two different network architectures.

Test on the growth of weights. For a network architecture S = [n0, n1, . . . , nm+1]. We define
the size of the set of weights θ = (Wi, bi)

m+1
i=1 ∈ ΘS (cf. (3.1)) by

∥θ∥ = ∥(Wi, bi)
m+1
i=1 ∥ =

m+1∑
i=1

(
∥Wi∥2F + ∥bi∥22

)
,

13

where ∥ · ∥F and ∥ · ∥2 are the matrix Frobenius norm and vector l2-norm, respectively. The
theory of neural network approximations indicates that, in the case of non-attainment of best
approximation of a given function, the size of weights of neural networks that are closer and
closer to the function can grow unbounded [30, 33]. Here we test such growth in our neural
network optimization of the penalized PB energy functional. Figure 5 shows the size of network
weights vs. the iteration step in our neural network SGD iteration for two learning rates. We
observe that the weights do not grow with a small learning rate but grow largely with a large
learning rate.

0 50000 100000 150000 200000 250000 300000
Steps

0

10000

20000

30000

40000

50000

Siz
e o

f W
eig

ht
s

Size of Weights vs Steps
Learning rate = 1e-03
Learning rate = 1e-02

Figure 5: The size of weights vs. the overall iteration step in the neural network stochastic
minimization of the penalized PB energy functional for two different learning rates.

5 Application to Biomolecular Solvation

We apply our neural network approach to the dielectric-boundary PBE in conjunction with a
variational implicit-solvent model (VISM) of charged molecules immersed in aqueous solvent;
cf. Figure 1 [8, 11, 12, 47]. Central in this model is an effective free-energy functional F [Γ] of
all possible solute-solvent interfaces (i.e., dielectric boundaries) Γ, given by

F [Γ] = P0Vol(Ω−) + γ0

∫
Γ

(1− 2τH) dS + ρw

∫
Ω+

U(X, x) dx+ Eele[Γ]. (5.1)

Here, Ω− and Ω+ are the solute molecular region and solvent region, respectively, P0 is the differ-
ence between the pressure outside and inside the molecular region Ω−, γ0 is the constant surface
tension, τ is an adjustable parameter (called the Tolman length), H is the mean curvature,

ρw is the bulk solvent density, U(X, x) =
∑N

i=1 U
(i)
LJ (|x − xi|) with each U

(i)
LJ a Lennard-Jones

(LJ) potential, and all x1, . . . , xN are the solute atoms. For each i, the LJ potential is given by

U
(i)
LJ (r) = 4εi[(σi/r)

12−(σi/r)
6] with σi and εi given parameters. The last part Eele[Γ] is the elec-

trostatic energy and it is given in (2.2), where ϕΓ is the unique solution to the boundary-value
problem of the dielectric-boundary PBE (1.1). Table 4 collects the typical values of parameters
in the model that are used in our simulations. The LJ parameters will be specified later.

14

Parameters Descriptions Estimated Values Units
T temperature 300 Kelvin
P0 pressure difference 0 bar
γ0 constant surface tension 0.1315 kBT/ Å2

τ Tolman length 0.76 Å
ρw bulk solvent density 0.0331 Å−3

ε− relative dielectric permittivity in Ω− 1 ε0
ε+ relative dielectric permittivity in Ω+ 78 ε0

Table 4: Model parameters, where ε0 is the vacuum permittivity [19, 42, 47].

5.1 Solvation of a single ion

We consider a single ion modeled as a sphere of radius R with a charge of value Q placed at
its center that is assumed to be the origin. This system is spherically symmetric. With our
previous notations (cf. Figure 1), we have Ω− = {x ∈ R3 : |x| < R}, Ω+ = {x ∈ R3 : |x| > R},
Γ = {x ∈ R3 : |x| = R} for some R > 0. The dielectric coefficient εΓ(x) = εR(|x|) is given by
εR(|x|) = ε− if |x| < R and εR(|x|) = ε+ if |x| > R. In addition, N = 1 and x1 = 0 is the
origin. The LJ parameters for the single ion are denoted by εLJ = ε1 and σLJ = σ1. The fixed
charge density is now given by f = Qδ0, where δ0 is the Dirac delta function concentrated on
the origin. The VISM free-energy functional now becomes a function of R, given by [7, 42, 47]

F (R) =
4π

3
P0R

3 + 4πγ0R
2 − 8πγ0τR + 16πρwεLJ

(
σ12
LJ

9R9
− σ6

LJ

3R3

)
+ Eele(R), (5.2)

where the electrostatic energy Eele(R) is now a function of R. We shall neglect the effect of
surrounding mobile ions, i.e., set B(s) = 0 for all s ∈ R; cf. (1.1). In this case, the electrostatic
energy Eele(R) is approximated by the Born energy [4]

EBorn(R) =
Q

2
(ϕB,R − ϕC) (0) =

Q2

8πR

(
1

ε+
− 1

ε−

)
, (5.3)

where ϕB,R, the Born potential, is defined by

−∇ · εR∇ϕB,R = Qδ0 in R3 and ϕB,R(∞) = 0,

and ϕC(x) = Q/(4πε−|x|) is the Coulomb field. One can verify that

ϕB,R(x) =


Q

4πε−|x|
+

Q

4πR

(
1

ε+
− 1

ε−

)
in Ω−,

Q

4πε+|x|
in Ω+.

(5.4)

We test our neural network method for accurately calculating the electrostatic energy. To
do so, we consider a bounded solvation region Ω = {x ∈ R : |x| < A} for a fixed A > 0 with
Ω− and Γ same as above and Ω+ = {x ∈ R3 : R < |x| < A}. We approximate the electrostatic
energy Eele(R) by

Eele,A(R) =
Q

2
(ϕR,A − ϕC) (0),

15

where ϕR,A is the unique solution to the boundary-value problem of Poisson’s equation

−∇ · εR∇ϕR,A = Qδ0 in Ω and ϕR,A(x) = g if |x| = A, (5.5)

where g is a constant. We can verify that

ϕR,A(x) =


Q

4πε−|x|
+

Q

4πR

(
1

ε+
− 1

ε−

)
− Q

4πε+A
+ g in Ω−,

Q

4πε+|x|
− Q

4πε+A
+ g in Ω+,

(5.6)

Eele,A(R) =
Q

2
(ϕR,A − ϕC) (0) =

Q2

8πR

(
1

ε+
− 1

ε−

)
− Q2

8πε+A
+
Qg

2
. (5.7)

We also reformulate this boundary-value problem with a point charge to an energy-minimization
problem (cf. Lemma 3.1 in [25] and [19])

Eele,A(R) = − min
ϕ∈H1

g (0,A)
IR[ϕ] = max

ϕ∈H1
ω,g(0,A)

(−IR[ϕ]), (5.8)

where

IR[ϕ] = 4π

∫ A

0

εR(r)

2

[
(ϕ− ϕB,R)

′ (r)
]2
r2 dr − Eele,A(R),

H1
g (0, A) = {ϕ : (0, A) → R weakly differentiable: ϕ(A) = g and

∫ A

0

(ϕ2 + ϕ′2)r2dr <∞}.

The reference field ϕB,R in the integral defining IR[ϕ] is the Born potential (5.4). Note that by
(5.6) and (5.4) that ϕR,A ∈ H1

g (0, A) and ϕR,A = ϕB,R+g−Q/(4πε+A). Thus ϕR,A is the unique
minimizer of IR over H1

g (0, A) and hence it satisfies the corresponding Euler–Lagrange equation
(5.5). Moreover, the minimum is indeed given by −Eele,A in (5.8).

Let λ > 0. Note that for ϕ ∈ H1
g (0, A) the function u = ϕ − ϕB,R ∈ H1(0, A) has the

boundary value u = g − Q/(4πε+A) on the boundary |x| = A. We thus define the penalized
energy functional JR,λ : H1(0, A) → R by

JR,λ[u] = 4π

∫ A

0

εR(r)

2
[u′(r)]2r2 dr + 4πA2λ

[
u(A)− g +

Q

4πε+A

]2
− Eele,A(R). (5.9)

Note that the electrostatic energy is approximated by maxu∈H1(0,A)(−JR,λ[u]) for large λ > 0.
We use our neural network method to minimize this functional with a given R and a large λ > 0.
Note that the penalized functional (5.9) is minimized uniquely by u = ϕR,A−ϕB,R and this exact
solution is used for validating our method. In our numerical simulations, we set g = Q/(4πε+A),
A = 4, and λ = 250. In this case, we have ϕR,A = ϕB,R exactly; cf. (5.4) and (5.6).

We first consider an artificial cation with varying charge valueQ. Due to the charge symmetry
in a continuum model, an anion is the same in our simulations. All model parameters in the
VISM energy functionals (5.1) and (5.2), except the LJ parameters, are summarized in Table 4.
We set the only LJ parameters to be σLJ = 3.5 Å and εLJ = 0.3 kBT. For our simulations,
the neural network architecture is [1, 20, 20, 20, 20, 1], the batch size is 1600 (NΩ = 1536 and
N∂Ω = 64). The number of global and local iteration steps are Nglobal = 2, 000 and Nlocal = 10,
respectively. Thus, the total number of iteration steps is Niter = 20, 000.

16

For each chosen value of Q, we get the optimal radius Rmin that minimizes the VISM energy
functional (5.2) [47]. Different Q-values and the corresponding optimal radii are displayed in
the first two rows of Table 5. We then fix R = Rmin and calculate the electrostatic energy by
minimizing the loss function constructed from the penalty functional (5.9). These simulated
electrostatic energy values and the exact energy values (i.e., the Born energy values (5.3))
are very close to each other, same up to the third decimal place. These common values are
displayed in the third row of Table 5, marked “Electrostatic Energy”. Note that the relative
errors are within 10−5–10−6 percentage. For each Q-value, and hence the value of R = Rmin,
the neural network simulated electrostatic energy value is then used to replace the exact value
Eele(Rmin) in (5.2), providing a neural network approximation of the VISM solvation energy.
These approximated solvation energy values and the exact VISM solvation energy values, given
by F (Rmin) with the Born energy (5.3) for Eele(R) in (5.2), are the same, up to the third decimal
place. These common values are listed in the last row of Table 5, marked “Solvation Energy”.

Charge Q 0.0 0.5 1.0 1.5 2.0
Radius R 3.157 3.030 2.801 2.605 2.453

Electrostatic Energy 0.0 -22.685 -98.156 -237.469 -448.326
Solvation Energy 4.836 -17.413 -88.486 -216.174 -406.986

Table 5: Electrostatic and VISM solvation free energies (in kBT) obtained by the neural network
simulations are the same as the exact Born electrostatic and VISM free energies up to the third
decimal place for an artificial ion with different values of the point charge Q (in e).

We now compare two methods of generating initial neural network weights. The first one is a
commonly used method to generate random initial weights with some distributions. The second
one is to use the trained weights from one simulation as the initial weights for the simulation
of a different system. Specifically, we fix Q = 0 e and train the network using the stochastic
optimization. The final weights from the optimization are then used as initial weights for the
neural network simulations for the electrostatics with different Q-values. Figure 6 shows that
with trained weights as initial weights, the simulation is much more efficient than untrained
weights generated randomly.

We consider now the solvation free energy of real single ions K+, Na+, Cl− and F−. All the
parameters are the same as above and are listed in Table 4, except those LJ parameters that are
displayed in Table 6. The VISM-NN values are obtained by the same neural network simulations
as above. However, in calculating the electrostatic energy for the anion Cl− or F−, we shift the
VISM free-energy (cf. (5.2)) minimizing radius in parallel toward its center of ion by ξ = 1 Å
and then use the shifted radius to calculate the electrostatic energy [47]. We present in Table 6
our neural network simulation results in comparison with the experimental data [31, 47]. It is
clear that our neural network can accurately predict the solvation free energy for each of the
ions.

17

100 200 300 400 500 600
Steps

5

4

3

2

1

0

En
er

gy
 (k

BT
)

Energy vs Steps for Q = 0.5e

Unpretrained
Pretrained

100 200 300 400
10.0

7.5

5.0

2.5

0.0

2.5

En
er

gy
 (k

BT
, x

10
6)

1e 6

100 200 300 400 500 600
Steps

2.5

2.0

1.5

1.0

0.5

0.0

En
er

gy
 (k

BT
, x

10
3)

1e3 Energy vs Steps for Q = 1.0e

Unpretrained
Pretrained

100 200 300 400
2.0

1.5

1.0

0.5

0.0

0.5

En
er

gy
 (k

BT
)

100 200 300 400 500 600
Steps

6

5

4

3

2

1

0

En
er

gy
 (k

BT
, x

10
3)

1e3 Energy vs Steps for Q = 1.5e

Unpretrained
Pretrained

100 200 300 400
5
4
3
2
1
0
1

En
er

gy
 (k

BT
, x

10
1)

1e1

100 200 300 400 500 600
Steps

5

4

3

2

1

0

En
er

gy
 (k

BT
, x

10
2)

1e 2 Energy vs Steps for Q = 2.0e

Unpretrained
Pretrained

100 200 300 400
10.0

7.5

5.0

2.5

0.0

2.5

En
er

gy
 (k

BT
, x

10
5)

1e 5

Figure 6: Profiles of the neural network approximated and shifted electrostatic energy
−JR,λ[ψθ]− Eele,A(R) as a function of the weights θ vs. the overall iteration steps for the point
charge with the different charge values Q. Note that “energy” −JR,λ[ψθ] − Eele,A(R) increases
to 0 during the iteration. Random initial weights are marked by “Unpretrained” and initial
weights being the finally trained from the simulation for Q = 0 e are marked “Pretrained.”

Ions ε (kBT) σ (Å) VISM-NN Experiment
K+ 0.008 3.85 -111.1 -117.5
Na+ 0.008 3.49 -129.9 -145.4
Cl− 0.21 3.78 -126.1 -135.4
F− 0.219 3.3 -171.0 -185.2

Table 6: Neural network predicted (VISM-NN) and experimental solvation free energy (in kBT)
of the single ions K+,Na+,Cl− and F− modeled as a single point charge placed at the origin.

5.2 Electrostatics of protein BphC

To assess the performance of our neural network approach to the PB electrostatics for large
complex systems, we consider the protein BphC (Biphenyl-2,3-diol-1,2-dioxygenase, PBD code:
1dhy.pdb) [36], which plays an important role in molecular engineering. The sequence length
of BphC is 292 so the protein has a few thousand atoms. Structurally, it consists of two
domains. To examine the hydrophobic interactions in the region between two domains, we vary
the separation distance d, which is defined to be that of the two geometric centers of those two

18

domains. The structure with d = 0 corresponds to the native crystal structure [42, 46].
For each distance d, we numerically determine the protein surface (i.e., dielectric boundary)

Γ as a local minimizer of the total VISM solvation free-energy functional (5.1) with the electro-
static energy modeled by the Coulomb-field approximation; cf. [42] for details of the model and
numerical simulations. Such a minimizer is not unique in general. We are interested in two types
of such a dielectric boundary minimizer. One is a single surface that wraps up all the solute
atoms. We call such a configuration a dry state, as there are no solvent molecules in between
the two domains of the protein. The other is a surface with possible two or more components,
wrapping up tightly all the solute atoms in the two domains, respectively. In this case, we call
the corresponding configuration a wet state, as there are solvent molecules in between the two
domains. Such dry and wet states are known to be crucial in biomolecular processes [2, 41, 48].
Our previously developed VISM model can capture such states by relaxing the effective VISM
free-energy functional (5.1) using specially designed initial surfaces. A tight initial surface, an
initial surface tightly wrapping up all the protein atoms, usually leads to a wet configuration,
while a loose initial surface, an initial surface loosely wrapping up all the protein atoms, usually
leads to a dry configuration.

Figure 7 shows a sequence of dry and wet states of the protein BphC with three different
domain separation distances predicted by the VISM. With either a tight or loose initial surface,
VISM predicts only one state which is dry if the separation distance is very small, e.g., d ≤ 4 Å,
while one state which is wet if d is large, e.g., d ≥ 16 Å. For d = 10 Å, some differences between
wet (top) and dry (bottom) states can be observed. Once the distance d is large enough, say
d = 14 Å, the tight and loose surfaces are again very close to each other, and both configurations
are wet.

Figure 7: Protein BphC surfaces (i.e., dielectric boundaries) predicted by VISM. From left
to right: Tight surfaces (Top) and loose surfaces (bottom) for d = 10 Å, 12 Å, and 14 Å,
respectively.

We now apply our neural network approach to predicting the electrostatic free energy of
the protein BphC. Let us fix a separation distance d with 4 Å ≤ d ≤ 16 Å and a tight or

19

loose surface Γ predicted by the VISM; cf. Figure 7. We solve the PB equation (1.1) with the
dielectric boundary Γ to get the electrostatic potential and also the energy, using our neural
network model, i.e., minimizing the penalized functional (2.3). We assume that in the bulk
there are two types of ions (i.e., M = 2) with bulk ionic concentrations and charges being
c∞1 = c∞2 = c∞ = 10−7molar = 10−7mol/L and q1 = −q2 = 1 e, respectively, where e is the
elementary charge. Other modeling parameters are the same as in Table 4. The atomic partial
charges of the protein are approximated by

f(x) =
1

(2πσ)3/2

N∑
i=1

Qi exp

(
−|x− xi|2

2σ

)
,

where xi and Qi are the position and partial charges of the i-th atom of BphC with N of them,
and σ = 0.1. We set the boundary value to be

g(x) =
N∑
i=1

Qiexp(−κ|x− xi|)
4πε+|x− xi|

∀x ∈ ∂Ω,

where κ = (ε+kBT/
∑M

j=1 c
∞
j q

2
j)

−1/2 is the inverse Debye length. The penalty coefficient is chosen
to be λ = 1, 000. The dielectric boundary is prescribed by the zero level-set surface given by a
discrete level-set function that is defined on uniform grid points. We employ an 8-layer neural
network with the architecture [3, 50, 30, 20, 15, 10, 5, 1]. The batch size is 5376 (NΩ = 4608 and
N∂Ω = 768). The learning rate is set to be 1×10−3 and the number of global and local iteration
steps are Nglobal = 25, 000 and Nlocal = 20, respectively, so that total number of iteration is
Niter = 500, 000.

Figure 8 shows the electrostatic energy vs. distance d for both the tight and loose surfaces
from our neural network simulations. We observe that the neural network PB solutions with
loose and tight dielectric boundaries exhibit the expected hysteresis phenomenon [42]. The
energy profile also qualitatively matches the result from [42]. Therefore, our neural network
algorithm is capable of dealing with complicated dielectric interface geometry.

4 6 8 10 12 14 16
d (AA)

150

140

130

120

110

100

90

En
er

gy
 (k

BT
)

Electrostatic Energy vs distance
Tight
Loose

Figure 8: Neural network predictions of the electrostatic energy for a dry (marked by “Loose”)
or wet (marked by “Tight”) state of the protein BphC at varying separation distances d.

20

We also explore the application of “transfer learning” to accelerate the training and opti-
mization, as these processes often represent the most time-intensive aspect of the simulation.
Specifically, we leverage the well-trained weights and biases from a fixed separation distance,
and use them as initial weights and biases of neural network for the simulation for a different
and nearby distance. For instance, we utilized the weights and biases trained for d = 8 Å to
initialize the network for d = 10 Å in the context of a loose interface. Figure 9 shows the
result for this experiment. Here, “Pretrained” is the energy profile for d = 10 Å with the initial
weights being those finally trained from simulations for the neighboring distance d = 8 Å, while
“Unpretrained” shows the energy profile from simulations with random initialization of weights.
In these simulations, the network architecture is S = [3, 20, 15, 10, 5, 1], the learning rate is
5× 10−3, the batch size is 15360 (NΩ = 13824 and N∂Ω = 1536), and the total number of global
and local iteration steps are Nglobal = 30, 000 and Nlocal = 10, respectively. The total number
of iteration is Niter = 300, 000. Note that the energy increases with respect to iteration steps,
as this true energy is the negative of the energy we minimize; cf. Eq. (2.1). From the figure,
the “Pretrained” simulations converge significantly faster than those with the “Unpretrained”
setting. This highlights the potential of the transfer learning approach to significantly reduce
the training time, especially in dealing with a large number of simulations for similar complex
biological systems.

5 10 15 20 25 30
Steps (×10^4)

-25

-20

-15

-10

-5

0

En
er

gy
 (k

BT
, ×

10
^2

)

Energy vs Steps

Unpretrained
Pretrained

Figure 9: Electrostatic energy of BphC protein with a loose surface at domain separation d = 10
Å vs. the overall iteration steps. Case 1: the initial weights are randomly generated (marked
“Unpretrained”). Case 2: the initial weights are those finally trained from simulations for the
distance d = 8 Å (marked “Pretrained”).

6 Conclusions

We have developed a neural network approach to solving the boundary-value problem of dielectric-
boundary PBE. Solving the equation is reformulated into a variational problem of minimizing
an effective PB electrostatic free-energy functional of all admissible electrostatic potentials. To
enforce the boundary condition for such potentials, we introduce a penalized electrostatic free-
energy functional that approximates the PB energy functional. We have proved that, as the

21

penalty coefficient increases to infinity, the minimizer and the minimum value of the penalized
functional converge to those of the PB functional, respectively. We then employ the penalized
functional together with the Monte Carlo integration to construct a neural network loss function
and used the SGD algorithm ADAM to minimize the loss function.

We have conducted a series of numerical tests demonstrating the convergence of our neural
network algorithm with varying learning rates, batch sizes, and network architectures. The
penalty model is numerically validated. In addition, we have tested the growth of the magnitude
of neural network weights during the optimization and found no explosion of the weights.

Further, we have combined our neural network approach with the variational implicit-solvent
model to predict the solvation free energy of some single ions, and the potential of mean electro-
static force of the protein BphC with respect to the separation distance of its two domains. Our
extensive simulations indicate that the neural network can effectively handle complex geome-
tries and predict qualitatively accurately the electrostatic potential and energy. In particular,
we have reproduced the hysteresis loop for the electrostatic interaction of the protein BphC in
dry and wet states with respect to its two-domain separation.

Through our simulations, we find that the learning rate, batch size, and network architecture
can all significantly affect the convergence of the neural network SGD algorithm. A relatively
large learning rate leads to a faster convergence but also more fluctuations. A large batch size
can lead to a more accurate result but can also be less efficient. With the same number of
nodes, a deep network performs generally better than a shallow network. With a fixed network
architecture, a large learning rate may lead to the growth of the size of network weights in the
training process.

Our most surprising and significant finding is the transferability of network weights, i.e.,
trained weights from simulations for one setting (e.g., with one separation distance) can be used
for simulations for a different setting (e.g., a different separation distance). Such transferability
is found in simulations of both a single ion and the complex protein BphC. Another significant
and interesting finding is that networks approximately minimizing the loss function can be far
away from each other as their sizes can be very different, indicating possibly that the patch of
the loss surface with near minimum loss value is a large and flatten region.

We now address several issues and suggest possible improvements for future work.
(1) In comparison with more traditional methods, such as finite element and finite difference

methods, for solving low-dimensional (e.g., two or three-dimensional) PDEs, our neural
network simulations are not evidently more accurate or efficient. For minimizing the loss
function related to the protein BphC, the convergence is slow. One possible reason is that
the neural network loss function is likely to be highly non-convex, even though the original
PB energy functional is convex. The complex landscape of such a loss function makes a
SGD algorithm hard to converge.

(2) On the other hand, our extensive numerical tests have shown that a neural network ap-
proach can handle relatively easily complex interface geometries. This is due possibly
to the strong representability of neural network functions. It is known that in general
neural networks can approximate all kinds of functions well enough. However, the quanti-
tative characterization of such approximation and the related application for simulations
of complex systems need to be further studied.

(3) In general, there are many hyper-parameters in neural network simulations. In our neural
network algorithm, such parameters include network architecture, the learning rate, and
batch size. Currently, we determine all the hyper-parameters empirically, often following

22

extensive numerical tests. Rigorous studies are needed to provide guidelines for choosing
optimal values of these hyper-parameters.

(4) Convergence analysis and error estimates for neural network approximations of PDEs
remain challenging. We can numerically verify the convergence of neural network simu-
lations. But in general rigorous and non-conventional numerical analysis should be de-
veloped for neural network simulations. In this regard, our finding that the patch of
near-loss-minimum on the loss surface may be large and flatten can help us develop non-
conventional concepts and tools for the related convergence analysis.

(5) The transferability of network weights that we have found in this study is a new feature
for neural network simulations of complex systems. It may provide a novel and efficient
route for large-scale molecular simulations, as network weight initialization can signifi-
cantly affect the overall computational efficiency. Theoretically, it is an interesting and
challenging question why a neural network algorithm has such a strong transferability,
calling for further investigations.

Acknowledgment

This work was supported in part by the US National Science Foundation through the grant DMS-
2208465 (BL), the National Natural Science Foundation of China through the grant 92470103,
the Hong Kong RGC through the grant 17304324, and Seed Funding for Strategic Interdisci-
plinary Research Scheme 2021/22 (HKU) (ZZ).

References

[1] R. Adams. Sobolev Spaces. Academic Press, New York, 1975.
[2] R. Baron and J. A. McCammon. Molecular recognition and ligand association. Annu. Rev.

Phys. Chem., 64:151–175, 2013.
[3] J. Berg and K. Nyström. A unified deep artificial neural network approach to partial

differential equations in complex geometries. Neurocomput., 317:28–41, 2018.
[4] M. Born. Volumen und Hydratationswärme der Ionen. Z. Phys., 1:45–48, 1920.
[5] O. Calin. Deep Learning Architures. Springer, 2020.
[6] J. Che, J. Dzubiella, B. Li, and J. A. McCammon. Electrostatic free energy and its varia-

tions in implicit solvent models. J. Phys. Chem. B, 112:3058–3069, 2008.
[7] H. B. Cheng, L.-T. Cheng, and B. Li. Yukawa-field approximation of electrostatic free

energy and dielectric boundary force. 2011 (submitted).
[8] L.-T. Cheng, J. Dzubiella, J. A. McCammon, and B. Li. Application of the level-set method

to the implicit solvation of nonpolar molecules. J. Chem. Phys., 127:084503, 2007.
[9] I. L. Chern and Y. C. Shu. A coupling interface method for elliptic interface problems. J.

Comput. Phys., 225:2138–2174, 2007.
[10] M. E. Davis and J. A. McCammon. Electrostatics in biomolecular structure and dynamics.

Chem. Rev., 90:509–521, 1990.
[11] J. Dzubiella, J. M. J. Swanson, and J. A. McCammon. Coupling hydrophobicity, dispersion,

and electrostatics in continuum solvent models. Phys. Rev. Lett., 96:087802, 2006.
[12] J. Dzubiella, J. M. J. Swanson, and J. A. McCammon. Coupling nonpolar and polar

solvation free energies in implicit solvent models. J. Chem. Phys., 124:084905, 2006.

23

[13] W. E and B. Yu. The deep Ritz method: A deep learning-based numerical algorithm for
solving variational problems. Commun. Math. Stats., 6(1):1–12, 2018.

[14] L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics.
Amer. Math. Soc., 2nd edition, 2010.

[15] E. Georgoulis, M. Loulakis, and A. Tsiourvas. Discrete gradient flow approximations of high
dimensional evolution partial differential equations via deep neural networks. Commun.
Nonl. Sci. Numer. Simul., 117:106893, 2023.

[16] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using
deep learning. Proc. Natl Acad. Sci. USA, 115(34):8505–8510, 2018.

[17] S. Haykin. Neural Networks. Pearson, 1999.
[18] W.-F. Hu, T.-S. Lin, and M.-C. Lai. A discontinuity capturing shallow neural network for

elliptic interface problems. J. Comput. Phys., 469:111576, 2022.
[19] Z. Huang and B. Li. Variational implicit solvation with Legendre-transformed Poisson–

Boltzmann elecrtrostatics. Proc. R. Soc. A, 480:20230731, 2024.
[20] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,

2014.
[21] I. Kwon, G. Jo, and K.-S. Shin. A deep network based on ResNet for predicting solutions

of Poisson–Boltzmann equation. MDPI Electronics, 10:2627, 2021.
[22] C.-C. Lee. The charge conserving Poisson–Boltzmann equations: Existence, uniqueness,

and maximum principle. J. Math. Phys., 55:051503, 2014.
[23] B. Li. Minimization of electrostatic free energy and the Poisson–Boltzmann equation for

molecular solvation with implicit solvent. SIAM J. Math. Anal., 40:2536–2566, 2009.
[24] B. Li., X.-L. Cheng, and Z.-F. Zhang. Dielectric boundary force in molecular solvation with

the Poisson–Boltzmann free energy: A shape derivative approach. SIAM J. Applied Math,
71(10):2093–2111, 2011.

[25] B. Li, Z. Zhang, and S. Zhou. The calculus of boundary variations and the dielectric
boundary force in the Poisson–Boltzmann theory for molecular solvation. J. Nonlinear
Sci., 31(89):1–50, 2021.

[26] Y. Liao and P. Ming. Deep Nitsche method: Deep Ritz method with essential boundary
conditions. Commun. Comput. Phys., 29(5):1365–1384, 2021.

[27] Z. Liu, W. Cai, and Z.-Q. J. Xu. Multi-scale deep neural network (MscaleDNN) for solving
Poisson–Boltzmann equation in complex domains. Commun. Comput. Phys., 28(5):1970–
2001, 2020.

[28] B. Lu, X. Cheng, J. Huang, and J. A. McCammon. Order N algorithm for computation of
electrostatic interaction in biomolecular systems. Proc. Natl. Acad. Sci. USA, 103:19314–
19319, 2006.

[29] B. Z. Lu, Y. C. Zhou, M. J. Holst, and J. A. McCammon. Recent progress in numer-
ical methods for the Poisson-Boltzmann equation in biophysical applications. Commun.
Comput. Phys., 3:973–1009, 2008.

[30] S. Mahan, E. J. King, and A. Cloninger. Nonclosedness of sets of neural networks in Sobolev
spaces. Neural Networks, 137:85–96, 2021.

[31] Y. Marcus. Thermodynamics of solvation of ions. Part 5.– Gibbs free energy of hydration
at 298.15 K. J. Chem. Soc. Faraday Trans., 87:2995–2999, 1991.

[32] M. Mirzadeh, M. Theillard, A. Helgadöttir, D. Boy, and F. Gibou. An adaptive, finite differ-
ence solver for the nonlinear Poisson–Boltzmann equation with applications to biomolecular
computations. Commun. Comput. Phys., 13(1):150–173, 2013.

24

[33] P. Petersen, M. Raslan, and F. Voigtlaender. Topological properties of the set of functions
generated by neural networks of fixed size. Found. Comp. Math., 21:375–444, 2021.

[34] Y. Ren, S. Amihere, W. Geng, and S. Zhao. Comparison of three matched interface and
boundary (MIB) schemes for solving the nonlinear Poisson–Boltzmann equation. Commun.
Info. Systems, 24:231–251, 2024.

[35] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

[36] T. Senda, K. Sugiyama, H. Narita, T. Yamamoto, K. Kimbara, M. Fukuda, M. Sato,
K. Yano, and Y. Mitsui. Three-dimensional structures of free form and two substrate
complexes of an extradiol ring-cleavage type Dioxygenase, the BphC enzyme from Pseu-
domonassp. strain KKS102. J. Mol. Biol., 255:735–752, 1996.

[37] K. A. Sharp and B. Honig. Electrostatic interactions in macromolecules: Theory and
applications. Annu. Rev. Biophys. Biophys. Chem., 19:301–332, 1990.

[38] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. J. Comput. Phys., 375:1339–1364, 2018.

[39] S. L. Sobolev. Applications of Functional Analysis in Mathematical Physics. Amer. Math.
Soc., 1963. Translated from the Russian by F. E. Browder.

[40] D. N. Tanyu, J. Ning, T. Freudenberg, N. Heilenkötter, A. Rademacher, and U. I. P. Maass.
Deep learning methods for partial differential equations and related parameter identification
problems. Inverse Problems, 39:103001, 2023.

[41] L. Wang, B. J. Berne, and R. A. Friesner. Ligand binding to protein-binding pockets with
wet and dry regions. Proc. Natl. Acad. Sci. USA, 108:1326–1330, 2011.

[42] Z. Wang, J. Che, L.-T. Cheng, J. Dzubiella, B. Li, and J. A. McCammon. Level-set
variational implicit solvation with the Coulomb-field approximation. J. Chem. Theory
Comput., 8:386–397, 2012.

[43] Z. Wang and Z. Zhang. A mesh-free method for interface problems using the deep learning
approach. J. Comput. Phys., 400:108963, 2020.

[44] H. Wei, R. Luo, and R. Qi. An efficient second-order Poisson–Boltzmann method. J.
Comput. Chem., 40(12):1257–1269, 2019.

[45] L. Wilson, W. Geng, and R. Krasny. TABI-PB 2.0: An improved version of the Treecode-
Accelerated Boundary Integral Poisson–Boltzmann solver. J. Phys. Chem. B, 126:7104–
7113, 2022.

[46] R. Zhou, X. Huang, C. J. Margulis, and B. J. Berne. Hydrophobic collapse in multidomain
protein folding. Science, 305:1605–1609, 2004.

[47] S. Zhou, L.-T. Cheng, J. Dzubiella, B. Li, and J. A. McCammon. Variational implicit
solvation with Poisson–Boltzmann theory. J. Chem. Theory Comput., 10:1454–1467, 2014.

[48] S. Zhou, R. G. Weiß, L.-T. Cheng, J. Dzubiella, J. A. McCammon, and B. Li. Variational
implicit-solvent predictions of the dry–wet transition pathways for ligand–receptor binding
and unbinding kinetics. Proc. Natl. Acad. Sci. U.S.A., 116(30):14989–14994, 2019.

25

