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Abstract. In this work, we consider the Schrödinger equation with a Gaussian random potential

(SE-GP), and we aim to efficiently approximate the expectation of physical observables. The un-

boundedness of Gaussian random variables causes difficulties in sampling and error analysis. Under

time-splitting discretizations of SE-GP, we establish the regularity of the semi-discrete solution in

the random space. Then by means of a non-standard weighted Sobolev space associated with some

properly chosen weight functions, we obtain a randomly shifted lattice-based quasi-Monte Carlo

(QMC) quadrature rule for sampling, which forms a QMC time-splitting (QMC-TS) scheme for

solving SE-GP. QMC-TS is proved to admit a dimension-independent and almost linear conver-

gence rate with respect to the number of samples. Numerical experiments illustrate the sharpness

of the error estimate.
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1. Introduction

The Schrödinger equation with a spatial random potential of the following form

i∂tψ(t, ω, x) = −1

2
∂2xψ(t, ω, x) + V (ω, x)ψ(t, ω, x), (1.1)

plays an essential role for describing wave propagation in disorder media [10, 17, 40], where t is

the time variable, x is the space variable, ω is a random sample, ψ = ψ(t, ω, x) is the unknown

complex-valued wavefunction, and V is an external real-valued spatial random potential. It is also

known as the continuous version of the original Anderson model [2] for the localization phenomenon

and is mathematically of great interest [12, 13, 16, 22, 65]. In practice, the spatial random potential

V could be uniformly distributed in a bounded interval [20] or be a Gaussian noise [10, 19]. In

this work, we will be interested in the case that V (ω, x) = v0(x) + Vr(ω, x) with v0(x) a determin-

istic function and Vr(ω, x) a zero-mean Gaussian random field, and we aim to provide an efficient

numerical algorithm to solve (1.1) particularly addressing the sampling issue.

Although the standard Monte Carlo (MC) method is handy as used in most of the simulation

work, e.g., [10, 20, 65], we get only a half-order convergence rate in the number of samples, and hence

a large number of simulations are required for MC to accurately evaluate the statistical quantities.

More efficient options for discretizing the random space include the quasi-Monte Carlo (QMC)

methods [7, 15, 25, 35, 36, 59], stochastic Galerkin methods [9, 23, 30, 64], stochastic collocation

methods [3, 46, 55], etc. Particularly for solving (1.1), [61] and [62] applied the stochastic Galerkin

method and the stochastic collocation method, respectively, while due to the curse of dimensionality

with respect to the number of samples [46, 51], only one-dimensional cases were considered. Then,
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a QMC approach for (1.1) under uniformly distributed V has been considered in our previous

work [63], where an almost linear convergence rate with dimension-independence is achieved. The

analysis and the QMC quadrature rule proposed therein rely on the boundedness of V and would

fail for a Gaussian random field. Thus, we continue in this work the development of QMC towards

the Schrödinger model but with a Gaussian random potential.

In view of the Karhunen-Loève expansion [23, 33, 41], the Gaussian random potential in (1.1)

admits the following parametric representation:

V (ω, x) = V (ξ(ω), x) = v0(x) + Vr(ξ(ω), x), where Vr(ξ(ω), x) =
∞∑
j=1

λjξj(ω)vj(x), (1.2)

with {vj(x)}∞j=1 the physical components, λ1 ≥ λ2 ≥ · · · > 0 the corresponding strengths,

{ξj(ω)}∞j=1 the independent and identically distributed (i.i.d.) standard Gaussian random vari-

ables and ξ(ω) = (ξ1(ω), ξ2(ω), . . .)
⊤ ∈ RN (see, e.g., [8, 25] for more details on the parametric

representation of a Gaussian random field in the form of Karhunen-Loève expansion). The law of ξ

is defined on the product probability space (RN,B(RN),µ∞), where B(RN) is the sigma-algebra gen-

erated by the cylinder sets, and µ∞ is the product Gaussian measure [6], i.e., µ∞ =
⊗∞

j=1N (0, 1).

Then, by the Doob-Dynkin lemma [32], the solution ψ of (1.1) can be represented by a function

parameterized by ξ. Hence, we can consider the initial value problem of (1.1) in the parametric

form asi∂tψ(t, ξ, x) = −1

2
∂2xψ(t, ξ, x) + V (ξ, x)ψ(t, ξ, x), x ∈ T, ξ ∈ U := RN, t > 0,

ψ(t = 0, ξ, x) = ψin(x), x ∈ T, ξ ∈ U,
(1.3)

where ψin represents a prescribed (deterministic) initial wave and T is the one-dimensional torus

(periodic boundary). The torus domain serves as a valid approximation of the whole space problem

when the initial localized wave is yet to reach the boundary and the one-space-dimensional setup

here is mainly for simplicity of illustration.

Our aim is still for a dimension-independent first-order QMC approximation of (1.3), since a

random potential from reality can be rough, so the series in (1.2) decays very slowly. To achieve

this goal, we choose to work under the framework of QMC with the randomly shifted lattice rule

[14, 34, 38, 39, 45, 48, 52, 60], which has been successfully developed for serval random PDEs. In

the case of bounded random variables, we find its application to elliptic equations [37], eigenvalue

problems [24], optimal control [27, 28], Helmholtz equations [21, 26] and Schrödinger equations [63].

For the case of unbounded random variables, the relevant literature is quite limited: [25] pioneered

the work for elliptic equations with Gaussian random coefficients. In fact, due to its unboundedness,

the Gaussian random variable in (1.3) poses much greater challenges to approximations and analysis

than the uniformly distributed random variable case considered in [63]. Although integration

against unbounded random variables can be mapped into an integral over a unit cube using the

inverse cumulative distribution function, the transformed integrand may not have square-integrable

mixed first derivatives. Therefore, the QMC theory of standard weighted Sobolev spaces [15, 36]

cannot be applied. Instead, it is crucial to find the proper decaying weight functions that can

counteract the growth of the mixed first derivatives of the integrand and meanwhile lead to the

desired convergence rate [38, 45]. In general, slower decay of weight functions (or equivalently

slower growth of mixed first derivatives) results in faster convergence of QMC.

To this end, we first adopt the time-splitting scheme which is one of the most popular classes

of methods [4, 31, 42] for time discretization of Schrödinger models. The resulting subflows are
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self-adjoint, which yields a polynomially-growing bound on the mixed first derivatives of the semi-

discrete solution with respect to ξ. Such bound leads to the favorable choice of weight functions.

Then, by means of a non-standard weighted Sobolev space associated with the chosen weight

functions, we derive the QMC quadrature rule that ends up as a class of QMC time-splitting

schemes. Rigorous error estimates established the desired dimension-independent and almost first-

order convergence rate of QMC with the optimal temporal error bound. The theoretical results are

validated by numerical experiments.

The rest of the paper is organized as follows. In Section 2, we present the QMC time splitting

(QMC-TS) scheme and the main result on its convergence. The derivation of the main result (i.e.,

the convergence analysis) is given in detail in Section 3. Finally, we show numerical results to verify

the convergence rates of our numerical method in Section 4.

Notation. We will usually omit the variables t, ξ, x in the functions for notational brevity when

there is no confusion caused. We denote by C a generic constant whose value may vary at each

occurrence but is always independent of the truncation dimension m, the time step size τ , and the

number of samples N . For any 1 ≤ q <∞ and any temporal-spatial function spaceW , we define the

space Lq
µ∞(U,W ) equipped with the norm ∥ · ∥Lq

µ∞ (U,W ) such that for any f(t, ξ, x) ∈ Lq
µ∞(U,W ),

f(·, ξ, ·) ∈W for almost surely (a.s.) ξ ∈ U and ∥f∥Lq
µ∞ (U,W ) :=

(∫
U (∥f(ξ)∥W )q dµ∞(ξ)

)1/q
<∞.

2. Numerical method and main result

We present the QMC-TS scheme to evaluate the expectation of physical observable, which is

typically in the form of G(|ψ(t)|2), where G is a linear functional and |ψ|2 is the so-called position

density (or probability density function).

2.1. Numerical method.

2.1.1. Dimension truncation. From the perspective of numerical computations, we will in practice

work with the following truncated Schrödinger equation:i∂tψm(t, ξm, x) = −1

2
∂2xψm(t, ξm, x) + Vm(ξm, x)ψm(t, ξm, x), x ∈ T, ξm ∈ Rm, t > 0,

ψm(t = 0, ξm, x) = ψin(x), x ∈ T, ξm ∈ Rm,
(2.1)

where

Vm(ξm, x) = v0(x) + Vr,m(ξm, x), with Vr,m(ξm, x) =
m∑
j=1

λjξj(ω)vj(x), (2.2)

and ξm = (ξ1, . . . , ξm)⊤ ∈ Rm. Note that any function of ξm ∈ Rm can also be seen as a function

of ξ ∈ U . The first step of QMC-TS is to approximate E[G(|ψ(t)|2)] by

E[G(|ψm(t)|2)] =
∫
U
G(|ψm(t, ξ)|2)dµ∞(ξ) =

∫
Rm

G(|ψm(t, ξm)|2)
m∏
j=1

ϕ(ξj)dξm, (2.3)

where ϕ(y) = exp(−y2/2)/
√
2π is the density function of the standard univariate Gaussian distri-

bution.



4 Z. WU, Z. ZHANG, AND X. ZHAO

2.1.2. Time discretization. For each fixed ξ ∈ U , (2.1) becomes a deterministic equation, and the

second step of QMC-TS lies in the time discretization for (2.1) using the time-splitting scheme. It

begins by splitting (2.1) into two subflows Ψp
ρ and Ψk

ρ as

Ψp
ρ : i∂tψm = Vmψm, t ∈ (0, ρ], (2.4a)

Ψk
ρ : i∂tψm = −1

2
∂2xψm, t ∈ (0, ρ]. (2.4b)

Note that the above two equations can be integrated exactly in time since Vm is real-valued. Let

τ > 0 be the time step size. In view of the Lie–Trotter product formula [58], we employ the

following first-order Lie–Trotter splitting method:

ψn+1
m = Ψk

τ ◦Ψp
τ (ψ

n
m) = eiτ∂

2
x/2e−iτVmψn

m, n = 0, 1, . . . , (2.5)

where ψn
m is the approximation of ψm(tn), with tn = nτ and ψ0

m = ψin. The second step of QMC-TS

is to approximate E[G(|ψm(tn)|2)] by

E[G(|ψn
m|2)] =

∫
Rm

G(|ψn
m(ξm)|2)

m∏
j=1

ϕ(ξj)dξm. (2.6)

Remark 2.1. Let ψn,∗
m = Ψp

τ (ψn−1
m ) = e−iτVmψn−1

m for n ≥ 1. Then, ψn
m = Ψk

τ (ψ
n,∗
m ) = eiτ∂

2
x/2ψn,∗

m ,

and ψn,∗
m = gn(τ), where gn satisfies gn(0) = ψn−1

m and

i∂tgn = Vmgn, t ∈ (0, τ ]. (2.7)

Remark 2.2. We can also use other high-order splitting schemes [57] of the general form

ψn+1
m =

M∏
j=1

eiαjτ∂
2
x/2e−iβjτVmψn

m, n = 0, 1, . . . , (2.8)

where αj , βj ∈ R. We devote the analysis to the Lie–Trotter splitting scheme (2.5) for simplicity

of presentation, and we will elaborate more on high-order splitting schemes in Section 3.5.

2.1.3. Quasi-Monte Carlo quadrature. Let Φ(y) =
∫ y
−∞ ϕ(ρ)dρ be the cumulative distribution func-

tion of the standard univariate Gaussian distribution and Φ−1 be its inverse. Moreover, we define

the vector inverse Gaussian cumulative distribution function Φ−1
m such that Φ−1

m (y) applies Φ−1 to

y ∈ Rm component-wise. Then, by change of variables ξm = Φ−1
m (y), we have

E[G(|ψn
m|2)] =

∫
(0,1)m

F (Φ−1
m (y))dy, (2.9)

where F (·) = G(|ψn
m(·)|2). The last step of QMC-TS is to approximate (2.9) by the QMC quadra-

ture

Qm,N (F ;∆) =
1

N

N∑
j=1

F
(
ξ(j)m

)
, (2.10)

where {ξ(j)m }Nj=1 are the quadrature points with N the number of samples. In particular, we adopt

the randomly shifted (rank-1) lattice rule [38, 45], which generates the quadrature points as

ξ(j)m = Φ−1
m

(
frac

(
jz

N
+∆

))
, j = 1, . . . , N, (2.11)

where ∆ ∈ [0, 1]m is a random shift uniformly distributed over [0, 1]m, frac(y) takes the fractional

part of y ∈ Rm component-wise, and z ∈ Nm is known as the generating vector. A specific
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Algorithm 1 Quasi-Monte Carlo time-splitting method

Input: truncation dimension m, time step size τ , number of samples N , number of random

shifts R.

1: Construct the generating vector z by the CBC algorithm.

2: Generate i.i.d. random shifts ∆1, . . . ,∆R from the uniform distribution on [0, 1]m. For each

k = 1, . . . , R, obtain the sample set {ξ(k,j)m = Φ−1
m

(
frac

(
jz
N +∆k

))
: j = 1, . . . , N}.

3: for k = 1:R do

4: for j = 1:N do

5: Solve the Schrödinger equation (2.1) via Lie–Trotter splitting (2.5) or other high-order

splitting schemes for each ξ
(k,j)
m and n ∈ N, and obtain ψn

m(ξ
(k,j)
m ).

6: end for

7: end for

8: The approximation of the expectation of the physical observable E[G(|ψ(tn, ξ, ·)|2)] is given by

Qm,N,R(G(|ψn
m|2)) = 1

R

R∑
k=1

Qm,N (G(|ψn
m|2);∆k) =

1

RN

R∑
k=1

N∑
j=1

G(|ψn
m(ξ(k,j)m )|2). (2.12)

Output: Qm,N,R(G(|ψn
m|2)).

generating vector z for the particular PDE problem can be constructed efficiently by the component-

by-component (CBC) algorithm [45]. We will elaborate more on the generating vector z in Section

3.4.

Combining the above three steps, the QMC-TS method is summarized in Algorithm 1.

2.2. Main result. Let s ≥ 1 be fixed. We make the following assumptions to guarantee the

convergence of the QMC-TS method.

Assumption 2.1. Assume that ψin, v0 ∈ Hs(T), vj ∈ Hs(T)
⋂
W 1,∞(T) for j ∈ N+, and the linear

functional G ∈ (H1(T))′, which is the dual space of H1(T).

Assumption 2.2. Let aj = λj∥vj∥Hs(T) and bj = λj∥vj∥W 1,∞(T) for j ∈ N+. Assume that

∞∑
j=1

aj <∞, and

∞∑
j=1

bpj <∞, for some p ∈ (0, 1].

Assumption 2.3. Assume that for some constants C, ε, χ > 0 independent of m

∥Vm − V ∥L2+ε
µ∞ (U,H1(T)) ≤ Cm−χ.

Remark 2.3. If vj ∈ Hs(T) with s > 3
2 , we immediately have vj ∈W 1,∞(T) by Sobolev embedding

[1, Chapter 4].

Now we are ready to present the main result of this paper.

Theorem 2.4. Let Assumptions 2.1–2.3 hold with s ≥ 3, and we additionally assume (3.31) if

Assumption 2.2 holds with p = 1. If the Lie–Trotter splitting (2.5) is used in the QMC-TS method,

then there exists a randomly shifted lattice rule (2.10) that can be constructed by the CBC algorithm

for any fixed T such that the numerical solution ψn
m given by the QMC-TS method for N ≤ 1030
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satisfies the following error estimate:√
E∆

[∣∣∣E[G(|ψ(tn)|2)]−Qm,N (G(|ψn
m|2);∆)

∣∣∣2] ≤ C(m−χ + τ +N−κ), (2.13)

for all tn = nτ ∈ [0, T ] and some constant C > 0 independent of m, τ,N , where E∆ denotes the

expectation with respect to the random shift ∆, and κ = 1/p − 1/2 for p ∈ (2/3, 1] and κ = 1 − δ

for p ∈ (0, 2/3] with δ > 0 arbitrarily small.

3. Convergence analysis

3.1. Preliminaries. We need some preliminary results for the proof of our main result. We will

frequently use the algebraic property of Hr(T) for r > 1/2 [1, Chapter 4], which reads that for any

f, g ∈ Hr(T)

∥fg∥Hr(T) ≤C∥f∥Hr(T)∥g∥Hr(T), (3.1)

where the constant C depends on r. Define the set Ua := {ξ ∈ RN :
∑∞

j=1 aj |ξj | < ∞}. Then, a

minor modification of [49, Lemma 2.28] gives the following lemma.

Lemma 3.1. Under Assumptions 2.1–2.2, we have Ua ∈ B(RN) and µ∞(Ua) = 1.

We also have the following lemma on the properties of the Gaussian random potentials.

Lemma 3.2. Let Assumptions 2.1–2.3 hold. Then, for any q ≥ 1 and m ∈ N+, we have Vm ∈
Lq
µ∞(U,Hs(T)), and ∥Vm∥Lq

µ∞ (U,Hs(T)) can be bounded uniformly in m. Moreover, for 1 ≤ q ≤ 2+ε,

we have lim
m→∞

∥Vm − V ∥Lq
µ∞ (U,H1(T)) = 0 and V ∈ Lq

µ∞(U,H1(T)).

Proof. Fix any m ∈ N+. It is easy to see that Vm(ξ, ·) ∈ Hs(T) for any ξ ∈ Ua, and hence

Vm(ξ, ·) ∈ Hs(T) a.s. in U by Lemma 3.1. Then, for any q ≥ 1, we have by Assumption 2.2

∥Vm∥Lq
µ∞ (U,Hs(T)) ≤ ∥v0∥Hs(T) +

(∫
R
ρqϕ(ρ)dρ

) 1
q

∞∑
j=1

aj := Cq <∞,

where Cq is independent of m. Hence, Vm ∈ Lq
µ∞(U,Hs(T)).

On the other hand, for any ξ ∈ Ua, we have Vm(ξ, ·) → V (ξ, ·) in H1(T) as m→ ∞, and hence

V (ξ, ·) ∈ H1(T). By Lemma 3.1, we have V (ξ, ·) ∈ H1(T) a.s. in U . Moreover, for any 1 ≤ q ≤ 2+ε,

Assumption 2.3 gives lim
m→∞

∥Vm − V ∥Lq
µ∞ (U,H1(T)) = 0, and hence V ∈ Lq

µ∞(U,H1(T)). □

In view of Lemmas 3.1–3.2, we can define the solution to (1.3) for a.s. ξ ∈ U by the Duhamel’s

formula, which reads

ψ(t, ξ, x) = eit∂
2
x/2ψin(x)− i

∫ t

0
ei(t−ρ)∂2

x/2V (ξ, x)ψ(ρ, ξ, x)dρ, t ≥ 0. (3.2)

We will also use the following results.

Lemma 3.3. Let Assumptions 2.1–2.3 hold. Then, we have exp(K∥V (ξ)∥H1(T)) ∈ Lq
µ∞(U) for

any K > 0 and q ≥ 1.
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Proof. Lemma 3.2 indicates that Vr(ξ, x) is an H1(T)-valued centered Gaussian random variable,

and H1(T) is a separable Hilbert space. Then, by Fernique’s theorem [11, 18] (see also [8, Theorem

2.2]), there exists a constant β > 0 such that
∫
U exp

(
β∥Vr(ξ)∥2H1(T)

)
dµ∞(ξ) <∞. Then, we have

by Young’s inequality that ∫
U
exp(qK∥V (ξ)∥H1(T))dµ∞(ξ) ≤ CK,q,

where CK,q = exp
(
qK∥v0∥H1(T) + q2K2/(4β)

) ∫
U exp

(
β∥Vr(ξ)∥2H1(T)

)
dµ∞(ξ) < ∞. Hence, for

any K > 0 and q ≥ 1, we have exp(K∥V (ξ)∥H1(T)) ∈ Lq
µ∞(U). □

Lemma 3.4. Let Assumptions 2.1–2.2 hold. Then, for any K > 0 and q ≥ 1, it holds that

exp(K∥Vm(ξ)∥Hs(T)) ∈ Lq
µ∞(U), and ∥ exp(K∥Vm(ξ)∥Hs(T))∥Lq

µ∞ (U) can be bounded uniformly in

m.

Proof. We have from the proof of [25, Theorem 16] that for any C ≥ 0∫
R
exp(C|ξ|)ϕ(ξ)dξ = 2 exp

(
C2

2

)
Φ(C), Φ(C) ≤ 1

2
exp

(
2C√
2π

)
. (3.3)

Then,∫
U
exp(qK∥Vm(ξ)∥Hs(T))dµ∞(ξ) ≤ exp(qK∥v0∥Hs(T))

m∏
j=1

∫
R
exp(qKaj |ξj |)ϕ(ξj)dξj

≤ exp

qK∥v0∥Hs(T) +
2qK√
2π

∞∑
j=1

aj +
q2K2

2

∞∑
j=1

a2j

 ,

where the upper bound on the right-hand side is finite due to Assumption 2.2 and is independent

of m. Hence, we have exp(K∥Vm(ξ)∥Hs(T)) ∈ Lq
µ∞(U). □

3.2. Dimension truncation error. We first need the regularity of the solution in the physical

domain.

Lemma 3.5. Let Assumptions 2.1–2.3 hold. Then, for any T > 0 and ξ ∈ Ua, we have

∥ψ(t, ξ)∥H1(T) ≤ ∥ψin∥H1(T) exp
(
CT∥V (ξ)∥H1(T)

)
, 0 ≤ t ≤ T, (3.4)

where C comes from the algebraic property of H1(T). Moreover, for any 1 ≤ q < ∞, we have

ψ ∈ Lq
µ∞(U,L∞((0, T ), H1(T))).

Proof. Fix any T > 0 and ξ ∈ Ua. By the algebraic property of H1(T) (see (3.1)) and the fact

that eit∂
2
x/2 is an isometry on H1(T) for all t ∈ R, we take the H1-norm on both sides of (3.2) and

obtain

∥ψ(t, ξ)∥H1(T) ≤ ∥ψin∥H1(T) + C∥V (ξ)∥H1(T)

∫ t

0
∥ψ(ρ, ξ)∥H1(T)dρ. (3.5)

Then, a bootstrap-type argument [56] will give the local well-posedness of (1.3) in H1(T) for

ξ (see also [63, Appendix A] for details of the bootstrap-type argument). Moreover, by Gron-

wall’s inequality, we can deduce (3.4) from (3.5). In addition, by Lemma 3.3, we have ψ ∈
Lq
µ∞(U,L∞((0, T ), H1(T))) for any 1 ≤ q <∞. □
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Lemma 3.6. Let Assumptions 2.1–2.2 hold. Then, for any T > 0 and ξ ∈ Ua, we have

∥ψm(t, ξ)∥Hs(T) ≤ ∥ψin∥Hs(T) exp
(
CT∥Vm(ξ)∥Hs(T)

)
, 0 ≤ t ≤ T, (3.6)

where C comes from the algebraic property of Hs(T). Moreover, for any 1 ≤ q < ∞, we have

ψm ∈ Lq
µ∞(U,L∞((0, T ), Hs(T))), and ∥ψm∥Lq

µ∞ (U,L∞((0,T ),Hs(T))) can be bounded uniformly in m.

Proof. The proof uses Lemma 3.4 and is similar to that of Lemma 3.5, so we omit it here. □

Now we give the dimension truncation error of the solution and the expectation of the physical

observable.

Lemma 3.7. Under Assumptions 2.1–2.3, we have for any T > 0

∥ψm − ψ∥L2
µ∞ (U,L∞((0,T ),H1(T))) ≤ Cm−χ, (3.7)

where C is independent of m.

Proof. Let δψ = ψm − ψ. Taking the difference between (1.3) and (2.1), we havei∂tδψ = −1

2
∂2xδψ + V δψ + (Vm − V )ψm, x ∈ T, ξ ∈ U, t > 0,

δψ(t = 0) = 0, x ∈ T.

For any ξ ∈ Ua, the Duhamel formula gives

δψ(t, ξ) = −i

∫ t

0
ei(t−ρ)∂2

x/2 (V (ξ)δψ(ρ, ξ) + (Vm(ξ)− V (ξ))ψm(ρ, ξ)) dρ, 0 ≤ t ≤ T,

which by the algebraic property of H1(T) gives

∥δψ(t, ξ)∥H1(T) ≤C∥V (ξ)∥H1(T)

∫ t

0
∥δψ(ρ, ξ)∥H1(T)dρ

+ Ct∥ψm(ξ)∥L∞((0,T ),H1(T))∥Vm(ξ)− V (ξ)∥H1(T), 0 ≤ t ≤ T.

By Gronwall’s inequality, we have for any 0 ≤ t ≤ T and ξ ∈ Ua

∥δψ(t, ξ)∥H1(T) ≤ CT∥ψm(ξ)∥L∞((0,T ),H1(T))∥Vm(ξ)− V (ξ)∥H1(T) exp
(
CT∥V (ξ)∥H1(T)

)
. (3.8)

Then, (3.8) gives (3.7) by Lemmas 3.3 and 3.6, Assumption 2.3 and Hölder’s inequality. □

Lemma 3.8. Under Assumptions 2.1–2.3, we have for any T > 0

|E[G(|ψ(t)|2)]− E[G(|ψm(t)|2)]| ≤ Cm−χ, 0 ≤ t ≤ T, (3.9)

where C is independent of m.

Proof. We have ∥|ψ(t)|2 − |ψm(t)|2∥H1(T) ≤ C∥ψ(t) + ψm(t)∥H1(T)∥ψ(t)− ψm(t)∥H1(T) by the alge-

braic property of H1(T). Then,

|E[G(|ψ(t)|2)]− E[G(|ψm(t)|2)]| ≤E[|G(|ψ(t)|2 − |ψm(t)|2)|]

≤∥G∥H1(T)′E[∥|ψ(t)|2 − |ψm(t)|2∥H1(T)]

≤C∥G∥H1(T)′E[∥ψ(t) + ψm(t)∥H1(T)∥ψ(t)− ψm(t)∥H1(T)]

≤C∥G∥H1(T)′
(
∥ψ(t)∥L2

µ∞ (U,H1(T)) + ∥ψm(t)∥L2
µ∞ (U,H1(T))

)
× ∥ψ(t)− ψm(t)∥L2

µ∞ (U,H1(T)),

where we have used the Cauchy-Schwarz inequality in the last inequality. The above equation gives

(3.9) by Lemmas 3.5–3.7. □
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3.3. Temporal error. We first give two lemmas on the regularity of ∂tψm and the semi-discrete

solution ψn
m in the physical domain, respectively.

Lemma 3.9. Let Assumptions 2.1–2.2 hold with s ≥ 3. Then, for any T > 0 and ξ ∈ Ua,

∥∂tψm(t, ξ)∥Hs−2(T) ≤ (∥ψin∥Hs(T) + Cψin∥Hs−2(T)∥Vm(ξ)∥Hs−2(T)∥) exp
(
CT∥Vm(ξ)∥Hs−2(T)

)
(3.10)

where 0 ≤ t ≤ T and C comes from the algebraic property of Hs−2(T). Moreover, for any 1 ≤
q < ∞, we have ∂tψm ∈ Lq

µ∞(U,L∞((0, T ), Hs−2(T))) and ∥∂tψm∥Lq
µ∞ (U,L∞((0,T ),Hs−2(T))) can be

bounded uniformly in m.

Proof. Fix any T > 0 and ξ ∈ Ua. We take the partial derivative of both sides of (2.1) with respect

to t and obtain

i∂t∂tψm = −1

2
∂2x∂tψm + Vm∂tψm,

and hence the Duhamel’s formula gives

∂tψm(t, ξ, x) = eit∂
2
x/2∂tψm(0, ξ, x)− i

∫ t

0
ei(t−ρ)∂2

x/2Vm(ξ, x)∂tψm(ρ, ξ, x)dρ, 0 ≤ t ≤ T.

We take the Hs−2-norm on both sides of the above equation, and similar arguments to those in the

proof of Lemma 3.5 give

∥∂tψm(t, ξ)∥Hs−2(T) ≤ ∥∂tψm(0, ξ)∥Hs−2(T) exp
(
CT∥Vm(ξ)∥Hs−2(T)

)
, 0 ≤ t ≤ T, (3.11)

where C comes from the algebraic property of Hs−2(T). Note that

∂tψm(0, ξ, x) =
1

2
i∂2xψin(x)− iVm(ξ, x)ψin(x). (3.12)

We can obtain (3.10) by combining (3.11)–(3.12). Moreover, for any 1 ≤ q < ∞, we have ∂tψm ∈
Lq
µ∞(U,L∞((0, T ), Hs−2(T))) and ∥∂tψm∥Lq

µ∞ (U,L∞((0,T ),Hs−2(T))) can be bounded uniformly in m,

by Lemmas 3.2 and 3.4 and Hölder’s inequality. □

Lemma 3.10. Let Assumptions 2.1–2.2 hold. Then, for any 0 < τ ≤ T and ξ ∈ Ua,

∥ψn
m(ξ)∥Hs(T) ≤ ∥ψin∥Hs(T) exp(CT∥Vm(ξ)∥Hs(T)), 0 ≤ n ≤ ⌊T/τ⌋, (3.13)

where C comes from the algebraic property of Hs(T). Moreover, for any 1 ≤ q < ∞ and 0 ≤ n ≤
⌊T/τ⌋, we have ψn

m ∈ Lq
µ∞(U,Hs(T)) and ∥ψn

m∥Lq
µ∞ (U,Hs(T)) can be bounded uniformly in m and n.

Proof. Fix T > 0 and ξ ∈ Ua. Recall ψ
n,∗
m defined in Remark 2.1. Since eiτ∂

2
x/2 is a linear isometry

on Hs(T), we have ∥ψn
m∥Hs(T) = ∥ψn,∗

m ∥Hs(T). Furthermore, we consider gn introduced in Remark

2.1. Taking the Hs(T)-norm on both sides of (2.7), we have by the algebraic property of Hs(T)
and the Gronwall’s inequaliy that ∥g(τ)∥Hs(T) ≤ ∥g(0)∥Hs(T) exp(Cτ∥Vm∥Hs(T)), i.e.,

∥ψn
m(ξ)∥Hs(T) = ∥ψn,∗

m (ξ)∥Hs(T) ≤ ∥ψn−1
m (ξ)∥Hs(T) exp(Cτ∥Vm(ξ)∥Hs(T)), (3.14)

where C comes from the algebraic property of Hs(T). We have (3.13) by iterating (3.14) from

n to 1. Moreover, for any 1 ≤ q < ∞ and 0 ≤ n ≤ ⌊T/τ⌋, we have ψn
m ∈ Lq

µ∞(U,Hs(T)) and

∥ψn
m∥Lq

µ∞ (U,Hs(T)) can be bounded independently of m and n, by Lemma 3.4. □

Now we can give the temporal error of the solution and the expectation of the physical observ-

able.
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Lemma 3.11. Let Assumptions 2.1–2.2 hold with s ≥ 3. Then, for any 0 < τ ≤ T ,

∥ψm(tn)− ψn
m∥L2

µ∞ (U,Hs−2(T)) ≤ Cτ, 0 ≤ tn = nτ ≤ T, (3.15)

where C is independent of m and τ .

Proof. The proof largely follows the analysis in [54, Section 3] for the Lie–Trotter splitting. For

any f, g ∈ Hs−2(T), we have

∥Ψk
τ ◦Ψp

τ (f)−Ψk
τ ◦Ψp

τ (g)∥Hs−2(T) = ∥Ψp
τ (f)−Ψp

τ (g)∥Hs−2(T),

since eiτ∂
2
x/2 is an isometry on Hs−2(T). Let f̃(t) = Ψp

t (f) and g̃(t) = Ψp
t (g). Then, by the

Duhamel’s formula and the algebraic property of Hs−2(T), we have for 0 ≤ t ≤ τ

∥f̃(t)− g̃(t)∥Hs−2(T) ≤∥f − g∥Hs−2(T) + C

∫ t

0
∥V ∥Hs−2(T)∥f̃(ρ)− g̃(ρ)∥Hs−2(T)dρ.

By Gronwall’s inequality, we have

∥Ψk
τ ◦Ψp

τ (f)−Ψk
τ ◦Ψp

τ (g)∥Hs−2(T) = ∥f̃(τ)− g̃(τ)∥Hs−2(T) ≤ e
Cτ∥V ∥Hs−2(T)∥f − g∥Hs−2(T).

On the other hand, by Taylor expansion, we have

Ψk
τ ◦Ψp

τ (ψm(tn−1)) =eiτ∂
2
x/2e−iτVmψm(tn−1)

=eiτ∂
2
x/2

(
1− iτVm − τ2V 2

m

∫ 1

0
(1− θ)e−iθτVmdθ

)
ψm(tn−1).

Moreover, the Duhamel’s formular gives

ψm(tn) =eiτ∂
2
x/2ψm(tn−1)− i

∫ τ

0
ei(τ−ρ)∂2

x/2Vmψm(tn−1 + ρ)dρ

=eiτ∂
2
x/2ψm(tn−1)− iτeiτ∂

2
x/2Vmψm(tn−1)

− eiτ∂
2
x/2

∫ τ

0

∫ 1

0
e−iθρ∂2

x/2dθ(ρ∂2x/2)[Vmψm(tn−1 + ρ)]dρ

− ieiτ∂
2
x/2

∫ τ

0
Vm(ψm(tn−1 + ρ)− ψm(tn−1))dρ.

Then, the local error reads

∥ψm(tn, ξ)−Ψk
τ ◦Ψp

τ (ψm(tn−1, ξ), ξ)∥Hs−2(T)

≤ Cτ2∥Vm(ξ)∥2Hs−2(T)∥ψm(tn−1, ξ)∥Hs−2(T) sup
0≤θ≤1

∥e−iθτVm(ξ)∥Hs−2(T)

+ Cτ2 sup
0≤ρ≤τ

∥ψm(tn−1 + ρ, ξ)∥Hs(T)∥Vm(ξ)∥Hs(T)

+ C∥Vm(ξ)∥Hs−2(T)

∫ τ

0
∥ψm(tn−1 + ρ, ξ)− ψm(tn−1, ξ)∥Hs−2(T)dρ.
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The Faà di Bruno’s formula (see, e.g., [29]) gives

sup
0≤θ≤1

∥e−iθτVm(ξ)∥Hs−2(T)

≤ sup
0≤θ≤1

C(1 +
s−2∑
j=1

∥∂jxe−iθτVm(ξ)∥L2(T))

≤ sup
0≤θ≤1

C

1 +
s−2∑
j=1

j∑
k=1

∥Bj,k(−iθτ∂xVm(ξ),−iθτ∂2xVm(ξ), . . . ,−iθτ∂j−k+1
x Vm(ξ))∥L2(T)


:= K1(ξ),

where {Bj,k}jk=1, j = 1, . . . , s−2, are the Bell polynomials [5], and by Lemma 3.2 K1(ξ) ∈ Lq
µ∞(U)

and ∥K1∥Lq
µ∞ (U) can be bounded uniformly in m and τ for any 1 ≤ q < ∞. Some additional

calculations give∫ τ

0
∥ψm(tn−1 + ρ)− ψm(tn−1)∥Hs−2(T) =

∫ τ

0

∥∥∥∥∫ ρ

0
∂tψm(tn−1 + y)dy

∥∥∥∥
Hs−2(T)

dρ

≤τ2 sup
0≤ρ≤τ

∥∂tψm(tn−1 + ρ)∥Hs−2(T).

Therefore, we have

∥ψm(tn, ξ)−Ψk
τ ◦Ψp

τ (ψm(tn−1, ξ), ξ)∥Hs−2(T) ≤ K2(ξ)τ
2,

where

K2(ξ) =Cτ
2
(
K1(ξ)∥Vm(ξ)∥2Hs−2(T)∥ψm(ξ)∥L∞((0,T ),Hs−2(T))

+ ∥Vm(ξ)∥Hs(T)∥ψm(ξ)∥L∞((0,T ),Hs(T))

+ ∥Vm(ξ)∥Hs−2(T)∥∂tψm(ξ)∥L∞((0,T ),Hs−2(T))

)
.

By Lemmas 3.2, 3.6 and 3.9 and Hölder’s inequality, K2(ξ) ∈ Lq
µ∞(U) and ∥K2∥Lq

µ∞ (U) can be

bounded uniformly in m and τ for any 1 ≤ q <∞.

Finally, we have

∥ψm(tn, ξ)− ψn
m(ξ)∥Hs−2(T)

≤ ∥ψm(tn, ξ)−Ψk
τ ◦Ψp

τ (ψm(tn−1, ξ), ξ)∥Hs−2(T)

+ ∥Ψk
τ ◦Ψp

τ (ψm(tn−1, ξ), ξ)−Ψk
τ ◦Ψp

τ (ψ
n−1
m (ξ), ξ)∥Hs−2(T)

≤ e
Cτ∥Vm(ξ)∥Hs−2(T)∥ψm(tn−1, ξ)− ψn−1

m (ξ)∥Hs−2(T) +K2(ξ)τ
2

≤ e
CT∥Vm(ξ)∥Hs−2(T)∥ψm(0, ξ)− ψ0

m(ξ)∥Hs−2(T) +K2(ξ)τ
2
n−1∑
j=0

e
Cjτ∥Vm(ξ)∥Hs−2(T)

≤ T e
CT∥Vm(ξ)∥Hs−2(T)K2(ξ)τ,

and we can obtain (3.15) by Lemma 3.4 and Hölder’s inequality. □

Lemma 3.12. Let Assumptions 2.1–2.2 hold with s ≥ 3. Then, for any 0 < τ ≤ T ,

|E[G(|ψm(tn)|2)]− E[G(|ψn
m|2)]| ≤ Cτ, 0 ≤ tn = nτ ≤ T, (3.16)

where C is independent of m and τ .
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Proof. The proof uses Lemmas 3.6, 3.10 and 3.11, and is similar to that of Lemma 3.8. Hence, we

omit it here. □

3.4. QMC quadrature error. The analysis of the QMC quadrature error is closely related to the

mixed first derivatives of ψn
m with respect to ξm, whose growth as |ξm| → ∞ has a direct impact

on the convergence rate of QMC. Let ν = (ν1, ν2, . . . , νm) ∈ J := {0, 1}m with |ν| =
∑m

j=1 νj ,

Iν = {j : νj = 1}, and I†
ν = {1, 2, . . . ,m} \ Iν . The following notation is adopted to denote the

mixed first derivative:

∂νψn
m = ∂ν1ξ1 . . . ∂

νm
ξm
ψn
m, ν ∈ J .

Before proceeding further, we give bounds on the L2(T)-norms of gn and ∂xgn introduced in

Remark 2.1.

Lemma 3.13. Under Assumptions 2.1–2.2, we have for any 0 < τ ≤ T and ξ ∈ Ua

∥gn(ρ, ξ)∥L2(T) =∥ψin∥L2(T), (3.17)

∥∂xgn(ρ, ξ)∥L2(T) ≤∥∂xψin∥L2(T) + T∥∂xVm(ξ)∥L∞(T)∥ψin∥L2(T), (3.18)

where 0 ≤ ρ ≤ τ and 1 ≤ n ≤ ⌊T/τ⌋.

Proof. Fix 0 ≤ ρ ≤ τ ≤ T, 1 ≤ n ≤ ⌊T/τ⌋ and ξ ∈ Ua. First, we have gn(ρ) = e−iρVmψn−1
m =

e−iρVmeiτ∂
2
x/2gn−1(τ), and thus

∥gn(ρ)∥L2(T) = ∥gn−1(τ)∥L2(T) = · · · = ∥g1(τ)∥L2(T) = ∥ψin∥L2(T).

On the other hand, taking the partial derivative of (2.7) with respect to x, we have

i∂t∂xgn = Vm∂xgn + ∂xVmgn.

Multiplying the above equation by ∂xgn, integrating it with respect to x over T, and taking the

imaginary part of it, we obtain

1

2

d

dt
∥∂xgn∥2L2(T) = Im

(∫
T
∂xgn∂xVmgn

)
.

The Cauchy-Schwarz inequality gives

∥∂xgn∥L2(T)
d

dt
∥∂xgn∥L2(T) ≤ ∥∂xgn∥L2(T)∥∂xVm∥L∞(T)∥gn∥L2(T).

Dropping the term of ∥∂xgn∥L2(T) in the above equation, integrating it with respect to t over (0, ρ)

and using (3.17), we have

∥∂xgn(ρ)∥L2(T) ≤ ∥∂xgn(0)∥L2(T) + ρ∥∂xVm∥L∞(T)∥ψin∥L2(T). (3.19)

Note that ∥∂xeiτ∂
2
x/2f∥L2(T) = ∥∂xf∥L2(T) for any f ∈ H1(T). Then, we deduce from (3.19)

∥∂xgn(ρ)∥L2(T) ≤ ∥∂xgn−1(τ)∥L2(T) + τ∥∂xVm∥L∞(T)∥ψin∥L2(T). (3.20)

Finally, we obtain (3.18) by iterating (3.20) from n to 2 and using (3.19) for g1. □

Let CT = max{1, T} and Υm(ξ) = max{1, ∥Vm(ξ)∥W 1,∞(T)}. Now we give bounds on ∂νψn
m

and ∂νG(|ψn
m|2).

Lemma 3.14. Under Assumptions 2.1–2.2, we have for any 0 < τ ≤ T and ξ ∈ Ua

∥∂νψn
m(ξ)∥H1(T) ≤ |ν|!4|ν|+1C

|ν|+1
T ∥ψin∥H1(T)Υm(ξ)

∏
j∈Iν

bj , 1 ≤ n ≤ ⌊T/τ⌋. (3.21)
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Proof. Fix T > 0 and ξ ∈ Ua. We shall prove that for any 0 ≤ n ≤ ⌊T/τ⌋ and 0 ≤ ρ ≤ τ

∥∂νgn(ρ, ξ)∥L2(T) ≤ |ν|!C |ν|
T ∥ψin∥L2(T)

∏
j∈Iν

bj , (3.22)

∥∂x∂νgn(ρ, ξ)∥L2(T) ≤ |ν|!4|ν|C |ν|+1
T ∥ψin∥H1(T)Υm(ξ)

∏
j∈Iν

bj , (3.23)

and then (3.21) follows from the above two equations and the relations that ∥∂νψn
m∥L2(T) =

∥∂νgn(τ)∥L2(T) and ∥∂x∂νψn
m∥L2(T) = ∥∂x∂νgn(τ)∥L2(T) for any |ν| ≥ 1, which are due to the

fact that ∂νψn
m = eiτ∂

2
x/2∂νgn(τ). Now we prove (3.22) and (3.23) by induction on |ν|.

For |ν| = 1, we differentiate (2.7) with respect to ξj and obtain

i∂t∂jgn = Vm∂jgn + ∂jVmgn.

where we denote ∂j = ∂ξj for short. Similar arguments to the proof of (3.18) in Lemma 3.13 give

∥∂jgn(ρ)∥L2(T) ≤∥∂jgn(0)∥L2(T) +

∫ ρ

0
∥∂jVm∥L∞(T)∥gn(y)∥L2(T)dy

≤∥∂jgn−1(τ)∥L2(T) + τλj∥vj∥L∞(T)∥ψin∥L2(T),

where we have used (3.17) and the fact that gn(0) = ψn−1
m = eiτ∂

2
x/2gn−1(τ) in the second inequality.

We obtain (3.22) for |ν| = 1 by iterating the above equation from n to 2 and the fact that ∂jg1(0) =

∂jψin = 0. Then, differentiating (2.7) with respect to ξj and x, we have

i∂t∂x∂jgn = Vm∂x∂jgn + ∂xVm∂jgn + ∂jVm∂xgn + ∂x∂jVmgn.

Following a similar procedure, we obtain

∥∂x∂jgn(τ)∥L2(T) ≤∥∂x∂jgn(0)∥L2(T) +

∫ τ

0

(
∥∂xVm∥L∞(T)∥∂jgn(y)∥L2(T)

+ ∥∂jVm∥L∞(T)∥∂xgn(y)∥L2(T) + ∥∂x∂jVm∥L∞(T)∥gn(y)∥L2(T)

)
dy

≤∥∂x∂jgn−1(τ)∥L2(T) + CT τbj∥∂xVm∥L∞(T)∥ψin∥L2(T)

+ τλj∥vj∥L∞(T)∥∂xψin∥L2(T) + Tτλj∥vj∥L∞(T)∥∂xVm∥L∞(T)∥ψin∥L2(T)

+ τλj∥∂xvj∥L∞(T)∥ψin∥L2(T)

≤∥∂x∂jgn−1(τ)∥L2(T) + 4τCT ∥ψin∥H1(T)Υmbj ,

where we have used Lemma 3.13, (3.22) for |ν| = 1 and the fact that gn(0) = ψn−1
m = eiτ∂

2
x/2gn−1(τ)

in the second inequality. We obtain (3.23) for |ν| = 1 by iterating the above equation from n to 2

and the fact that ∂x∂jg1(0) = ∂x∂jψin = 0.

For |ν| ≥ 2, the Leibniz rule gives

i∂t∂
νgn =

∑
µ⪯ν

(
ν

µ

)
∂ν−µVm∂

µgn = Vm∂
νgn +

∑
|ν−µ|=1,µ≺ν

∂ν−µVm∂
µgn,

i∂t∂x∂
νgn =

∑
µ⪯ν

(
ν

µ

)
(∂ν−µVm∂x∂

µgn + ∂x∂
ν−µVm∂

µgn)

=Vm∂x∂
νgn + ∂xVm∂

νgn +
∑

|ν−µ|=1,µ≺ν

(∂ν−µVm∂x∂
µgn + ∂x∂

ν−µVm∂
µgn),
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where
(
ν
µ

)
=
∏m

j=1

(
νj
µj

)
, and the second equalities in the above two equation are both due to the

fact that ∂νVm = 0 for |ν| ≥ 2. We can then deduce in the aforementioned way that

∥∂νgn(ρ)∥L2(T) ≤∥∂νgn−1(τ)∥L2(T) +

∫ τ

0

( ∑
|ν−µ|=1,µ≺ν

∥∂ν−µVm∥L∞(T)∥∂µgn(y)∥L2(T)

)
dy,

(3.24)

∥∂x∂νgn(ρ)∥L2(T) ≤∥∂x∂νgn−1(τ)∥L2(T) +

∫ τ

0

(
∥∂xVm∥L∞(T)∥∂νgn(y)∥L2(T)

+
∑

|ν−µ|=1,µ≺ν

(
∥∂ν−µVm∥L∞(T)∥∂x∂µgn(y)∥L2(T)

+ ∥∂x∂ν−µVm∥L∞(T)∥∂µgn(y)∥L2(T)
))

dy. (3.25)

Note that we have |µ| = |ν| − 1 for |ν − µ| = 1 and #{µ : |ν − µ| = 1} = |ν|. Then, inserting the

assumption (3.22) for ∂µgn with |µ| = |ν| − 1 into (3.24), we can obtain (3.22) for |ν| by iterating

(3.24) from n to 2. Finally, inserting (3.22) for ∂νgn, ∂
µgn and the assumption (3.23) for ∂x∂

µgm
with |µ| = |ν| − 1 into (3.25), we can obtain

∥∂x∂νgn(ρ)∥L2(T) ≤∥∂x∂νgn−1(τ)∥L2(T) + τ |ν|!C |ν|
T ∥ψin∥L2(T)∥∂xVm∥L∞(T)

∏
j∈Iν

bj

+ τ
∑

|ν−µ|=1,µ≺ν

(
(|ν| − 1)!4|ν|−1C

|ν|
T ∥ψin∥H1(T)Υm(ξ)

∏
j∈Iν

bj

+ (|ν| − 1)!C
|ν|−1
T ∥ψin∥L2(T)

∏
j∈Iν

bj

)
≤∥∂x∂νgn−1(τ)∥L2(T) + τ |ν|!4|ν|C |ν|

T ∥ψin∥H1(T)Υm(ξ)
∏
j∈Iν

bj .

We obtain (3.23) for |ν| by iterating the above equation from n to 2. □

Lemma 3.15. Under Assumptions 2.1–2.2, we have for any T > 0 and ξ ∈ Ua

|∂νG
(
|ψn

m(ξ)|2
)
| ≤ C(|ν|+ 1)!4|ν|+2C

|ν|+2
T ∥G∥H1(T)′∥ψin∥2H1(T)(Υm(ξ))2

∏
j∈Iν

bj , (3.26)

where 1 ≤ n ≤ ⌊T/τ⌋ and the constant C comes from the algebraic property of H1(T).

Proof. Fix T > 0 and ξ ∈ Ua. For 1 ≤ n ≤ ⌊T/τ⌋, we have

|∂νG
(
|ψn

m|2
)
| = |G

(
∂ν |ψn

m|2
)
| ≤ ∥G∥H1(T)′∥∂ν |ψn

m|2∥H1(T).

By the algebraic property of H1(T), we find

|∂νG
(
|ψn

m(ξ)|2
)
| ≤∥G∥H1(T)′

∑
µ⪯ν

C
∥∥∂ν−µψn

m

∥∥
H1(T) ∥∂

µψn
m∥H1(T).

We obtain (3.26) from the above equation by Lemma 3.14. □

Lemma 3.15 shows that |∂νG
(
|ψn

m(ξ)|2
)
| grows at most quadratically in |ξm|. For the analysis

of QMC quadrature error, we work with the non-standard weighted unanchored Sobolev space
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Wm,γ,w := {F (ξ) : Rm → R | ∥F∥Wm,γ,w <∞} [45] with the norm

∥F∥Wm,γ,w :=

∑
ν∈J

γ−1
ν

∫
R|ν|

∫
Rm−|ν|

∂νF (ξ)
∏
j∈I†

ν

ϕ(ξj)dξ
†
ν

2 ∏
j∈Iν

wj(ξj)
2dξν

1/2

, (3.27)

where by the notation, ξ is split into the active part ξν for differentiation and the inactive part ξ†ν ,

i.e., ξν consists of ξj with j ∈ Iν and ξ†ν consists of ξk with k ∈ I†
ν . The notation γν denotes the

product and order-dependent (POD) weight parameter, i.e., γν = Γ|ν|
∏

j∈Iν γj with γ(0,...,0) = 1

for some sequences Γ0 = Γ1 = 1,Γ2, . . . and γ1 ≥ γ2 ≥ . . . > 0, which will be chosen in Lemma

3.17, and γ := {γν | ν ∈ J }. The function wj in (3.27) is a positive continuous decaying weight

function that serves to counteract the growth of |∂νG(|ψn
m(ξ)|2|)|, and w := {wj : j = 1, . . . ,m}.

The quadratic growth of the bound in (3.26) allows us to choose the favorable weight functions in

the form of

wj(ξ) = exp (−θj |ξ|) , (3.28)

which can lead to a dimension-independent and almost linear convergence rate of QMC [38, 45]; see

Lemmas 3.16–3.17. Here, we assume that max{bj , θmin} < θj < θmax for j ∈ N+ and some constants

0 < θmin < θmax <∞, and we will specify θj in Lemma 3.17. We also let D = infj∈N(θj − bj).

Recall the randomly shifted QMC lattice rule (2.10) with the generating vector z and the

random shift ∆, and we have from [25, 45] that for a general F ∈ Wm,γ,w√
E∆

[∣∣∣E[F ]−Qm,N (F ;∆)
∣∣∣2] ≤ eshm,N (z)∥F∥Wm,γ,w ,

where eshm,N (z) is referred to as the shift averaged worst case error. Note that ∥F∥Wm,γ,w does not

depend on z, and thus we can construct z by making eshm,N (z) as small as possible. Moreover, we

know from [45] that eshm,N (z) depends on the weight functions w and the POD weight parameters

γ, and that once w and γ are chosen a generating vector z can be constructed by the CBC

algorithm. That is, we set z1 = 1 and then determine zj for j = 2, . . . ,m sequentially by minimizing

eshj,N (z1, . . . , zj−1, zj) over zj ∈ {z ∈ N : 1 ≤ z ≤ N − 1, gcd(z,N) = 1}. We refer to [45] for the

explicit expression of eshm,N (z) and more details on the CBC algorithm. More importantly, it is

proved in [45] that we can obtain almost linear convergence in N for eshm,N (z) with the standard

multivariate Gaussian distribution and our choice of weight functions in (3.28). We present a

relevant result from [25, Theorem 15] in Lemma 3.16. Based on it, we prove the dimension-

independent and almost linear convergence rate in N of the QMC-TS scheme in Lemma 3.17.

Lemma 3.16 ([25, Theorem 15]). Let m,N ∈ N+, the weight parameters γ be fixed, the weight

functions w be given in the form of (3.28), and F ∈ Wm,γ,w. Then, there exists a randomly shifted

lattice rule (2.10) that can be constructed by the CBC algorithm such that

√
E∆ [|E[F ]−Qm,N (F ;∆)|2] ≤

 ∑
ν∈J\{(0,...,0)}

γλν
∏
j∈Iν

ϱj(λ)

 1
2λ

φtot(N)−
1
2λ ∥F∥Wm,γ,w , (3.29)

for any λ ∈ (12 , 1], with

ϱj(λ) = 2

( √
2π exp(θ2j/η∗)

π2−2η∗(1− η∗)η∗

)λ

ζ

(
λ+

1

2

)
, η∗ =

2λ− 1

4λ
(3.30)
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where ζ is the Riemann zeta function and φtot is the Euler totient function with the property that

1/φtot(N) ≤ 9/N for N ≤ 1030.

Lemma 3.17. Let Assumptions 2.1–2.2 hold. If Assumption 2.2 holds with p = 1, we additionally

assume that
∞∑
j=1

bj <
D1/2

4CTϱmax(1)1/2
, (3.31)

where ϱmax(λ) is defined by replacing θj in (3.30) by θmax. Choose the weight parameters

γν =

C|ν|
∏
j∈Iν

b2j
(θj − bj)ϱj(λ∗)

1/(1+λ∗)

, (3.32)

where C|ν| = ((|ν|+ 1)!)2(4CT )
2|ν|,

λ∗ =


1

2− 2δ
, when 0 < p ≤ 2

3
,

p

2− p
, when

2

3
< p ≤ 1,

(3.33)

with arbitrary δ ∈ (0, 1/2], and θj is the parameter in weight function wj(ξj) in (3.28) with

θj =
1

2

(
bj +

√
b2j + 1− 1

2λ∗

)
, j ∈ N+. (3.34)

Then, there exists a randomly shifted lattice rule (2.10) that can be constructed by the CBC algorithm

such that for N ≤ 1030

√
E∆ [|E[G(|ψn

m|2)]−Qm,N (G(|ψn
m|2);∆)|2] ≤


CN−(1−δ), when 0 < p ≤ 2

3
,

CN−(1/p−1/2), when
2

3
< p ≤ 1,

(3.35)

where C is independent of m, τ,N , but depends on p and, when relevant, δ.

Proof. With the elementary inequality max{1, ρ2} ≤ exp(ρ) for ρ ≥ 0, we can deduce from Lemma

3.15 that

|∂νG
(
|ψn

m(ξ)|2
)
| ≤ C̃(|ν|+ 1)!(4CT )

|ν| exp

 m∑
j=1

bj |ξj |

 ∏
j∈Iν

bj , 1 ≤ n ≤ ⌊T/τ⌋, ξ ∈ Ua,

where C̃ = 16CC2
T ∥G∥H1(T)′∥ψin∥2H1(T) exp(∥v0∥W 1,∞(T)), with C from the algebraic property of

H1(T). In addition, from the proof of [25, Theorem 16], we have (3.3), 2 exp(b2j/2)Φ(bj) ≥ 1, and∫
R exp(2bj |ξj |)w2

j (ξj)dξj = 1/(θj−bj). Then, we obtain by the definition (3.27) of the Wm,γ,w-norm

that

∥G
(
|ψn

m|2
)
∥2Wm,γ,w

≤C̃2
m∏
j=1

(2 exp(b2j/2)Φ(bj))

∑
ν∈J

γ−1
ν C|ν|

∏
j∈Iν

b2j
2 exp(b2j/2)Φ(bj)(θj − bj)


≤(C̆)2

∑
ν∈J

γ−1
ν C|ν|

∏
j∈Iν

b2j
θj − bj

, (3.36)

where C|ν| = ((|ν|+ 1)!)2(4CT )
2|ν| and C̆ = C̃ exp

(
1
4

∑∞
j=1 b

2
j +

1√
2π

∑∞
j=1 bj

)
.
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The rest of the proof is similar to that of [25, Theorem 20 and Corollary 21], and we only

provide the main idea here. In view of Lemma 3.16 and (3.36), to derive a dimension-independent

bound on the QMC quadrature error, we need to bound the quantity

Cγ,m :=

 ∑
ν∈J\{(0,...,0)}

γλν
∏
j∈Iν

ϱj(λ)

1/λ∑
ν∈J

γ−1
ν C|ν|

∏
j∈Iν

b2j
θj − bj


independently of m. To this end, we first choose

γν =

C|ν|
∏
j∈Iν

b2j
(θj − bj)ϱj(λ)

1/(1+λ)

,

which minimizes Cγ,m for fixed θj and λ by [37, Lemma 6.2 and Theorem 6.4]. Then, we further

find that λ ∈ (1/2, 1] needs to be bounded from below, depending on the value of p in Assumption

2.2. For λ ∈ (1/2, 1), we need λ ≥ p/(2−p). We want λ to be as small as possible in view of (3.29).

So we can choose λ = λ∗ = 1/(2−2δ) for some δ ∈ (0, 1/2) when p ∈ (0, 2/3] and λ = λ∗ = p/(2−p)
when p ∈ (2/3, 1). When p = 1, we need to additionally assume (3.31), and then we can choose

λ = λ∗ = 1. Finally, the choice of {θj}∞j=1 in (3.34) minimizes Cγ,m given the above choices of γν
and λ. These choices of γν , λ and {θj}∞j=1 give the error estimate (3.35) by Lemma 3.16. □

Now we are ready to prove the main result presented in Section 2.2.

Proof of Theorem 2.4. By the triangle inequality, we have√
E∆

[∣∣∣E[G(|ψ(tn)|2)]−Qm,N (G(|ψn
m|2);∆)

∣∣∣2]
≤ |E[G(|ψ(tn)|2)]− E[G(|ψm(tn)|2)]|+ |E[G(|ψm(tn)|2)]− E[G(|ψn

m|2)]|

+
√

E∆ [|E[G(|ψn
m|2)]−Qm,N (G(|ψn

m|2);∆)|2].

Then, we prove the theorem using Lemmas 3.8, 3.12, and 3.17. □

3.5. Some discussions. We end this section with a few comments on our main result.

(1) The time discretization scheme has a direct impact on the performance of the randomly

shifted lattice-based QMC quadrature rule. If the semi-discrete solution grows too fast in

|ξ|, we may have to choose weight functions that decay faster than (3.28) and the resulting

QMC quadrature may not achieve almost linear convergence [38, 45].

(2) Theorem 2.4 can be generalized to d-space-dimensional case (d ≥ 1) by additionally assum-

ing that G ∈ (Hr(T))′, vj ∈ W r,∞(T) for j ∈ N+,
∑∞

j=1(bj,r)
p < ∞ for some p ∈ (0, 1]

with bj,r = λj∥vj∥W r,∞(T), and ∥Vm − V ∥L2+ε
µ∞ (U,Hr(T)) ≤ Cm−χ for some constants C,χ, ε

independent of m, where r > d/2. Then, the error estimate (2.13) still holds for QMC-TS.

(3) We can use a general splitting scheme of the form (2.8) for time discretization. In particular,

we can adopt the Strang splitting [53]

ψn+1
m = Ψk

τ/2 ◦Ψ
p
τ ◦Ψk

τ/2(ψ
n
m) = eiτ∂

2
x/4e−iτVmeiτ∂

2
x/4ψn

m, n = 0.1, . . . , (3.37)

which is known to be second-order and is one of the most popular splitting schemes. In this

case, if we additionally assume that Assumptions 2.1–2.3 hold with s ≥ 5, then under the
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conditions of Theorem 2.4 we can prove by following the analysis in [54, Section 4] that the

following error estimate holds for QMC-TS:√
E∆

[∣∣∣E[G(|ψ(tn)|2)]−Qm,N (G(|ψn
m|2);∆)

∣∣∣2] ≤ C(m−χ + τ2 +N−κ), (3.38)

where C is independent of m, τ,N and κ is the same as in Theorem 2.4.

(4) Following the third comment, for the Lie–Trotter splitting (2.5) (resp. the Strang splitting

(3.37)), the time convergence of order 1 (resp. order 2) will be achieved as long as Assump-

tion 2.1 holds with s ≥ 3 (resp. s ≥ 5), while the summability of {aj}∞j=1 with s ≥ 3 (resp.

s ≥ 5) in Assumption 2.2 guarantees that the time convergence is independent of m.

(5) Following the second and third comments, the QMC quadrature achieves the dimension-

independent O(N−κ) convergence as long as
∑∞

j=1(bj,r)
p <∞ for some p ∈ (0, 1], regardless

of the choice of the splitting scheme for time discretization.

(6) The fully discrete scheme can be obtained by combining the QMC-TS scheme with some spa-

tial dicretization, e.g., the Fourier pseudospectral method [50], the finite difference method

[43, 44], etc. The crucial step to obtain the QMC convergence rate for the fully discrete

scheme is to derive a bound on the mixed first derivatives of the fully discrete solution with

respect to ξ, which turns out to be non-trivial. But we believe that the QMC convergence

rate in Theorem 2.4 would hold provided that the spatial mesh size is sufficiently small; see

the numerical examples in Section 4. We will address this issue in future works.

(7) A more challenging problem is the nonlinear Schrödinger equation with a Gaussian random

potential

i∂tψ(t, ω, x) = −1

2
∂2xψ(t, ω, x) + V (ω, x)ψ(t, ω, x) + α|ψ(t, ω, x)|2ψ(t, ω, x), (3.39)

where V (ω, x) is a Gaussian random field and α ̸= 0. The well-posedness of the solution

ψ, particularly the integrability of ψ in the random space, is non-trivial due to the cubic

nonlinearity. We will study the problem in the future.

4. Numerical examples

In this section, we give some convergence tests of the QMC-TS method to verify our theoretical

findings. To implement the QMC-TS method, we use the Fourier pseudospectral method with mesh

size h for spatial discretization, and the generating vector for QMC is constructed using the code

from [47] (see also [35]). We consider two primary physical observables: the position density S and

the current density J , where

S(t, ξ, x) =S(ψ(t, ξ, x)) = |ψ(t, ξ, x)|2, (4.1)

J(t, ξ, x) =J(ψ(t, ξ, x)) = Im(ψ(t, ξ, x)∇ψ(t, ξ, x)). (4.2)

The first example tests the convergence rates of different time-splitting schemes and sampling

methods.

Example 4.1. Consider the Schrödinger equation (2.1) with T = [−π, π], T = 1, the initial data

ψin(x) =

√
8

π
exp(−8x2), (4.3)
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and the random potential

Vm(ξ, x) = 1 +
m∑
j=1

1

j
9
2

ξj cos(jx). (4.4)

We consider m = 4.

To test the convergence rates, we consider the L2 relative errors for S and J , i.e.,

errL2(S) =
∥Enum[S(ψm,num(t))]− Eref [S(ψm,ref(t))]∥L2(T)

∥Eref [S(ψm,ref(t))]∥L2(T)
, (4.5)

errL2(J) =
∥Enum[J(ψm,num(t))]− Eref [J(ψm,ref(t))]∥L2(T)

∥Eref [J(ψm,ref(t))]∥L2(T)
. (4.6)

Here, Eref [S(ψm,ref(t, x))] and Eref [J(ψm,ref(t, x))] are the reference solutions, which are computed

using the Strang splitting and the Fourier pseudospectral method combined with the stochastic

collocation method, where we choose τ = 5 × 10−5, h = π
128 and 20 collocation points in each of

the m dimensions of ξm. Moreover, ψm,num is the numerical solution obtained by some numerical

scheme in time and space for fixedm and ξm. If we consider QMC as the sampling method, Enum[F ]

for a general F (ξm) reads

Enum[F ] = Qm,N,R(F ) =
1

R

R∑
k=1

Qm,N (F ;∆k),

where Qm,N (F ;∆k) is defined in (2.10) with ∆k the k-th independent random shift. We will also

consider MC as the sampling method, and in the case Enum[F ] reads

Enum[F ] =
1

NMC

NMC∑
j=1

F (ξ
(j)
m,MC),

where {ξ(j)m,MC}
NMC
j=1 are the MC sample points with NMC the total number.

For time convergence tests, we use the Lie–Trotter and Strang splittings in QMC-TS, where

we fix R = 50, N = 218, h = π
64 and choose τ = 1

40 ,
1
80 ,

1
160 ,

1
320 ,

1
640 . By the discussion in Section

3.5, we should observe first-order and second-order convergence in τ for the Lie–Trotter and Strang

splittings, respectively. The numerical results are shown in Figure 1, where the optimal convergence

rates in time are observed for both splitting schemes.

For tests of convergence in the number of samples, we compare QMC and MC as the sampling

method, and we use the Strang splitting and the Fourier pseudospectral method for time and spatial

discretization, respectively. We fix τ = 10−4 and h = π
64 . For a fair comparison of QMC and MC,

we let Ntot = NMC = RN , and we choose R = 50 and N = 210, 211, . . . , 216. The L2 relative errors

of S and J are shown in Figure 2, and the fitted convergence rates of QMC and MC are shown

in Table 1a. We observe that the convergence rates of QMC are approximately linear, which is

consistent with the discussion in Section 3.5, while the convergence rates of MC are slightly lower

than the theoretical 1
2 order.

The second example shows the dimension-independence of the convergence in time and the

number of QMC samples.

Example 4.2. Consider the Schrödinger equation (2.1) with T = [−π, π], T = 1, the initial condi-

tion (4.3) and the random potential (4.4). We consider m = 2, 4, 6.
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Figure 1. Convergence in time for Example 4.1
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(a) L2 relative error of S at T = 1
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(b) L2 relative error of J at T = 1

Figure 2. Convergence in the number of samples for Example 4.1

QMC MC

S 1.1206 0.4499

J 1.0349 0.4052

(a) Example 4.1

m = 2 m = 4 m = 6

S 1.1598 1.1206 1.0844

J 1.1740 1.0349 1.1775

(b) Example 4.2

Table 1. Fitted convergence rates in Ntot of L
2 relative errors for Examples 4.1–4.2

We still consider the L2 relative errors (4.5)–(4.6) for S and J , respectively. The reference

solutions are computed in the same way as in the previous example.

For time convergence tests, we use the Lie–Trotter splitting in QMC-TS. We should observe

dimension-independent and first-order convergence in time by Theorem 2.4. We fix R = 50, N =

218, h = π
64 and choose τ = 1

40 ,
1
80 ,

1
160 ,

1
320 ,

1
640 . The results are shown in Figure 3. The L2 relative

errors decay at a rate of O(τ) and are nearly the same for different m, which is consistent with

Theorem 2.4.
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Figure 3. Convergence in time for Example 4.2
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Figure 4. Convergence in the number of samples for Example 4.2

For convergence tests of QMC, we use the Strang splitting in QMC-TS. We should observe

dimension-independent and almost linear convergence in the number of samples by the discussion

in Section 3.5. We fix τ = 10−4, h = π
64 and let Ntot = RN , where we choose R = 50 and

N = 210, 211, . . . , 216. The L2 relative errors of S and J and shown in Figure 4, and the fitted

convergence rates are shown in Table 1b. The dimension-independence of the QMC quadrature

error is confirmed by Figure 4 and Table 1b shows that the convergence rates in Ntot are all around

1 for different m, which verifies our theories.

The next example shows the dimension-independence of the convergence of QMC in high

dimensions.

Example 4.3. Consider the Schrödinger equation (2.1) with T = [−π, π], T = 1, the initial condi-

tion (4.3) and the random potential (4.4). We consider m = 8, 12, 16.

Since m is large in this example, it is prohibitively expensive to compute a reference solution,

and hence we cannot test the time convergence. However, we can still test the convergence of QMC
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(a) Standard error of ST (
π
4 ) at T = 1
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(b) Standard error of JT (
π
4 ) at T = 1

Figure 5. Convergence of QMC in Example 4.3

m = 8 m = 12 m = 16

ST (
π
4 ) 1.0738 0.9912 1.0989

JT (
π
4 ) 0.9951 0.9379 0.9253

(a) Example 4.3

m = 8 m = 12 m = 16

ST (
π
4 ) 0.7732 0.7850 0.7578

JT (
π
4 ) 0.7890 0.8074 0.8737

(b) Example 4.4 with α = 9/4

m = 8 m = 12 m = 16

ST (
π
4 ) 1.1881 1.1551 1.1459

JT (
π
4 ) 0.9119 0.9201 0.9381

(c) Example 4.4 with α = 5/2

Table 2. Fitted convergence rates in N of standard errors for Examples 4.3–4.4

using the following fact: for a general F (ξm)√√√√ 1

R(R− 1)

R∑
k=1

(
Qm,N (F ;∆k)−Qm,N,R(F )

)2 ≈√E∆[|E[F ]−Qm,N (F ;∆)|2], (4.7)

where the left-hand side is called the standard error of F and is an unbiased estimator for the

right-hand side, which is the root mean square error of F . Therefore, we can use the standard

error to test the convergence of QMC. The same idea is adopted in [24, 25, 63]. Let ST (x) =

S(ψm,num(t = T, ξm, x)) and JT (x) = J(ψm,num(t = T, ξm, x)). We consider the standard errors of

ST (
π
4 ) and JT (

π
4 ).

We use Lie–Trotter splitting in QMC-TS. We should observe dimension-indpendent and almost

linear convergence of QMC by Theorem 2.4. We fix τ = 2 × 10−5, h = π
64 and choose R = 50 and

N = 210, 211, . . . , 216. The standard errors are shown in Figure 5. The convergence rates of the

standard errors, which are fitted using errors corresponding to N = 213, 214, 215, 216, are shown in

Table 2a. The standard errors do not vary much as m changes, which confirms the dimension-

independence of QMC quadrature error, and the convergence rates are close to 1. These results

validate our theories.
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The last example shows the effect of the decay rate of the randomness on the convergence rate

of QMC.

Example 4.4. Consider the Schrödinger equation (2.1) with T = [−π, π], T = 1, the initial condi-

tion (4.3) and the random potential

Vm(ξ, x) = 1 +
m∑
j=1

1

jα
ξj cos(jx). (4.8)

We consider α = 9
4 ,

5
2 and m = 8, 12, 16.

By the discussion in Section 3.5, we would obtain dimension-independent convergence of QMC

regardless of the splitting scheme for time discretization. Furthermore, Theorem 2.4 shows that

the convergence rate of QMC would be 3
4 if α = 9

4 and would be almost linear if α = 5
2 . We still

consider the standard errors of ST (
π
4 ) and JT (

π
4 ).

We use the Strang splitting in QMC-TS. We fix τ = 10−4, h = π
64 and choose R = 50 and

N = 210, 211, . . . , 215. The standard errors are shown in Figure 6, and the fitted convergence rates

are shown in Tables 2b and 2c. We still see from Figure 6 that the standard errors do not vary

much with different values of m, which again confirms the dimension-independence of convergence

of QMC. Furthermore, we see from Table 2b that for α = 9
4 the fitted convergence rate of the

standard error of ST (
π
4 ) is around the theoretical value 3

4 and that of JT (
π
4 ) is slightly larger than

3
4 . On the other hand, we see from Table 2c for α = 5

2 , the fitted convergence rates of the standard

errors of both ST (
π
4 ) and JT (

π
4 ) are around the theoretical value 1. These results show that faster

decay of randomness in the potential leads to faster convergence of QMC, which is consistent with

Theorem 2.4.
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[33] K. Karhunen, Über lineare methoden in der wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fenn., 37 (1947),

pp. 3–79.

[34] F. Y. Kuo, Component-by-component constructions achieve the optimal rate of convergence for multivariate

integration in weighted Korobov and Sobolev spaces, J. Complexity, 19 (2003), pp. 301–320.

[35] F. Y. Kuo and D. Nuyens, Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion

coefficients: a survey of analysis and implementation, Found. Comput. Math., 16 (2016), pp. 1631–1696.

[36] F. Y. Kuo, C. Schwab, and I. H. Sloan, Quasi-Monte Carlo methods for high-dimensional integration: the

standard (weighted Hilbert space) setting and beyond, ANZIAM J., 53 (2011), pp. 1–37.

[37] F. Y. Kuo, C. Schwab, and I. H. Sloan, Quasi-Monte Carlo finite element methods for a class of elliptic

partial differential equations with random coefficients, SIAM J. Numer. Anal., 50 (2012), pp. 3351–3374.

[38] F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, and B. J. Waterhouse, Randomly shifted lattice rules with

the optimal rate of convergence for unbounded integrands, J. Complexity, 26 (2010), pp. 135–160.

[39] F. Y. Kuo, G. W. Wasilkowski, and B. J. Waterhouse, Randomly shifted lattice rules for unbounded

integrands, J. Complexity, 22 (2006), pp. 630–651.

[40] I. Lifshits, L. Gredeskul, and L. Pastur, Introduction to the theory of disordered systems, Wiley-Interscience,

New York, 1988.
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