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Abstract

Interface and free boundary problems are fundamental in science and engineering, with inter-
face non-smoothness posing significant challenges. While machine learning-based methods
have shown promise for interface problems with predefined boundaries, their application to
free boundary problems is hindered by computational demands and design limitations. Con-
sequently, high-accuracy machine learning approaches for free boundary problems remain
scarce. This paper presents a novel mesh-free approach based on the locELM framework,
termed discontinuous extreme learning machine (DELM), a variant of physics-informed neu-
ral networks, to address the problems above. By utilizing the signed distance level set
function and introducing an artificial discontinuity mechanism, DELM effectively handles
interface non-smoothness with high accuracy and computational efficiency, using fewer pa-
rameters than traditional methods. Moreover, its independence from the specific forms of
predefined interfaces enables seamless integration with front-tracking techniques, making it
well-suited for free boundary problems. The proposed method achieves excellent perfor-
mance in various interface and Stefan problems, providing an efficient and scalable solution
for complex interface dynamics.

Keywords: Physics-informed neural networks, Artificial discontinuity, Interface problems,
Free boundary problems, Extreme learning machine.

1. Introduction

Interface problems [1] play a crucial role in numerous scientific and engineering fields,
spanning multiphase flows in fluid mechanics, and phase transitions in materials science.
Broadly, interface problems encompass scenarios in which the interface may be either known
or unknown. When the interface is unknown, these are known as free boundary problems
[2], where determining the boundary is integral to finding the solution. In such problems,
interfaces typically partition the space into multiple subdomains, each with distinct physical
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properties, and the interface geometry can often be quite intricate. Partial differential equa-
tions (PDEs) with interfaces or moving boundaries are frequently employed to model the
physical processes within these subdomains. However, the solution near interfaces, which
is often non-smooth, presents significant challenges for numerical methods. Current ap-
proaches for solving interface problems generally fall into two categories: mesh-based meth-
ods and mesh-free methods. Each category has distinct advantages, making them valuable
in different application contexts.

Traditional mesh-based methods for interface problems generally represent the interface
either explicitly or implicitly [3]. In cases where the interface is unknown, explicit methods
stand out, such as the front-tracking method [4, 5]. By explicitly tracking the movement of
the interface as it evolves, this approach offers the advantage of precise localization and a
clear representation of interface dynamics. However, front-tracking methods encounter sig-
nificant challenges when the interface undergoes complex topological transformations, such
as splitting or merging. In contrast, implicit methods handle the interface indirectly by
introducing level set functions [6, 7, 8] or phase field functions [8, 9, 10, 11] on a fixed mesh.
The main advantage of these methods is their ability to seamlessly manage complex topo-
logical changes, without requiring explicit tracking. Nonetheless, the accuracy of interface
localization in implicit methods is typically lower compared to explicit approaches, as the
interface is represented indirectly.

When constructing spatial meshes for interface problems, two commonly used approaches
are body-fitted meshes and unfitted meshes. Body-fitted meshes are designed to align pre-
cisely with the interface boundaries, allowing for an accurate depiction of physical phenom-
ena near the interface. This alignment offers high accuracy but comes with a significant
drawback: it requires frequent mesh adjustments, particularly when the interface evolves.
These adjustments can be time-intensive and often rely on computationally costly a posteri-
ori error estimates. A notable example of this approach is the adaptive mesh finite element
method [12, 13, 14]. In contrast, unfitted meshes do not require exact alignment with the
interface. Instead, the interface is allowed to intersect freely with the background mesh,
simplifying the mesh generation process and offering greater flexibility, especially for com-
plex geometries or dynamic interfaces. Since the mesh does not align with the interface, it
often becomes necessary to employ additional numerical techniques to address the disconti-
nuities and irregularities in the vicinity of the interface. Examples of such techniques include
the immersed interface method [15, 16, 17, 18, 19, 20], the extended finite element method
(XFEM) [21, 22, 23], cutFEM [24], and the ghost fluid method [25]. Each of these methods
addresses interface discontinuities in distinct ways, contributing to improved stability and
accuracy in numerical calculations.

Recently, mesh-free methods, particularly those leveraging neural networks [26, 27], have
gained significant attention for addressing interface problems. These methods achieve dis-
cretization through sampling at discrete points, which in turn avoids the complexities asso-
ciated with mesh generation. Among these, piecewise neural networks [28, 29, 30] manage
discontinuities by deploying independent neural networks across different subdomains, mak-
ing them well-suited for both known and unknown interface problems. However, employing
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multiple neural networks results in increased computational demands. For free boundary
problems, an additional neural network is often needed to track the evolving interface, further
amplifying the computational burden. The discontinuity capturing shallow neural network
(DCSNN) [31] and cusp-capturing PINN (C-C PINN) [32], which address some of these
challenges by introducing augmented variables and employing the Levenberg-Marquardt
(LM) method, significantly alleviate computational challenges in elliptic interface problems.
Nonetheless, these approaches still require a small set of additional parameters for the aug-
mented variables and rely on a known interface, limiting its application to free boundary
problems. Additionally, methods based on the random feature method (RFM) [33, 34, 35, 36]
and extreme learning machine (ELM) [37] have been proposed for interface problems with
known interfaces. These approaches typically reformulate the problem into a least-squares
framework, achieving spectral accuracy in some cases. However, their reliance on known
interfaces limits their generalization to free boundary problems

This paper introduces a novel mesh-free framework, termed DELM, designed to provide
a unified solution approach for interface problems with both known and unknown interfaces.
DELM is based on the ELM methodology and its variant, locELM [38], which incorpo-
rates domain decomposition techniques. The locELM method enhances the original ELM
by enforcing specific smoothness conditions, yielding improved results in relatively simple
problem settings. Building on this foundation, we advance the work of Lai et al. [31, 32]
by enhancing the use of augmented variables (see Section 3.2). This is achieved through the
effective incorporation of signed-distance functions, which capitalize on their superior quality
features. By refining this integration, our approach seeks to further improve the speed and
robustness of the method. As a result, our approach achieves notable performance gains
for problems with known interfaces (see Section 4.2) and demonstrates compatibility with
traditional front-tracking methods, thereby enabling the application to free boundary prob-
lems (see Section 4.3). Furthermore, our method introduces augmented variables without
requiring additional parameters in neural networks, thus enhancing computational efficiency.
Our contributions are summarized as follows:

� We propose a novel method, which is based on locELM, and efficiently addresses both
known and unknown interface problems while maintaining high accuracy and fast com-
putational speed.

� We present an enhanced augmented variable technique tailored for general interface
problems. Building on the work of Lai et al. [31, 32], our approach further reduces the
number of parameters, improves computational efficiency, and extends its applicability
to free boundary problems.

� We integrate traditional front-tracking methods into our framework to achieve accurate
and robust interface modeling.

� We demonstrate the effectiveness of our method through comprehensive validation on
benchmark interface and free boundary problems.
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This paper is organized as follows. Section 2 briefly introduces the mathematical formu-
lation of interface problems. Section 3 details the proposed method, including the general-
ization of locELM for interface problems, the introduction of artificial discontinuities, and
the extension to free boundary problems. Section 4 presents numerical results for both inter-
face and free boundary problems. Finally, Section 5 summarizes the findings and discusses
potential future research directions.

2. Mathematical formulation of interface and free boundary problems

Let Ω ⊂ Rd (where d = 1, 2, 3) be a bounded domain that is partitioned into two
disjoint subdomains, Ω+

t and Ω−
t , separated by an interface Γt, which is generally not known

a priori. The subscript t signifies that this partition is time-dependent and may evolve.
This decomposition satisfies Ω = Ω+

t ∪ Γt ∪ Ω−
t , as illustrated in Fig. 1. The objective is to

�Ω

Ω�
+

Γ�

��

Ω�
−

Figure 1: A sketch map for the domain and the interface.

determine a function u(x, t) that fulfills distinct differential equations within each subdomain
and meets specific conditions along the interface. Consider the abstract form of the interface
or free boundary problem:

(∂t + L±)u(x, t) = f±(x, t), (x, t) ∈ Ω±
t × [0, T ],

JGu(x, t)KΓt = (ϕ1(x, t), ϕ2(x, t)) , (x, t) ∈ Γt × [0, T ],

JMu(x, t)KΓt = ⟨ψ,Γt⟩(x, t), (x, t) ∈ Γt × [0, T ],

Bu(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ],

Iu(x, 0) = h(x), (x, t) ∈ Ω.

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.1e)

In these equations, L± represents spatial differential operators defined on subdomains Ω±
t ,

with possible variations in form or coefficients between the two regions. The notation ∂t de-
notes the time derivative, reflecting that this problem can be dynamic or stationary. Bound-
ary and initial conditions are specified through the operators B and I, with g(x, t) and h(x)
as their respective values on ∂Ω and the initial time.
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The jump condition across the interface Γt is defined as follows:

Ju(x, t)KΓt = u+(x, t)− u−(x, t), (2.2)

signifying the discontinuity across Γt, where u
± denote the values of u approaching from Ω±

t .
The operator G in Eq. (2.1b), mapping to a product space, enforces two interface conditions
across Γt. For problems with dynamic interfaces, G takes the form:

G = (G1,G2) ,

G1 = I, G2(u) = σ(u) · n,
(2.3)

where I is the identity operator, σ represents the flux or stress tensor, and n is the unit outer
normal vector of Γt. For specific cases like the Stefan problem, G has the form:

G = (G1,G2) ,

G1 = I, G2(u) = uχΩ+
t
,

(2.4)

where χΩ+
t
is the characteristic function over Ω+

t . The operator M in Eq. (2.1c) pertains to
the motion of the interface and may be independent of other equations for known interfaces.
For problems with known interfaces, M is expressed as

M(u) = wχΩ+
t
, (2.5)

where w represents the moving speed of the interface, typically serving as the coefficient
of the first-order term in some equations. In the context of the Stefan problem, Eq. (2.1c)
corresponds to the classical Stefan condition [39].

The symbols f±(x, t), ϕ1(x, t), and ϕ2(x, t) are known, smooth source terms specific to
their respective subdomains and interface Γt. The symbol ψ, which represents a bounded
linear operator on (d− 1)-dimensional submanifolds, describes an unknown quantity of the
free interface. Depending on the context, ⟨ψ,Γt⟩ may represent the normal velocity of the
interface in Stefan problems [40, 41, 39], Hele-Shaw flows [42, 40], or the curvature in surface
tension-driven fluid dynamics [43, 44, 45, 46, 47], among other applications.

This framework establishes conditions across the moving interface, which enable the
interface to evolve as an integral part of the solution.

3. Mathemtical method

In this section, we begin by introducing a foundational neural network architecture, de-
tailing both the network structure and the loss function. We then discuss a novel approach for
incorporating discontinuities into the architecture, which leads to significant improvements
in both computational speed and accuracy. This enhanced methodology is particularly ef-
fective for problems where the interface motion is independent of the governing equations.
Finally, for scenarios where the interface motion is intrinsically tied to the equations, such
as in the Stefan problem, a discrete-time scheme of the proposed framework is introduced
to overcome this challenge.
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3.1. Fundamental architecture of DELM

The physics-informed neural networks (PINNs) [48] methodology offers a general frame-
work for solving PDEs by embedding physical laws into the neural network training process.
We first primarily modify the variant called locELM [38], which is both efficient and ac-
curate, to adapt interface problems. This adjustment is designed to set the foundation for
further enhancements, which will be detailed in the following sections.

3.1.1. Full-connected neural network architectures

We begin by considering a full-connected neural network with L layers, which can be
expressed in vector form as follows:

y = W (L+1)
o h(L) + b(L+1)

o , (3.1)

where the activation vector h is computed through a series of hidden layers. Each hidden
layer activation is given by:

h(l) = σ(W
(l)
h h(l−1) + b

(l)
h ), 0 ≤ l ≤ L, (3.2)

with the initial input vector h(0) = x ∈ Rd. Here, W
(l)
h ∈ Rml×ml−1 denotes the weight

matrix for the l-th layer, b
(l)
h ∈ Rml is the corresponding bias vector, and σ(·) is the element-

wise activation function. The output y ∈ Rk is obtained through an output weight ma-
trix W

(L+1)
o ∈ Rk×mL and an output bias b

(L+1)
o ∈ Rk. In this framework, d represents

the input dimension, ml denotes the number of neurons in the l-th hidden layer, and k
specifies the output dimension. We define the final neural network as y = y(x; θ), where

θ = {W (l)
h ,b

(l)
h }Ll=0∪{W (L+1)

o ,b
(L+1)
o } encapsulates all the trainable parameters of the model.

The optimization target of PINNs is defined by a loss functional that integrates both
data consistency and physical constraints:

L(y; ŷ,N ) = λdataLdata(y, ŷ) + λphyLphy(N ,y), (3.3)

where Ldata denotes the data loss, typically calculated as the mean squared error between the
predicted output y and the observed data ŷ. The physics-based loss, Lphy, enforces the gov-
erning PDE constraints by minimizing the residual of the differential operator, represented
as N (y) = 0. The weighting parameters λdata and λphy serve to balance the contributions
from the data loss and the physics loss, respectively, allowing the model to learn both data
fidelity and physical accuracy.

3.1.2. Domain decomposition and associated loss functional for interface problems

Next, we partition the domain into N subdomains {Ωi}Ni=1, which may adjust in response
to movements of the interface to capture localized properties effectively. The loss functional
for each subdomain is defined as:

Li
sub = λidataLi

data(y
i, ŷi) + λiphyLi

phy(N ,yi), (3.4)

6



where Li
sub represents the combined data and physics loss within the i-th subdomain. The

overall loss functional is then given by:

Ltotal =
N∑
i=1

Li
sub + λc-sLc-s, (3.5)

where Lc-s denotes the cross-subdomain constraint loss, ensuring continuity and consistency
of the solution across the junctions between subdomains. The weight λc-s controls the influ-
ence of these cross-subdomain constraints within the total optimization process.

We now proceed to provide the specific formulation for each subdomain. For each sub-
domain Ωi, which differs from the previously mentioned Ω±

t , a neural network is trained,
enabling the final solution to be represented as:

y(x; θ) =
N∑
i=1

yi(x; θi)χi, (3.6)

where χi is the indicator function associated with subdomain Ωi, and yi and θi denote the
neural network and its parameters corresponding to subdomain Ωi. The physics-based loss
within each subdomain Ωi is defined by Eqs. (2.1a)-(2.1e):

Li
phy(y) = ∥(∂t + L±)(y)χi − f±χi∥2L2(0,T ;L2(Ωi))

+ ∥B(y)χi − gχi∥2L2(0,T ;L2(∂Ω))

+ ∥I(y)χi − hχi∥2L2(Ω) +
∥∥[[G1y]]Γt

χi − ϕ1χi

∥∥2

L2(0,T ;L2(Γt))

+
∥∥[[G2y]]Γt

χi − ϕ2χi

∥∥2

L2(0,T ;L2(Γt))
+
∥∥[[My]]Γt

χi − ⟨ψ,Γt⟩χi

∥∥2

L2(0,T ;L2(Γt))
.

(3.7)

The notation L2(0, T ;L2(D)) denotes the space of functions that are square-integrable over
both the temporal interval (0, T ) and the spatial manifold D. This means that for a function
f(t,x) in L2(0, T ;L2(D)), where D may be the domain Ω or the submanifold Γt, we have:

||f ||L2(0,T ;L2(D)) =

(∫ T

0

∫
D

|f(t,x)|2 dx dt
)1/2

. (3.8)

Let the set of junctions between subdomains be denoted by Γ̂ =
⋃N

i=1 ∂Ωi − ∂Ω. We
enforce the continuity of function values and their gradients across these junctions with the
following junction loss:

Lc-s(y) = ∥JyK∥2
L2(0,T ;L2(Γ̂))

+ ∥J∇y · nK∥2
L2(0,T ;L2(Γ̂))

. (3.9)

In this study, there is no data loss functional in Eq. (3.4), and thus the total loss functional
is defined as follows:

Ltotal =
N∑
i=1

Li
phy + Lc-s. (3.10)
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3.1.3. Efficiency enhancement

To further simplify and enhance computational efficiency, we utilize a single hidden layer,
with the weights in the first layer fixed to be uniformly distributed within the interval
[−R,R], where R ∈ R is a hyperparameter. The bias term b

(L+1)
o in the output layer is set

to zero, so that the parameter set θi consists solely of the weights of the final layer, denoted
by W i

o. By minimizing the objective function defined in Eq. (3.10), we obtain the numerical
solution to the equation. For additional details, please refer to [38].

By embedding physical laws directly into the learning process, locELM provides a flex-
ible and efficient approach for solving complex PDEs. Furthermore, locELM offers notable
advantages over conventional methods: it achieves higher accuracy and faster computation
times when the solution is sufficiently smooth. Compared to standard PINNs, locELM
also demonstrates improved accuracy and speed while using fewer parameters, making it an
efficient choice for solving PDEs.

3.2. Artificial discontinuities in DELM

However, directly applying the method from Section 3.1 is inefficient for the types of
interface problems considered in this paper. These problems, described by Eqs. (2.1a)-(2.1e),
which often exhibit jumps in both function values and gradients at the interface, present
a significant challenge. To address this, we introduce ”artificial discontinuities” into the
locELM, which allows our method to better adapt to the problem’s inherent characteristics.

Traditional PINNs, when facing such challenges, typically require an increase in the
number of parameters and collocation points [29, 49], adaptive sampling techniques [28, 50,
51, 52], or the construction of multiple networks [28]. Our work proposes a novel approach
to address these challenges efficiently. To maintain the efficiency of our approach, we aim
to incorporate these discontinuities into the locELM without adding to the computational
burden, thereby enabling the efficient approximation of non-smooth solutions using smooth
neural networks.

To address discontinuities in the function values, we introduce an augmented variable
defined by

ẑ =

{
−1 if x ∈ Ω−,

1 if x ∈ Ω+.
(3.11)

This augmented variable effectively transforms the original d-dimensional neural network
into a (d + 1)-dimensional network, with ẑ serving as an additional coordinate near the
interface. Since ẑ is a piecewise constant variable, its weak derivative is zero, preserving the
form of the governing equations. This approach enables us to introduce discontinuities in
the function values.

Furthermore, to address gradient discontinuities, we begin by introducing a signed-
distance level set function, denoted as ϕ, which characterizes the interface. The zero level set
of this function corresponds to the location of the interface. This level set function satisfies
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the Eikonal equation [53, 7, 54]: {
|∇ϕ(x)| = 1, x ∈ Ω,

ϕ(x) = 0, x ∈ Γ,
(3.12)

where Ω represents the domain, and Γ denotes the interface.
We then augment the absolute value of ϕ as an additional variable in the neural network.

The numerical solution to Eqs. (2.1a)-(2.1e) is expressed as

u(x, t) = U(x, t, z = ϕa(x, t)), (3.13)

where U represents the neural network and ϕa = |ϕ|. Using smooth activation functions in
the neural network and the chain rule, the gradient of the solution can be written as

∇u = ∇xU + ∂zU∇xϕa, (3.14)

where ∇ϕa denotes the weak gradient of ϕa. Consequently, due to the smoothness properties
of neural networks, the jump discontinuity in the gradient at the interface is given by

J∇uK(xΓ, t) = 2∂zU∇xϕ(xΓ, t). (3.15)

Since ϕ is a signed-distance function, the unit normal vector at the interface is ∇ϕ. Together
with the Eikonal equation (3.12), this yields

J∂nuK(xΓ) = 2∂zU. (3.16)

Similarly, the time derivative of the numerical solution can be expressed as

∂tu = ∂tU + ∂zU∂tϕa. (3.17)

This augmentation introduces gradient jump discontinuities within the neural network.
Readers only need to substitute the corresponding terms into the equations.

We summarize our algorithm, DELM, in Algorithm 1, with a full architecture illustrated
in Fig. 2. This approach enhances solution accuracy, making the method described in Section
3.1 well-suited for interface problems. While the basic concept of this method builds on
the work of Lai et al. [31, 32], our improved version introduces three key differences and
advantages over the original approach.

First, we freeze the weights in the first layer of the neural network (as discussed in Section
3.1), allowing the natural introduction of two new variables without increasing the total pa-
rameter count—further reducing parameters compared to Lai et al.’s methods. Additionally,
by using different level set functions that satisfy Eikonal equations (3.12), we successfully
extend the framework to a dynamic interface with a known interface and free boundary prob-
lems with an unknown interface (see Section 3.3), which enables efficient solutions across a
wider range of challenges. Finally, this network configuration maintains the same accuracy
level while significantly accelerating training times.
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Figure 2: Architecture of DELM.

Algorithm 1 DELM (Discontinuous extreme learning machine)

Input: Training points {xΩ
±
t

i }Q×Nt

i=1 , {xc-si }Ne×Nb×Nt

i=1 , {xΓt
j }NI×Nt

j=1 , {xbk}
2Ne×Nb×Nt

k=1 .
0. Augment the input and equations through Eqs. (3.11), (3.14)-(3.17);
1. Construct a single-layer neural network with Ne outputs and assign weights and biases{
W

(0),j
h ,b

(0),j
h

}Ne

j=1
with random values uniformly distributed over [−R,R];

2. Compute the errors
{
Li

phy

}Ne

j=1
and Lc-s using augmented inputs and equations for each

subdomain;
3. Minimize Ltotal using the least squares method to determine the optimal weight matrices
{W j

o }
Ne

j=1;

Output: Weights {W j
o }

Ne

j=1 that define the DELM approximate solution.

3.3. Discrete DELM for free boundary problems

Sections 3.1 and 3.2 introduced a continuous solution method that is directly applicable
when the interface movement is independent of the governing equations (for example, when
flow terms are known and do not depend on the equations [36]). However, in cases where
the interface motion is coupled with the governing equations, as in the Stefan problem, a
time-discretized version of the method is required.

10



3.3.1. Time-discretization

First, given positive integer Nsteps, we assume a uniform partition of the time interval
[0, T ] as

0 = t0 < t1 < · · · < tn < · · · < tNsteps−1 < tNsteps = T (3.18)

with a fixed time step size ∆t = T/Nsteps and tn = n∆t for 0 ≤ n ≤ Nsteps. We then decouple
the system and discretize it using an explicit-implicit Euler scheme:

un+1 − un

∆t
+ L±un+1 = f±,n+1, x ∈ Ω±

n+1,

JGun+1KΓn+1 =
(
ϕn+1
1 , ϕn+1

2

)
, x ∈ Γn+1,

JMunKΓn = ⟨ψn+1,Γn+1⟩, x ∈ Γn,

Bun+1 = gn+1, x ∈ ∂Ω,

Iu0 = h, x ∈ Ω.

(3.19a)

(3.19b)

(3.19c)

(3.19d)

(3.19e)

Here, the superscript n denotes the corresponding approximations at time instant tn. We
start by Eq. (3.19e) to update the interface through Eq. (3.19c), and then proceed to solve
the remaining equations. This process is repeated iteratively until the temporal evolution is
complete.

Taking the Stefan problem [55, 56] as an example, we present this discretized formulation,
which models phase transitions such as the melting of ice into water. In the Stefan problem,
the domain Ω is divided into two regions, Ω+

t and Ω−
t , separated by a moving interface Γt,

which represents the phase boundary between the solid and liquid phases. The position of
the interface Γt is generally unknown and must be determined as part of the solution.

Example 1. A Stefan problem can be formulated as:

ρ±c±
∂u±

∂t
−∇ · (k±∇u±) = f±(x, t), (x, t) ∈ Ω±

t × [0, T ],

u+(x, t) = u−(x, t) = um, (x, t) ∈ Γt × [0, T ],

k+∇u+ · n− k−∇u− · n = ρLVn, (x, t) ∈ Γt × [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ].

(3.20a)

(3.20b)

(3.20c)

(3.20d)

(3.20e)

Here, u±(x, t) represents the temperature in regions Ω±
t ; ρ

± is the density; c± is the specific
heat capacity; k± is the thermal conductivity; um is the melting temperature; L is the latent
heat of fusion; Vn is the normal velocity of the moving interface Γt; n is the unit normal
vector pointing from Ω−

t to Ω+
t ; u0(x) is the initial temperature distribution; and g(x, t)

specifies the boundary temperature distribution.
The condition u+ = u− = um on Γt ensures that the temperature remains continuous

across the phase boundary at the melting temperature. The jump in heat flux across Γt is
balanced by the latent heat released or absorbed during the phase change, as expressed in
Eq. (3.20c), which involves the normal velocity Vn.
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The Stefan problem is a classic example of a free boundary problem, where the interface
Γt evolves over time and must be determined as part of the solution. It has significant
applications in fields such as metallurgy [57], cryogenics [58], and geophysics [59], where
understanding the dynamics of phase transitions is essential.

We now illustrate how to handle Example 1, starting by discretizing it in time. For
Eq. (3.20a), we apply the implicit Euler method for time discretization and rearrange it as
follows:

ρ±c±u
(n+1)
± −∆t∇ ·

(
k±∇u(n+1)

±

)
= ∆tf± (

x, tn+1
)
+ ρ±c±un±, x ∈ Ω±

n+1, (3.21)

where un± represents the solution at the n-th time step within each respective region. For
Eq. (3.20c), which expresses the Stefan condition, we discretize it using the explicit Euler
method and rearrange it as follows:

ρLSn+1 = ρLSn +∆t
(
k+∇un+ · nn − k−∇un− · nn

)
, x ∈ Γn. (3.22)

Here, Sn denotes the position of the interface at the n-th time step, and nn is the normal
vector of the interface at the n-th time step.

The steps to solve the problem are as follows: first, select discrete points for the initial
interface position, denoted by {r0i }Ni=1, and update the interface position according to the
initial conditions as described in Eq. (3.22). Next, update the solution at the subsequent
time step using Eq. (3.21), following the procedure outlined in Sections 3.1 and 3.2 to obtain
the solution.

3.3.2. Artificial discontinuities in discrete DELM

When solving the problem using the methods from Sections 3.1 and 3.2, an important
step is to incorporate augmented variables. In addition to calculating the position of the
interface at each time step, we also need to compute the signed level set function, along
with its gradient and Laplacian. In one-dimensional cases, once the interface position is
determined at each time step using Eq. (3.22), this information can be obtained with minimal
effort.

In higher-dimensional cases, however, some additional steps are required. Here, we focus
on the two-dimensional case for illustration, as the extension to higher dimensions follows a
similar approach. In the two-dimensional scenario, the set of points {ri}Ni=1 can be interpo-
lated using an arc-length parameterized spline curve [60], denoted by r(s). For any point x
in the plane, the closest parameter snear is given by

snear = argmins∈[0,1] |x− r(s)| . (3.23)

We do not need to solve this minimization problem directly; instead, we can efficiently
obtain the result by constructing a kd tree [61]. The level set function in Eq. (3.12) is then
defined as

ϕ(x) = sign ((x− r(snear)) · n(snear)) |x− r(snear)| , (3.24)
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where n(snear) is the unit inner normal vector at the closest point on the interface. This
approach allows us to efficiently compute the signed level set function for use in higher-
dimensional cases.

Using the properties of the signed distance function, we can readily obtain the gradient
of the level set function:

∇ϕ(x) = −sign(1− ϕ(x) · κ(snear))n(snear), (3.25)

where n and κ represent the unit inward normal vector and curvature at the corresponding
point on the curve, respectively. With this expression, we can easily derive the Laplacian of
the level set function as

∆ϕ(x) = sign(1− ϕ(x) · κ(snear))
κ(snear)

|1− ϕ(x) · κ(snear)|
. (3.26)

In fact, ∆ϕ and∇ϕ represent, respectively, the curvature and the unit outward normal vector
of the interface curve r as it is translated along the normal direction according to the given
parameters. We describe the translated curve as

rnew(s) = r(s) + cn(s), (3.27)

where c ∈ R denotes the properly small translation distance. Using arc-length parameter-
ization, we compute the tangent vectors of both the original and translated curves, as well
as the curvature of the original curve:

dr

ds
= t, κ = n · dt

ds
,

drnew
ds

= t+ c
dn

ds
= t− cκt = (1− cκ)t. (3.28)

where t is the unit tangent vector. By normalizing the tangent vector of the translated
curve, we obtain

tnew =
drnew
ds∥∥drnew
ds

∥∥ =
(1− cκ)t

|1− cκ|
. (3.29)

This expression corresponds to Eq. (3.25) after a clockwise rotation. Next, the relationship
between the differential forms of the old and new curve parameters is given by

dsnew = (1− cκ)ds. (3.30)

Finally, we obtain the curvature of the new curve at the corresponding point as

κnew = nnew · dtnew
ds

ds

dsnew
=
κ(1− cκ)

|1− cκ|2
. (3.31)

This result corresponds to Eq. (3.26).
We summarize our discrete version in Algorithm 2. Ultimately, we have successfully

extended our method to dynamic interface and free boundary problems, covering both
discretized and continuous-time versions. When using the discretized time approach, this
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method can easily be extended to higher-order schemes in time, such as Runge-Kutta [62]
and BDF methods [63], if greater accuracy in time discretization is required. This enables
us to retain the high-accuracy properties of traditional methods in the temporal direction
while benefiting from neural networks in the spatial domain. Whether applied in the dis-
crete or continuous form, our approach can efficiently and accurately handle interface and
free boundary problems.

Algorithm 2 Discrete DELM

Input: The training points {xΩ
±
t

i }Qi=1, {xc-si }Ne×Nb
i=1 , {xΓt

j }NI
j=1, {xbk}

2Ne×Nb
k=1 and time steps

Nsteps.
1. Update the interface {xΓt

j }NI
j=1 through Eqs. (3.19c), (3.19e);

2. Calculate gradient and Laplace information of the signed distance function ϕ through
Eqs. (3.23)-(3.26);
3. Augment the input and equations through Eqs. (3.11), (3.14)-(3.17);
4. Conduct a single-layer neural networks with Ne outputs and assign the weights and biases{
W

(0),j
h ,b

(0),j
h

}Ne

j=1
with uniform random values generated from the interval [−R,R];

5. Define the errors
{
Li

phy

}Ne

j=1
and Lc-s through augmentation of Eqs. (3.19a), (3.19b),

(3.19d) for each subdomains;
6. Minimize Ltotal by using the least square method to determine the optimal weight matrix
{W j

o }
Ne

j=1;
7. Repeat above steps Nsteps times;

Output: Weights {W j
o }

Ne

j=1 that fix the discrete DELM approximate solution.

4. Numerical results

4.1. Experimental setup

In this study, the entire domain is subdivided into uniformly distributed subdomains
along each spatial direction, with the total number of subdomains denoted as Ne. For each
subdomain, the number of neural network parameters is represented byM . Unless otherwise
specified, point sampling follows a uniform distribution. The training points located on each
boundary of a subdomain are indicated by Nb, and the training points on the interface are
denoted by NI . The total number of collocation points within each subdomain is represented
by Q. The sampling method is illustrated in Fig. 3 and the total number of parameters can
be calculated as MT = MNe. To ensure that junctions and interfaces do not conflict, it is
necessary to maintain a certain distance between them during the setup of junctions. Specifi-
cally, if the distance between an interface and a junction is smaller than the distance between
two adjacent junctions, the nearest junction will be removed. For practical purposes, the
collocation points located on the interface are omitted to enhance computational efficiency.
In the discretized version of the method, the number of time steps is denoted by Nsteps.

The DELM or discrete DELM has a relatively small number of parameters. Therefore,
for solving linear systems, a linear least-squares optimization method is used. For nonlinear
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systems, we adopt a nonlinear least-squares optimization approach as described in [38].
These optimization methods, together with parametric spline interpolation and k-d tree
construction, are implemented using the SciPy package in Python. The backpropagation
process is handled by PyTorch, and for all experiments conducted in this study, random seeds
are consistently set to 3407 to ensure reproducibility [64]. All programs are executed on an
AMD R7-4800H CPU, providing a consistent computational environment for benchmarking
and analysis.

4.2. Interface problems with known interfaces

4.2.1. Elliptic interface problem

To validate the effectiveness of the proposed method for addressing interface problems,
we begin by considering a two-dimensional elliptic interface problem. The computational
domain is defined as the square Ω = [0, 1]× [0, 1], where a discontinuous coefficient is present,

and the interface is represented by the zero level set of the function ϕ(x, y) = x2

0.52
+ y2

0.52
− 1.

This level set divides Ω into two subdomains: Ω− and Ω+. The governing equation for the
problem is given by:

∇ · (β(x)∇u(x))− α(x)u(x) = f(x), x ∈ Ω±,

JuK(xΓ) = 0, xΓ ∈ Γ,

Jβ∂nuK(xΓ) = ρ(xΓ), xΓ ∈ Γ,

u(xB) = g(xB), xB ∈ ∂Ω.

(4.1)

In this formulation, u(x) is the solution function, ρ(xΓ) and g(xB) are given smooth
functions, α(x) ≥ 0, and f(x) and β(x) > 0 are defined in a piecewise smooth manner
across the interface Γ. We select the exact solution u(x, y) and the coefficient β(x, y) as
follows:
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u(x, y) =

1− exp
(

1
η

(
x2

0.52
+ y2

0.52
− 1

))
, (x, y) ∈ Ω−,

−γ ln
(

x2

0.52
+ y2

0.52

)
, (x, y) ∈ Ω+,

(4.2)

β(x, y) =

{
β−, (x, y) ∈ Ω−,

β+, (x, y) ∈ Ω+.
(4.3)

Here, η = β−/β+ represents the contrast ratio between the coefficients in the two subdo-
mains. In this example, we set β+ = 1 and η = 10 to introduce a significant contrast that
effectively challenges our method.

The parameters α = 1 and γ = 2 are chosen to suit the exact solution form. For further
details on the setup and solution, we refer to the work of Lai et al. [32]. The parameter
settings for this test are summarized in Table 1. In this configuration, each spatial dimension
is divided into two subdomains, with 8 boundary points and 36 interface points. Each
subdomain has 8× 8 collocation points. The number of neurons per subdomain ranges from
30 to 100, depending on the specific conditions. The parameter R is set to 0.2. The total
number of training points used in this problem is 388, with the total number of parameters
ranging between 120 and 400.

Table 1: Parameter settings for the elliptic interface problem.

Ne Nb NI Q M R NT MT

2× 2 8 36 8× 8 30-100 0.2 388 120-400

We employ the corresponding method from the work by Lai et al., known as cusp-
capturing PINN (C-C PINN) [32], for comparison. The computational results are summa-
rized in Table 2. Additionally, we plotted the error variation with respect to the number of
parameters, as illustrated in Fig. 4. Our method can be consistently applied to all exam-
ples in this paper using the same random seed, while traditional neural network algorithms
typically require different random seeds for each problem, or even for each combination of
hyperparameters, to achieve optimal performance. Consequently, we conducted only one
experiment for each parameter setting with our method. For the other methods, we present
both the results from a single experiment and the average results obtained from five experi-
ments, following the approach outlined in [32]. To ensure consistency and comparability, the
random seed used in the single experiment was set to match the one utilized in our method.

We observe that, with a relatively small number of parameters, the model error remains
significant; however, each region already reaches an L2 error level of O(10−3) with only 30
parameters per subdomain. As the parameters per subdomain increase from 30 to 100, the
error decreases from O(10−3) to O(10−7), eventually slightly surpassing the accuracy of C-C
PINN. At this stage, our method still retains advantages in terms of training speed, enabling
rapid resolution of moving interface problems (see Sections 4.3.1 and 4.3.2). For readers
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Table 2: Summary of computational results for the elliptic interface problem.

Method ∥û−u∥2
∥u∥2 (M,MT ) (Q,NT ) # Epochs

DELM

6.0778e-03 (30, 120)

(64, 388) 1

2.8932e-03 (40, 160)
3.7122e-04 (50, 200)
1.1516e-04 (60, 240)
1.4971e-05 (70, 280)
2.9372e-06 (80, 320)
2.1073e-06 (90, 360)
2.9523e-07 (100, 400)

prioritizing training speed, our method significantly outperforms traditional approaches,
particularly in fields such as real-time systems and high-frequency trading. Conversely, for
readers focused on minimizing parameter count when solving elliptic interface problems, C-
C PINN is more advantageous. This is due to our model’s structure: it consists of only
one hidden layer, and only the parameters in the final layer are trainable, which can limit
nonlinearity when the parameter count is low.

The results in Fig. 4 highlight the impact of random seed selection on traditional neural
network methods, where a single experiment often fails to reliably reflect convergence. In
contrast, our method remains unaffected by random seed variability, a crucial advantage for
dynamic problems, as it prevents unnecessary error accumulation and helps maintain high
accuracy. Additionally, our method demonstrates a significantly faster neural scaling law
compared to C-C PINN., achieving approximately O(M−9), a substantial improvement over
C-C PINN’s O(M−6).

After this example, we present error plots for M = 100, as shown in Fig. 5. The over-
all error is minimal, with L∞ and L2 errors on the order of 10−6 and 10−7, respectively.
These results were obtained using only 384 points and 100 parameters per subdomain while
maintaining a very high solution speed. Notably, the majority of the error is concentrated
near the interface, which is expected due to the gradient discontinuities normal to the inter-
face. This concentration of error at the interface poses a particular challenge for dynamic
systems, especially in Stefan-type problems, where it becomes even more pronounced in two-
dimensional cases (see Section 4.3.2). However, as discussed earlier, the rapid neural scaling
law of our method effectively mitigates this potential bottleneck.

In summary, our method achieves the desired accuracy for the elliptic interface problem,
combining high precision with extremely fast training speed. The method’s capability for
rapid neural scaling laws lays a strong foundation for efficiently addressing moving interface
problems in future applications.

4.2.2. Dynamic problem

To further demonstrate the applicability of discrete DELM, we present an example involv-
ing a dynamic interface problem governed by parabolic-type equations over a two-dimensional
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Figure 4: Error variation with respect to the number of parameters.

square domain Ω = [0, 1]× [0, 1], containing discontinuous coefficients, which was also tested
by [36]. The exact solution is defined as follows:

u(x, y, t) =

(t+ 1)
(
1− exp

(
1
η

(
x2

(0.5t+0.35)2
+ y2

(0.5t+0.35)2
− 1

)))
, (x, y) ∈ Ω−,

−γ(t+ 1) ln
(

x2

(0.5t+0.35)2
+ y2

(0.5t+0.35)2

)
, (x, y) ∈ Ω+,

(4.4)

and the interface is given by the level set function

ϕ(x, y, t) =
x2

(0.5t+ 0.35)2
+

y2

(0.5t+ 0.35)2
− 1. (4.5)

As in the previous example, the parameter β is defined as Eq. (4.3), a piecewise constant. In
this example, we set the parameters as follows: β+ = 1, η = 10 (indicating high contrast),
α = 0, and γ = 0.875. This configuration provides a challenging test case to effectively
evaluate the accuracy of our method. The example itself is adapted from the elliptic problem
discussed in the previous section, allowing us to explore the method’s performance under
similar conditions.

The neural network parameter settings for this dynamic problem are summarized in
Table 3. In this configuration, each spatial dimension is divided into two subdomains, with
15 boundary points and 80 interface points. Each subdomain contains 15 × 15 collocation
points. The number of neurons per subdomain ranges from 51 to 93, depending on the time
step length. The parameter R is set to 0.65. The total number of training points used is
1160, with the total number of parameters ranging between 201 and 372.
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Figure 5: Exact surface and absolute error surface for the elliptic interface problem.

Table 3: Parameter Settings for the dynamic problem.

Ne Nb NI Q M R NT MT

2× 2 15 80 15× 15 51-118 0.65 1160 204-472

The optimal parameter settings at each time step, along with the corresponding errors and
temporal convergence order, are presented in Table 4. The data includes spatial parameters

Table 4: Error and convergence order for various time steps and parameters in the dynamic problem.

(M,MT ) (Q,NT ) Nsteps ∥u− û∥L2(0,T ;Ω) Order

(51, 204)

(15× 15, 1160)

2 0.001243 -
(57, 228) 4 0.0006104 1.03
(65, 260) 8 0.0003042 1.00
(71, 284) 16 0.0001505 1.02
(78, 312) 32 7.3874e-05 1.03
(88, 352) 64 3.6978e-05 1.00
(104, 416) 128 1.8514e-05 1.00
(118, 472) 256 9.3262e-06 0.99

(M,MT ), temporal parameters (Q,NT ), the number of time steps Nsteps, the error norm ∥u−
û∥L2(0,T ;Ω), and the convergence order, providing a comprehensive overview of the method’s
performance across different time steps.

The data reveals that as the number of time steps Nsteps increases, the error progressively
decreases, indicating an optimal level of temporal convergence. For example, with an initial
step count of Nsteps = 2, the error is 0.001243, while increasing the steps to Nsteps = 256

19



reduces the error to 9.3262×10−6. This demonstrates that the method achieves progressively
better accuracy as the time step count grows.

The table also reveals the optimal temporal convergence order, which stabilizes around
1 from Nsteps = 4 onwards. For example, at step counts 4, 8, 16, 32, and 64, the convergence
orders are 1.03, 1.00, 1.02, 1.03, and 1.00, respectively, indicating that the numerical method
achieves the theoretically expected first-order convergence in time. This stable convergence
order reflects the robustness and effectiveness of temporal discretization.

Furthermore, the spatial parameters (Q,NT ) = (15×15, 1160) demonstrate the method’s
effectiveness in achieving higher accuracy by increasing time steps under fixed spatial set-
tings. In this configuration, the parameter count per subdomain increases from 51 to 118,
resulting in 225 collocation points per subdomain, achieving spatial accuracy on the order
of O(M−6). This high-order accuracy validates the spatial NN’s effectiveness in reducing
numerical error.

Additionally, we plot the results for Nsteps = 256, as shown in Fig. 6. In this example, the
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(d) t = 0.1

Figure 6: Exact solution and absolute error for the dynamic problem.

largest error occurs in the outer region, followed by the area around the interface, while the
error within the region’s interior is minimal. As time progresses, the errors in the vicinity of
the interface and within it remain at the O(10−6) level, indicating that our discrete method
effectively manages non-smoothness around the interface. The success of this example lays
a strong foundation for tackling the Stefan problem in subsequent work.

4.3. Stefan Problems

4.3.1. 1D Stefan problem

We now present a one-dimensional two-phase Stefan problem as an additional example.
Consider the domain Ω = [0, 2], where the interface s(t) divides Ω into Ω− = [0, s(t)] and
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Ω+ = [s(t), 2], with the time interval t ∈ [0, 0.5]. The specific formulation of the governing
equations is as follows:

∂u±

∂t
−∇ · (k±∇u±) = f±(x, t), x ∈ Ω±

t ,

u+(x, t) = u−(x, t) = 0, x ∈ Γt,

α+∂u
+

∂x
− α−∂u

−

∂x
=

ds

dt
, x ∈ Γt,

u(x, 0) = u0(x), x ∈ Ω.

(4.6a)

(4.6b)

(4.6c)

(4.6d)

The parameters for these equations are provided in Table 5. We select the exact solution as

Table 5: Parameters for the equations.

k− k+ α− α+

2 1 -2 1

follows:

u(x, t) =

2
(
exp

(
t+1/2−x

2

)
− 1

)
, (x, t) ∈ Ω− × [0, T ],

exp(t+ 1/2− x)− 1, (x, t) ∈ Ω+ × [0, T ],
(4.7)

and
s(t) = t+ 1/2. (4.8)

The initial and boundary conditions can be easily derived from these expressions. This
example is inspired by the work of Wang et al.[29], who employed two independent neural
networks to approximate u(x, t) and s(t). This approach avoids the complexity introduced
by coupling systems, albeit at the cost of increased parameters and training time.

The parameter settings for this example are presented in Table 6. The spatial domain is
divided into five subdomains, each with one boundary point on either side and one interface
point. The number of collocation points and neurons per subdomain varies from 20 to 200
and 4 to 8, respectively, depending on the time step length. For all experiments in this
example, the parameter R is set to 0.1. Consequently, the total number of training points
and parameters ranges from 107 to 1007 and 20 to 40, respectively.

Table 6: Parameter settings for the 1D Stefan problem.

Ne Nb NI Q M R NT MT

5 1 1 20-200 4-8 0.1 107-1007 20-40

Next, we present the optimal parameter settings for each time step length, along with the
computed errors and convergence order with respect to time, as shown in Table 7. As shown
in Table 7, the time-related error achieves its optimal convergence order. In the spatial
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Table 7: Error and convergence order for various time steps and parameters in the 1D Stefan problem.

(M,MT ) (Q,NT ) Nsteps ∥u− û∥L2(0,T ;Ω) Order

(4, 20) (20, 107) 2 0.006508 -
(5, 25) (30, 157) 4 0.002622 1.50
(5, 25) (30, 157) 8 0.001027 1.05
(5, 25) (30, 157) 16 0.0005554 0.94
(5, 25) (30, 157) 32 0.0002984 1.24
(6, 30) (50, 257) 64 0.0001559 0.89
(6, 30) (50, 257) 128 7.4409e-05 1.03
(7, 28) (70, 357) 256 3.7546e-05 1.02
(8, 40) (100, 507) 512 1.8790e-05 1.01
(8, 40) (200, 1007) 1024 9.3975e-06 1.04

domain, the number of parameters and collocation points per subdomain increased from 4
and 20 to 8 and 200, respectively. Ultimately, by using only 8 parameters and 200 collocation
points per subdomain, we achieve an accuracy of O(10−6).

We also provide visualizations for Nsteps = 1024, as shown in Fig. 7. Similar to the elliptic

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

U

Exact Solution (t=0.125)
Uexact

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ab
so

lu
te

 E
rro

r

1e 5 Error (t=0.125)
Error

(a) t = 0.125

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

U

Exact Solution (t=0.25)
Uexact

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ab
so

lu
te

 E
rro

r

1e 5 Error (t=0.25)
Error

(b) t = 0.25

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

U

Exact Solution (t=0.375)
Uexact

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ab
so

lu
te

 E
rro

r

1e 5 Error (t=0.375)
Error

(c) t = 0.375

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

U

Exact Solution (t=0.5)
Uexact

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ab
so

lu
te

 E
rro

r

1e 5 Error (t=0.5)
Error

(d) t = 0.5

Figure 7: Exact solutions and absolute errors for the 1D Stefan problem.

interface problem, a noticeable error peak appears near the interface, as discussed earlier in
Section 4.2.1. From the figure, we observe that the method achieves very low errors, with
L∞ and L2 errors on the order of O(10−5) and O(10−6), respectively.

In summary, our method demonstrates remarkable effectiveness in solving one-dimensional
two-phase Stefan problems. Our approach not only uses fewer parameters and achieves faster
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training speeds but also attains significantly higher accuracy. In the following sections, we
will apply our method to address more complex Stefan problems.

4.3.2. 2D Stefan problem

To further demonstrate the effectiveness of our method, we present a two-dimensional
example. Consider a square domain Ω = [0, 1]× [0, 1] over the time interval t ∈ [0, 0.1] with
a circular interface defined by

Γ =

{
(x, y, t) ∈ Ω× [0, T ] : ϕ(x, y, t) =

x2

(0.5t+ 0.35)2
+

y2

(0.5t+ 0.35)2
− 1 = 0

}
. (4.9)

This interface divides Ω into Ω− = {ϕ < 0} ∩ Ω and Ω+ = {ϕ > 0} ∩ Ω. The governing
equations for this problem are formulated as follows:

∂u±

∂t
−∇ · (k±∇u±) = f±(x, t), x ∈ Ω±

t ,

u+(x, t) = u−(x, t) = 0, x ∈ Γt,

α+∇u+ · n− α−∇u− · n = Vn, x ∈ Γt,

u(x, 0) = u0(x), x ∈ Ω.

(4.10a)

(4.10b)

(4.10c)

(4.10d)

The parameters for this example are identical to those used in the previous case, as outlined
in Table 5. We select the exact solution as follows:

u(x, y, t) =

(t+ 1)
(
1− exp

(
1
η

(
x2

(0.5t+0.35)2
+ y2

(0.5t+0.35)2
− 1

)))
, (x, y) ∈ Ω−,

−γ(t+ 1) ln
(

x2

(0.5t+0.35)2
+ y2

(0.5t+0.35)2

)
, (x, y) ∈ Ω+,

(4.11)

where we set η = 2 and γ = 7
8
. The initial and boundary conditions can be derived directly

from the exact solution. This example is adapted from the elliptic interface problem discussed
in Section 4.2.1 and presents greater challenges in terms of both computational speed and
accuracy compared to the one-dimensional case. Simulating the interface and calculating
the normal flux are inherently more complex in two dimensions. Nevertheless, as the results
below demonstrate, our method achieves excellent performance in this challenging scenario.

We first present the parameter settings for this example, as shown in Table 8. The basic

Table 8: Parameter settings for 2D Stefan problem.

Ne Nb NI Q M R NT MT

2× 2 15 80 15× 15 51-93 0.65 1160 201-372

parameters for this example are similar to those in the elliptic interface problem. Each
spatial dimension is divided into two subdomains, with 15 boundary points, 80 interface
points, and 15 × 15 collocation points within each subdomain. The number of neurons per
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subdomain ranges from 51 to 93, depending on the time step length. For all experiments in
this example, the parameter R is set to 0.65. The total number of training points used is
1160, with the total number of parameters ranging between 201 and 372.

As with the one-dimensional Stefan problem, we now present the optimal parameter
settings for each time step length, along with the computed errors and convergence order
with respect to time, as shown in Table 9. In this example, the number of time steps increases

Table 9: Error and convergence order for various steps and parameters in the 2D Stefan problem.

(M,MT ) (Q,NT ) Nsteps ∥u− û∥L2(0,T ;Ω) Order

(72, 288) (15× 15, 1160) 2 0.001207 -
(89, 356) (15× 15, 1160) 4 0.001404 -0.22
(66, 264) (15× 15, 1160) 8 0.004678 -1.74
(51, 204) (15× 15, 1160) 16 0.001513 1.63
(78, 312) (15× 15, 1160) 32 0.0003836 1.98
(83, 332) (15× 15, 1160) 64 4.5852e-05 3.06
(93, 372) (15× 15, 1160) 128 2.2294e-05 1.04
(84, 336) (15× 15, 1160) 256 1.0233e-05 1.12

from 2 to 256, while the number of neurons per subdomain varies from 51 to 93, showing
an initial increase followed by a decrease. Unlike the one-dimensional case, the complexity
of the interface simulation in two dimensions requires smaller time steps to keep the error
in the decoupling system low. To further reduce the error, we must increase the number of
neurons in the spatial domain. When the time step length falls below a certain threshold,
error reduction primarily results from the Euler scheme.

For relatively small time steps, a higher-order time discretization scheme could be em-
ployed to enhance accuracy. The variations in convergence order further illustrate this point.
At the initial time steps, the error decreases quickly, but not solely due to the Euler scheme;
the primary factor is the error in the decoupling system. As the time step increases, our
convergence order approaches the theoretical order of the Euler scheme, indicating that the
error asymptotically aligns with that of the Euler method. Ultimately, with only 15 × 15
collocation points per subdomain and 84 neurons in total, we achieved an error as low as
1.02× 10−5.

Additionally, we present the results for Nsteps = 256, as shown in Fig. 8. As shown,
the error is primarily concentrated near the interface, especially in the initial stages of
time evolution. This phenomenon has been discussed earlier in the text. However, the
two-dimensional example presents some unique characteristics. First, the error tends to
concentrate in regions further from the boundary, which is expected due to the limited
Dirichlet information in these areas. As time progresses, the error near the interface gradually
spreads into other regions, particularly in the exterior domain. This occurs because, over
time, the decoupling system error becomes more pronounced in regions distant from the
initial time, leading to larger errors. Overall, the figure shows that our method achieves very
low errors, with the L2 error ranging from O(10−5) to O(10−6).
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(c) t = 0.075
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(d) t = 0.1

Figure 8: Exact solution and absolute error for the 2D Stefan problem.

In summary, our method exhibits excellent performance in solving two-dimensional two-
phase Stefan problems. Our approach not only requires fewer parameters and offers faster
training times but also achieves significantly higher accuracy.

5. Conclusion

The proposed DELM framework effectively addresses the challenges of mesh generation
in traditional methods and overcomes the limitations of conventional mesh-free approaches,
such as high parameter counts and lengthy training times. By leveraging the strengths of
locELM and incorporating an innovative augmented variable technique, DELM not only
maintains high computational efficiency but also extends its applicability from known inter-
face problems to free boundary problems.

A key contribution of our work is the enhanced augmented variable technique, which
builds upon the foundation established by Lai et al. [31, 32]. This approach significantly re-
duces the number of parameters required, streamlines computational processes, and expands
its utility to a broader class of interface problems, including free boundary scenarios. By
integrating traditional front-tracking methods within our framework, DELM achieves precise
and robust interface modeling, ensuring accurate handling of complex interface geometries
and dynamics.

The effectiveness and versatility of our method have been rigorously validated through
comprehensive benchmarking on a wide range of interface and free boundary problems. These
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validations highlight its superior accuracy and efficiency compared to existing approaches.
Furthermore, the ability to handle both known and unknown interface problems within a
unified framework underscores the practicality and robustness of the proposed methodology.

While our current work demonstrates strong potential in solving interface problems, fu-
ture research could explore several promising directions. These include extending the frame-
work to address more complex and highly nonlinear interface or free boundary problems, and
enhancing its adaptability to dynamic interfaces. With these advancements, DELM has the
potential to become a versatile and powerful tool for a wide range of applications in science
and engineering.
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[21] I. Babuška, U. Banerjee, K. Kergrene, Strongly stable generalized finite element method:
Application to interface problems, Computer Methods in Applied Mechanics and Engi-
neering 327 (2017) 58–92.

[22] J. Chessa, H. Wang, T. Belytschko, On the construction of blending elements for local
partition of unity enriched finite elements, International Journal for Numerical Methods
in Engineering 57 (7) (2003) 1015–1038.

[23] Y. Xiao, J. Xu, F. Wang, High-order extended finite element methods for solving inter-
face problems, Computer Methods in Applied Mechanics and Engineering 364 (2020)
112964.

[24] E. Burman, S. Claus, P. Hansbo, M. G. Larson, A. Massing, Cutfem: discretizing ge-
ometry and partial differential equations, International Journal for Numerical Methods
in Engineering 104 (7) (2015) 472–501.

[25] X.-D. Liu, R. P. Fedkiw, M. Kang, A boundary condition capturing method for poisson’s
equation on irregular domains, Journal of computational Physics 160 (1) (2000) 151–
178.

[26] I. Goodfellow, Deep learning (2016).

[27] Z. Wang, Z. Zhang, A mesh-free method for interface problems using the deep learning
approach, Journal of Computational Physics 400 (2020) 108963.

[28] C. He, X. Hu, L. Mu, A mesh-free method using piecewise deep neural network for
elliptic interface problems, Journal of Computational and Applied Mathematics 412
(2022) 114358.

[29] S. Wang, P. Perdikaris, Deep learning of free boundary and stefan problems, Journal of
Computational Physics 428 (2021) 109914.

[30] S. Wu, B. Lu, Inn: Interfaced neural networks as an accessible meshless approach for
solving interface pde problems, Journal of Computational Physics 470 (2022) 111588.

[31] W.-F. Hu, T.-S. Lin, M.-C. Lai, A discontinuity capturing shallow neural network for
elliptic interface problems, Journal of Computational Physics 469 (2022) 111576.

28



[32] Y.-H. Tseng, T.-S. Lin, W.-F. Hu, M.-C. Lai, A cusp-capturing pinn for elliptic interface
problems, Journal of Computational Physics 491 (2023) 112359.

[33] J. Chen, X. Chi, Z. Yang, et al., Bridging traditional and machine learning-based algo-
rithms for solving pdes: the random feature method, J Mach Learn 1 (2022) 268–98.

[34] J. Chen, Y. Luo, et al., The random feature method for time-dependent problems, arXiv
preprint arXiv:2304.06913 (2023).

[35] J. Chen, L. Tan, High-precision randomized iterative methods for the random feature
method, arXiv preprint arXiv:2409.15818 (2024).

[36] X. Chi, J. Chen, Z. Yang, The random feature method for solving interface problems,
Computer Methods in Applied Mechanics and Engineering 420 (2024) 116719.

[37] Y. Liang, Q. Zhang, S. Zeng, A piecewise extreme learning machine for interface prob-
lems, Mathematics and Computers in Simulation 227 (2025) 303–321.

[38] S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solv-
ing linear and nonlinear partial differential equations, Computer Methods in Applied
Mechanics and Engineering 387 (2021) 114129.
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