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Abstract. Chemotaxis models describe the movement of organisms in response to chemical gra-5
dients. In this paper, we present a stochastic interacting particle-field algorithm with random batch6
approximation (SIPF-r) for the three-dimensional (3D) parabolic-parabolic Keller-Segel (KS) sys-7
tem, also known as the fully parabolic KS system. The SIPF-r method approximates the KS system8
by coupling particle-based representations of density with a smooth field variable computed using9
spectral methods. By incorporating the random batch method (RBM), we bypass the mean-field10
limit and significantly reduce computational complexity. Under mild assumptions on the regularity11
of the original KS system and the boundedness of numerical approximations, we prove that, with12
high probability, the empirical measure of the SIPF-r particle system converges to the exact measure13
of the limiting McKean-Vlasov process in the 1-Wasserstein distance. Numerical experiments vali-14
date the theoretical convergence rates and demonstrate the robustness and accuracy of the SIPF-r15
method.16
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1. Introduction. Chemotaxis is a biological phenomenon concerning the move-20

ment of organisms (e.g. bacteria) in response to signals, typically chemical substances21

known as chemo-attractants, which can be produced by the organisms themselves.22

Theoretical and mathematical modeling was initiated by Patlak [29], Keller and Segel23

[19]. In this work, we focus on the fully parabolic KS system as follows:24

ρt = ∇ · (µ∇ρ− χρ∇c),25

ϵ ct = ∆ c− λ2 c+ ρ,26

x ∈ Ω ⊆ Rd, t ∈ [0, T ],(1.1)27

where χ, µ (ϵ, λ) are positive (non-negative) constants. The model is called elliptic if28

ϵ = 0, and parabolic if ϵ > 0. Here ρ denotes the density of active particles (bacteria),29

and c represents the concentration of a chemical substance (chemo-attractant) emitted30

by the bacteria. KS partial differential equation (PDE) systems have diverse applica-31

tions across disciplines. In biology, they help explain cell aggregation and migration32

behaviors, such as those of bacteria and cancer cells, driven by chemical gradients33

[30]. Ecologically, these models describe how organisms navigate environments using34

chemical cues [28]. In medicine, KS models are pivotal for studying cell migration35

in tissues, offering insights into wound healing, immune responses, and cancer spread36

[2, 34].37
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Due to the nonlinear and potentially singular behavior of the KS equations, par-38

ticularly in the presence of blow-up phenomena [27, 15, 1, 10], numerical methods have39

become essential tools for studying their solutions. Mesh-based methods, such as finite40

difference [4, 33, 8], finite element [31, 9, 32], and finite volume schemes [11, 5, 40], are41

among the most widely used approaches for solving the KS system. Furthermore, Li,42

Shu, and Yang [22] introduced a local discontinuous Galerkin method with an optimal43

convergence rate for the two-dimensional (2D) KS model before blow-up occurs. Liu,44

Wang, and Zhou [23] proposed a semi-discrete scheme for 2D KS equations based45

on symmetrization reformation, which avoids nonlinear solvers, and asymptotically46

preserves the quasi-static limit. Despite their success, challenges remain in ensuring47

stability, convergence, and effective handling of singularities, making the numerical48

study of the KS model an active and evolving field of research.49

In addition to mesh-based methods, particle-based approaches have also been de-50

veloped to address the challenges posed by the KS system, offering a complementary51

perspective. Stevens [36] developed an N -particle system and established its conver-52

gence for the fully parabolic case. Haškovec and Schmeiser [14] proposed a convergent53

regularized particle system for the 2D parabolic-elliptic KS model. Moreover, God-54

inho and Quininao [12] showed well-posedness results and the propagation of chaos55

property in a subcritical KS equation. Craig and Bertozzi [6] proved the convergence56

of a blob method for the related aggregation equation. Liu and Yang [24] introduced57

a random particle blob method with a mollified kernel for the parabolic-elliptic case,58

proving its convergence when the macroscopic mean field equation possesses a global59

weak solution [25].60

In [39], we proposed a novel stochastic interacting particle-field (SIPF) algorithm61

for the fully parabolic KS system (1.1) in 3D. The SIPF method approximates KS solu-62

tions ρ as empirical measures of particles (see Eq.(2.1)) coupled with a smoother field63

variable c computed using the spectral method (see Eq.(2.2)). Instead of relying on64

history-dependent heat kernels, the algorithm employs an implicit Euler discretization65

and a one-step recursion based on Green’s function of an elliptic operator. Numerical66

experiments demonstrate that the algorithm efficiently studies finite-time blowup in67

3D with only dozens of Fourier modes. It handles multi-modal initial data and tracks68

complex evolutions, such as particle cluster merging and singularity formation.69

Despite that [39] introduced the efficient algorithm, numerically observed its con-70

vergence, and showed its uniform stability, a rigorous convergence analysis remains71

to be accomplished. In this paper, we fill this gap by establishing the convergence72

estimate of the algorithm and validating the estimates by numerical results. Our73

main result, presented in Theorem 3.3, shows the convergence of the solution of the74

SIPF-r method (ρ̃, c̃) to the exact solution (ρ, c) under mild assumptions. Specifi-75

cally, the 1-Wasserstein distance between the SIPF-r and exact density distributions,76

denoted as W1(ρ̃tn , ρtn), depends on the time step δt, Fourier mode H, the num-77

ber of particles P , and the batch size R, scales as O
(

1
H2 + H2

√
P
δt+ δt√

R
+Hδt

)
,78

plus higher-order terms. Similarly, the maximum error in the truncated Fourier79

coefficients of the computed chemical concentration, maxj∈H ∥α̃tn;j − αtn;j∥, where80

H denotes the finite set of Fourier modes retained in the SIPF-r method, is gov-81

erned by O
(

1
H + H√

P
+ H√

R
δt+ H3

√
P
δt
)
. These results illustrate the dependence of82

the method’s accuracy on the discretization parameters δt, H, P , and R, highlighting83

their interplay in determining the overall error behavior. The proof of this result84

relies on several key lemmas presented in Section 3 that carefully quantify the single-85

step update errors of ρ and c between the SIPF-r method and the exact solution.86
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These lemmas also analyze how the errors introduced at each time step propagate87

and accumulate over time.88

The error between the chemical concentration c̃ in the SIPF-r method and the89

exact solution c primarily arises from the truncation error in its Fourier series repre-90

sentation and the time discretization error introduced by the implicit Euler method.91

We assume c has a certain level of regularity, ensuring that the truncation error in92

the Fourier series approximation is controllable and tends to zero as the number of93

Fourier modes increases. A thorough analysis of this aspect is beyond the scope of94

this article and is not discussed in detail here. The time discretization error can be95

formulated using the differences between the Fourier coefficients of c̃ and c. Specifi-96

cally, the error after the one-time step is constructed based on the Fourier coefficient97

errors of c̃ and c from the previous step, combined with the expected L2 norm of98

the error between the SIPF-r trajectories X̃t and the exact solution trajectories Xt,99

denoted as E(∥X̃t −Xt∥L2), from the preceding step.100

At the numerical discretization level, the RBM [18, 17, 16, 3] is incorporated101

into the SIPF-r algorithm. This ensures the assumption that the particles are fully102

independent and identically distributed (i.i.d.), thereby effectively circumventing the103

need to address the propagation of chaos [25]. At each time step, small random104

batches of particles are selected with replacement for particle interactions. In the105

error estimate between c̃ and c, leveraging the i.i.d. property, applying a generalization106

of the mean value theorem to complex-valued functions [26], and using Bernstein’s107

inequality [7], we bound the probability that the empirical mean of the particles108

deviates from the expected value of their trajectories. This deviation accounts for the109

uncertainty described in Theorem 3.3. Numerical experiments in Section 4 further110

demonstrate that, with the introduction of the RBM, the numerical examples maintain111

a high level of accuracy.112

The error between Xt and X̃t is influenced by the gradient of c and c̃, reflecting113

the sensitivity of the particle trajectories to the interaction potential. With Parseval’s114

identity [20], we can establish a relationship between the error measured in the L2115

norm of the gradient difference ∥∇c̃−∇c∥L2 and the error in the Fourier coefficients116

of c̃ and c. During each update step in the SIPF-r method, we can establish two117

coupled recursive inequalities. The first inequality relates the ∥∇c̃ − ∇c∥L2 error118

to E(∥X̃t − Xt∥L2). Conversely, the second inequality involves E(∥X̃t − Xt∥L2) and119

includes a term related to ∥∇c̃ − ∇c∥L2 in its single-step update, as illustrated in120

Eqs.(3.44)-(3.45). By substituting and decoupling the recursive inequalities, we derive121

a general bound for E(∥X̃t −Xt∥L2) that depends only on errors from previous time122

steps. By considering the natural coupling γt = Law(X̃t, Xt) induced by shared initial123

conditions and Brownian paths, we can relate E(∥X̃t −Xt∥L2) to the 1-Wasserstein124

distance W1(ρ̃t, ρt) between the distributions ρ̃t and ρt of X̃t and Xt respectively.125

This allows us to reformulate our bound in terms of this more analytically tractable126

metric. Applying the discrete Gronwall inequality [21] to the derived inequality and127

combining it with the error estimate for the Fourier coefficients of c̃, we establish a128

global error bound for (ρ̃, c̃), ultimately leading to the result stated in Theorem 3.3.129

The rest of the paper is organized as follows. In Section 2, we review the SIPF130

method for solving the fully parabolic KS system and present the derivation of the131

SIPF-r method, which incorporates the RBM to compute the particle interaction.132

In Section 3, under certain assumptions, we provide a detailed convergence analysis133

of the SIPF-r method by breaking the proof into several lemmas. In Section 4, we134

present numerical results to validate the necessity of the assumptions, demonstrate135
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the accuracy of the SIPF-r method, and confirm the theoretical convergence rate136

derived in our analysis. Finally, the paper is concluded in Section 5.137

2. Derivation of SIPF-r Method. In this section, we present the SIPF-r algo-138

rithm for solving the fully parabolic KS model. It is viable that we restrict the system139

(1.1) in a large domain Ω = [−L/2, L/2]3 and assume Dirichlet boundary condition140

for particle density ρ and Neumann boundary condition for chemical concentration c.141

Throughout this section, we use the standard notation ρ, c, etc., to represent142

the exact solutions of the fully parabolic KS model. For the variables computed or143

approximated using the SIPF-r algorithm, we instead use the notations ρ̃, c̃, etc.144

As a discrete algorithm, we assume that the temporal domain [0, T ] is partitioned145

by {tn}n=0:nT
with t0 = 0 and tnT

= T . We approximate the density ρ̃ at t = tn by146

empirical particles {X̃p
tn}p=1:P , i.e.,147

ρ̃tn ≈
M0

P

P∑
p=1

δ(x− X̃p
tn), P ≫ 1,(2.1)148

where M0 is the conserved total mass (integral of ρ). For chemical concentration c̃,149

we approximate by Fourier basis, namely, c̃(x, t) has a series representation150

(2.2)
∑
j∈H

α̃t;j exp(i2πj1 x1/L) exp(i2πj2 x2/L) exp(i2πj3 x3/L),151

where H denotes index set152

{(j) ∈ N3 : |j1|, |j2|, |j3| ≤
H

2
},(2.3)153

and i =
√
−1. The exact solution c(x, t) can also be approximated by a truncated154

spatial Fourier series expansion as follows:155

(2.4)
∑
j∈H

αt;j exp(i2πj1 x1/L) exp(i2πj2 x2/L) exp(i2πj3 x3/L).156

Remark 2.1. The choice of the Fourier basis over Hermite polynomials for ap-157

proximating chemical concentration is based on the fact that since the blow-up phe-158

nomenon is localized near the domain center, periodic boundary conditions effectively159

emulate an infinite spatial domain in this configuration. When the spatial localization160

of the singularity remains distant from domain boundaries, its interaction with these161

artificial edges becomes negligible.162

Then at t0 = 0, we generate P empirical samples {X̃p
0}p=1:P according to the163

initial condition of ρ̃0 and set up α̃0;j by the Fourier series of c̃0. For ease of presenting164

our algorithm, with a slight abuse of notation, we use ρ̃n = M0

P

∑P
p=1 δ(x− X̃p

n), and165

(2.5) c̃n =
∑
j∈H

α̃n;j exp(i2πj1 x1/L) exp(i2πj2 x2/L) exp(i2πj3 x3/L)166

to represent density ρ̃ and chemical concentration c̃ at time tn.167

Considering the time-stepping system (1.1) from tn to tn+1, with ρ̃n and c̃n−1168

known, our algorithm, inspired by the operator splitting technique, consists of two169

sub-steps: updating chemical concentration c̃ and updating organism density ρ̃.170
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Updating chemical concentration c̃. Let δt = tn+1 − tn > 0 be the time step. We171

discretize the c̃ equation of (1.1) in time by an implicit Euler scheme:172

ϵ (c̃n − c̃n−1)/δt = (∆− λ2) c̃n + ρ̃n.(2.6)173

From Eq.(2.6), we obtain the explicit formula for c̃n as:174

(∆− λ2 − ϵ/δt) c̃n = −ϵ c̃n−1/δt− ρ̃n.(2.7)175

It follows that:176

c̃n = c̃(x, tn) = −Kϵ,δt ∗ (ϵ c̃n−1/δt+ ρ̃n) = −Kϵ,δt ∗ (ϵ c̃(x, tn−1)/δt+ ρ̃(x, tn)),
(2.8)

177

where Kϵ,δt is the Green’s function of the operator ∆− λ2 − ϵ/δt and ∗ represents an178

approximation of spatial convolution, which is not exactly in the continuous setup,179

as c̃ is computed using truncated Fourier basis functions and ρ̃ is given by a discrete180

particle representation. Unless otherwise stated, all subsequent norms ∥ · ∥ will refer181

to the L2 norms. In case of R3, the Green’s function Kϵ,δt reads as follows182

Kϵ,δt = Kϵ,δt(x) = −
exp{−β∥x∥}

4π∥x∥
, β2 = λ2 + ϵ/δt.(2.9)183

Green’s function admits a closed-form Fourier transform,184

FKϵ,δt(ω) = −
1

∥ω∥2 + β2
.(2.10)185

For the term −Kϵ,δt ∗ c̃n−1 in Eq.(2.8), by Eq.(2.10) it is equivalent to modify Fourier186

coefficients α̃j to α̃j/(4π
2j21/L

2 + 4π2j22/L
2 + 4π2j23/L

2 + β2).187

For the second term Kϵ,δt∗ ρ̃, we first approximate Kϵ,δt with cos series expansion,188

then according to the particle representation of ρ̃ in Eq.(2.1),189

(Kϵ,δt ∗ ρ̃)j ≈
M0

P

P∑
p=1

exp(−i2πj1X̃p
n;1/L−i2πj2X̃

p
n;2/L−i2πj3X̃

p
n;3/L)(−1)j1+j2+j3

4π2j21/L
2 + 4π2j22/L

2 + 4π2j23/L
2 + β2

.

(2.11)

190

Finally, we summarize the one-step update of the Fourier coefficients of chemical191

concentration c̃ in Alg.2.1, which follows the same procedure as in the original SIPF192

method.193

Updating density of active particles ρ̃. In the one-step update of density ρ̃n rep-194

resented by particles {X̃p
n}p=1:P , we apply Euler-Maruyama scheme to solve the SDE195

X̃p
n+1 = X̃p

n + χ∇xc̃(X̃
p
n, tn)δt+

√
2µ δtNp

n,(2.12)196

where Np
n’s are i.i.d. standard normal distributions with respect to the Brownian197

paths in the SDE formulation. For n > 1, substituting Eq.(2.8) in Eq.(2.12) gives:198

X̃p
n+1 = X̃p

n − χ∇xKϵ,δt ∗ (ϵ c̃n−1(x)/δt+ ρ̃n(x))|x=X̃p
n
δt+

√
2µ δtNp

n,(2.13)199

from which ρ̃n+1(x) is constructed via Eq.(2.1).200

In this particle formulation, the computation of the spatial convolution differs201

slightly from that in the update of c̃ (i.e., Eq.(2.8)).202
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Algorithm 2.1 One step update of chemical concentration in SIPF-r

Require: Distribution ρ̃n represented by empirical samples X̃n,
initial concentration c̃n−1 represented by Fourier coefficients α̃n−1.

1: for (j) ∈ H do

2: α̃n;j ←
ϵα̃n−1;j

δt(4π2j21/L
2 + 4π2j22/L

2 + 4π2j23/L
2 + β2)

3: Fj ← 0
4: for p = 1 to P do
5: Fj ← Fj + exp(−i2πj1X̃p

n;1/L− i2πj2X̃
p
n;2/L− i2πj3X̃

p
n;3/L)

6: end for

7: Fj ← Fj ·
(−1)j1+j2+j3

4π2j21/L
2 + 4π2j22/L

2 + 4π2j23/L
2 + β2

· M0

P
8: end for
9: α̃n ← α̃n − F

Ensure: Updated chemical concentration field from c̃n−1 to c̃n via α̃n.

For ∇xKϵ,δt ∗ c̃n−1(X̃
p
n), to avoid the singular points of ∇xKϵ,δt, we evaluate203

the integral with the quadrature points that are away from 0. Precisely, denote the204

standard quadrature point in Ω with205

(2.14) xj = (j1 L/H, j2 L/H, j3 L/H),206

where j, m, l are integers ranging from −H/2 to H/2−1. When computing ∇xKϵ,δt ∗207

c̃n−1(X̃
p
n), we evaluate ∇xKϵ,δt at {X̃p

n + X̄p
n − xj}j where a small spatial shift208

X̄p
n = L

2H + ⌊ X̃p
n

L/H ⌋
L
H − X̃p

n and c̃ at {xj − X̄p
n}j correspondingly. The latter one209

is computed by inverse Fourier transform of the shifted coefficients, with α̃j modified210

to α̃j exp(−i2πj1X̄p
n;1/L− i2πj2X̄

p
n;2/L− i2πj3X̄

p
n;3/L) where (X̄

p
n;i) denotes the i-th211

component of X̄p
n.212

Motivated by mini-batch sampling [13, 35, 37, 38] and random batch method213

(RBM) [18, 17, 3, 16], for each particle X̃p
n, we choose a small batch Cp with size R214

randomly with replacement. We just interact X̃p
n with particles within this batch, i.e.215

approximate ∇xKϵ,δt ∗ ρ̃(X̃p
n, tn) using

∑
s∈Cp,s̸=p

χM0δt
R ∇xKϵ,δt(X̃

p
n − X̃s

n).216

We summarize the one-step update (for n > 1) of the density in SIPF as in217

Alg.2.2.218

Combining Eq.(2.8) and Eq.(2.13), we conclude that the recursion from219

({X̃p
n}p=1:P , ρ̃n(x), c̃n−1(x)) to ({X̃p

n+1}p=1:P , ρ̃n+1(x), c̃n(x)) is complete. We sum-220

marize the SIPF-r method in the following Algorithm 2.3.221

Particle-wise Independence due to RBM. In the above derivation, {X̃p
n}p=1:P are222

i.i.d. samples with distribution ρ̃n and independent of c̃n−1. The one-step trajectories223

follow the discrete-time rule:224

(2.15) X̃tn+1
= X̃tn + χ∇c̃(X̃tn , tn)δt+

∫ tn+1

tn

√
2µdWs,225

where ∇c̃ is computed via Eq.(2.8), and Ws denotes the Brownian motion. It is worth226

noting that, for the updated position p-th particle X̃p
n+1 by Eq.(2.12), the interaction227

term, ∇xKϵ,δt ∗ ρ̃(X̃p
n, tn) is computed by

∑
s∈Cp,s̸=p

χM0δt
R ∇xKϵ,δt(X̃

p
n− X̃s

n), where228
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Algorithm 2.2 One step update of density in SIPF-r

Require: Distribution ρ̃n represented by empirical samples X̃n,
Concentration c̃n−1 represented by Fourier coefficients α̃n−1.

1: for p = 1 to P do
2: X̃p

n+1 ← X̃p
n+1 +

√
2µδtN {N is a standard normal random variable}

3: Cp ← random subset of {1, . . . , P} with replacement, size R

4: X̃p
n+1 ← X̃p

n+1 −
∑

s∈Cp

χM0δt
R ∇xKϵ,δt(X̃

p
n − X̃s

n)

5: X̄p
n ← L

2H + ⌈ X̃p
n

L/H ⌉
L
H − X̃p

n

6: for (j) ∈ H do

7: Fj ← ∇xKϵ,δt(X̃
p
n + X̄p

n − xj) {xj from Eq.(2.14)}
8: Gj ← αj exp(−i2πj1X̄p

n;1/L− i2πj2X̄
p
n;2/L− i2πj3X̄

p
n;3/L)

9: end for
10: Ǧ← iFFT(G)

11: X̃p
n+1 ← X̃p

n+1 − ϵχ(F, Ǧ) L3

H3 {(·, ·) L3

H3 denotes an inner product corresponding
to L2(Ω) quadrature}

12: end for
Ensure: Updated distribution ρ̃n+1 represented by X̃n+1.

Algorithm 2.3 Stochastic Interacting Particle-Field Method

Require: Initial distribution ρ0, initial concentration c0.
1: Generate P i.i.d. samples following distribution ρ0: X

1, X2, . . . , XP .
2: for p = 1 to P do
3: Compute X̃p

1 by Eq.(2.12), with c−1 = c0.
4: end for
5: Compute c̃1 by Algorithm 2.1 with c0 and ρ̃1 =

∑P
p=1

M0

P δX̃p
1
.

6: for n = 2 to N = T/δt do

7: Compute X̃n by Algorithm 2.2 with ρ̃n−1 and c̃n−2.

8: Compute c̃n by Algorithm 2.1 with c̃n−1 and ρ̃n =
∑P

p=1
M0

P δX̃p
n
.

9: end for
Ensure: Final particle distribution ρ̃N and concentration field c̃N .

the selection of Cp is independent of X̃p
n and hence {X̃s

n}s∈Cp can be viewed as i.i.d229

samples of ρ̃n independent of c̃n−1 and X̃p
n. Together with the independent Brownian230

motion term W p
s , we can deduce the independency of {X̃p

n+1}p=1:P .231

Correspondingly, we denote the exact dynamics of the system by Xt, a ρ(·, t)-232

distributed random variable evolving continuously in time:233

(2.16) Xt = Xt0 + χ

∫ t

t0

∇c(Xs, s) ds+

∫ t

t0

√
2µdWs, Xt0 = X̃t0 ,234

where c(·, s) is the exact concentration field, and the integral describes how the gradi-235

ent evolves in continuous time. Both processes share the same Brownian motion Ws,236

indicating that both processes are driven by the same source of randomness.237

3. L2 Convergence of SIPF-r method to smooth solutions. We now prove238

the convergence of the SIPF-r method to classical solutions of the 3D parabolic-239

parabolic Keller-Segel equations. To ensure the validity of the following analysis, we240
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introduce a set of assumptions that impose structure on the concentration fields and241

their gradients.242

Assumption 1. We assume the approximation errors of particles and the gradi-243

ent of the chemical concentration at any finite time t are bounded. Specifically, there244

exist constants M1,M2 > 0 such that for all t ∈ [0, T ] and x ∈ R3,245

∥X̃t −Xt∥ ≤M1,(3.1)246

∥∇c̃(x, t)−∇c(x, t)∥ ≤M2, ∀x, t.(3.2)247

Remark 3.1. The boundedness condition in Eq.(3.1) can be achieved by Eqs.248

(2.15)-(2.16) and Assumption 2(c). Eq.(3.2) follows immediately from the uniform249

bound in Assumption 2(c). It is important to note that this assumption only requires250

the errors to be bounded and does not demand them to converge to zero. The con-251

vergence of these errors to zero will be demonstrated later in subsequent theorem and252

proof.253

Assumption 2. Suppose both ∇c̃ and ∇c satisfy Lipschitz continuity conditions254

in space and time, along with regularity and boundedness properties as follows:255

(a) (Spatial Lipschitz Continuity) There exists a constant K > 0, depending on256

the regularity of ∇c̃ and ∇c, as well as the parameters ϵ and λ in the system (1.1),257

such that for all t ∈ [0, T ] and x,y ∈ R3,258

(∥∇c̃(x, t)−∇c̃(y, t)∥, ∥∇c(x, t)−∇c(y, t)∥) ≤ K∥x− y∥.259

This implies that the second derivatives (Hessian entries) ∇2c̃(x, t) exist almost ev-260

erywhere and satisfy:261

sup
x∈R3,t∈[0,T ]

(
∥∇2c̃(x, t)∥

)
≤ K.262

(b) (Temporal Lipschitz Continuity) There exists a constant K1 > 0, depending263

on the regularity of ∇c and the parameters ϵ and λ in the system (1.1), such that for264

any t1, t2 ∈ [0, T ] and x ∈ R3,265

∥∇c(x, t1)−∇c(x, t2)∥ ≤ K1|t1 − t2|.266

(c) (Uniform Boundedness) There exists a constant M3 > 0, depending on the267

regularity of ∇c and the parameters ϵ and λ in the system (1.1), such that for all268

t ∈ [0, T ] and x ∈ R3:269

max
(
∥∇c(x, t)∥, ∥∇c̃(x, t)∥

)
≤M3.270

Assumption 3 (CFL-like Condition). In the SIPF-r algorithm, we assume that271

the discrete time interval δt approaches 0 faster than the square of the Fourier mode272

H2 diverges to positive infinity. Additionally, the number of particles P is assumed273

to grow sufficiently fast, ensuring that it outpaces the H2 to infinity.274

More formally, as δt → 0, H → ∞, and P → ∞, there exists parameters κ, ν such275

that:276

κ := H ·
√
δt, κ→ 0, ν :=

H√
P
, ν → 0.(3.3)277

These assumptions guarantee that the gradients of the exact concentration field c278

and the approximated concentration field c̃ exhibit sufficient regularity, boundedness,279
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and stability in both space and time. They establish the necessary framework to280

rigorously compare the SIPF-r approximation X̃tn with the exact solution Xtn while281

ensuring the stability and convergence of the particle system.282

Remark 3.2. The assumptions above are technical and provide the foundation for283

analyzing the convergence and stability of the SIPF-r algorithm. Their validity will be284

supported by numerical experiments. Specifically, we will provide detailed numerical285

results to demonstrate that the approximation errors, regularity, and boundedness286

conditions held in practice under realistic parameter settings. These experiments will287

confirm the assumptions held in practice, ensuring the robustness of our theoretical288

results.289

We now state our main theorem, quantifying the convergence of the SIPF-r290

method.291

Theorem 3.3. Suppose that the exact solutions and the solutions of the SIPF-r292

method satisfy Assumptions 1, 2, 3 in R3, consider the SIPF-r method with H being293

the Fourier mode, P being the number of particles, R being the batch size, and δt being294

the uniform time step. Then the quantities (ρ̃, c̃), which comprise the SIPF-r method,295

exist on discrete time steps tn = nδt for n = 0, 1, . . . , T
δt , and satisfy the following296

with high probability:297

For ∀n ∈ {0, 1, . . . , T
δt}, the 1-Wasserstein distance (defined in Eq.(3.49)) between ρ̃tn298

and ρtn satisfies: W1(ρ̃tn , ρtn) is O
(

1
H2 + H2

√
P
δt+ δt√

R
+Hδt

)
, and the maximum299

error in the truncated Fourier coefficients of c̃tn and ctn satisfies: maxj∈H ∥α̃tn;j −300

αtn;j∥ is O
(

1
H + H√

P
+ H√

R
δt+ H3

√
P
δt
)
.301

More specifically, for ∀n ∈ {0, 1, . . . , T
δt}, the errors are bounded with high probability302

by:303

W1(ρ̃tn , ρtn) ≤
(
S0(

L

H
)2 + S1δt+

(
S2 ·H2

O(
√
P )

+ S3H +
1

O(
√
R)

)
δt+O(δt2)

)
304

· exp(1 + S4δt+ S2H
2δt),305

max
j∈H
∥α̃tn;j − αtn;j∥ ≤

(
S7

H
+

(
S8H + S9H

2 + S5
H

O(
√
R)

+ S10
H3

O(
√
P )

)
δt

)
306

· exp(1 + S4δt+ S2H
2δt) + S5

H

O(
√
P )

+ S6Hδt,(3.4)307

where Si, i = 0, . . . , 10, are constants specified in Eqs.(3.51)-(3.53), and L is the308

characteristic domain size.309

A direct consequence of the Theorem 3.3 reads, as H,P → ∞ and δt → 0, we have310

both W1(ρ̃tn , ρtn) and maxj∈H ∥α̃tn;j − αtn;j∥ converge to 0 with high probability.311

Combining the above theorem, to simplify the form, we obtain the following312

corollary:313

Corollary 3.4. Under the conditions of Theorem 3.3, assume the scaling rela-314

tionships H = Θ(P 1/6) and δt = Θ(H−3) = Θ(P−1/2). Then, the solutions (ρ̃, c̃) of315

the SIPF-r method satisfy the following simplified high-probability error estimates:316

For ∀n ∈ {0, 1, . . . , T
δt}, W1(ρ̃tn , ρtn) is O

(
δt

2
3

)
, maxj∈H ∥α̃tn;j − αtn;j∥ is O

(
δt

1
3

)
.317

The result of Theorem 3.3 relies on the following lemmas concerning the change318

in single-step update error of the SIPF-r method and the complete proof of Theorem319

3.3 is postponed to the end of this subsection.320
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The exact solution of chemical concentration c comes from solving a parabolic321

equation, which is no longer Markovian. At time t > 0, the solution of ρ in [0, t] has322

to be involved in the representation of c, namely,323

(3.5) c(·, t) = e−
λ2

ϵ tet∆c(·, 0) + 1

ϵ

∫ t

0

e
λ2

ϵ (s−t)e(t−s)∆ρ(·, s) ds,324

where the heat semigroup operator et∆ is defined by325

(et∆f)(x, t) :=

∫
e−

ϵ∥x−y∥2
4t (

ϵ

4πt
)3/2f(y) dy.326

From Eqs.(2.2)-(2.4), the error between c̃ and c can be decomposed into two327

components: the error in their Fourier coefficients and the truncation error of c. As328

the Fourier mode H and domain size L tend to infinity, and due to the smoothness of329

c, the truncation error becomes negligible and can be omitted from the analysis. We330

now focus on the error analysis between the Fourier coefficients α̃j and αj of c̃ and c,331

as presented in the following lemma.332

Lemma 3.5. For ∀n ∈ N+ and ∀j ∈ H (the same index set as in Eq.(2.3)), under333

Assumption 1, the following inequality holds with high probability:334

∥α̃tn;j − αtn;j∥ ≤∥α̃tn−1;j − αtn−1;j∥+
(
√
2M0∥ωj∥+ 1)

ϵ · O(
√
P )

δt+O( δt2

∥ωj∥4
)335

+ C1∥ωj∥δt2 +
√
2M0∥ωj∥

ϵ
δtE[∥X̃tn −Xtn∥],(3.6)336

where C1 is a constant, and tn = nδt.337

Proof. We write the frequency ωj =
(
2πj1
L , 2πj2

L , 2πj3
L

)
. According to Section 2, in338

Eq.(2.8), the term −Kϵ,δt ∗ ϵc̃(x,tn−1)
δt modifies the Fourier coefficients α̃tn−1;j to:339

ϵα̃tn−1;j

δt (∥ωj∥2 + β2)
,340

where β2 = λ2 + ϵ/δt. Similarly, for the term −Kϵ,δt ∗ ρ̃(x, tn), it is modified as:341

1

1 + Zj
· δt
ϵ
· Fj[ρ̃(x, s)],342

where Fj[ρ̃(x, tn)] =
M0

P

∑P
p=1

e
−iωj·X̃

p
tn

1+Zj
represents the Fourier coefficient of ρ̃(x, tn)343

at the frequency ωj.344

For the exact solution c, when updating from tn−1 to tn, the first term of Eq.(3.5)345

modifies the Fourier coefficients αtn−1;j as:346

αtn−1;j · exp
(
−
(
∥ωj∥2 + λ2

)
· δt
ϵ

)
.347

The second term modifies as:348

1

ϵ

∫ tn

tn−1

e−(λ
2+∥ωj∥2) tn−s

ϵ · Fj[ρ(x, s)] ds.349
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We write:350

Zj =
(
∥ωj∥2 + λ2

)
· δt
ϵ
.351

As δt→ 0, Zj → 0. Using Taylor Expansion and the triangle inequality, we decompose352

the error into two terms:353

I1 := ∥αtn−1;j · e−Zj − α̃tn−1;j ·
1

Zj + 1
∥,354

355

I2 :=

∥∥∥∥∥1ϵ
∫ tn

tn−1

e−(λ
2+∥ωj∥2) tn−s

ϵ · Fj[ρ(x, s)] ds−
1

1 + Zj
· δt
ϵ
· Fj[ρ̃(x, s)]

∥∥∥∥∥ .356

Applying Taylor Expansion and triangle inequality, we obtain357

I1 ≤∥αtn−1;j · (e−Zj − 1

Zj + 1
)∥+ ∥(αtn−1;j − α̃tn−1;j) ·

1

Zj + 1
∥358

≤1

2
Z2
j ∥αtn−1;j∥+ ∥αtn−1;j − α̃tn−1;j∥.(3.7)359

Now we turn to I2. To this end, we first list a generalization of the mean value360

theorem to complex-valued functions:361

Let G be an open subset of Rn, and let f : G → C be a holomorphic function.362

Fix points x,y ∈ G such that the line segment connecting x and y lies entirely within363

G. The there exists c1, c2 ∈ (0, 1) such that:364

(3.8)

f(y)− f(x) = Re
(
∇f((1− c1)x+ c1y)(y−x)

)
+ i Im

(
∇f((1− c2)x+ c2y)(y−x)

)
.365

The proof of (3.8) is direct. First, we define the function366

g(t) = f((1− t)x+ ty), t ∈ [0, 1].367

Then g is also a holomorphic function. Then, by mean value theorem, there exist368

points c1, c2 ∈ (0, 1) such that,369

Re(g′(c1)) = Re(g(1)− g(0)),370

371

Im(g′(c2)) = Im(g(1)− g(0)),372

which implies Eq.(3.8). Applying this result to to f(x) = e−iωjx, we obtain:373

∥e−iωj·X̃p
tn − e−iωj·Xp

tn ∥374

≤∥ωj · sin(ωj((1− c1)X̃
p
tn + c1X

p
tn))375

+ iωj · cos(ωj((1− c2)X̃
p
tn + c2X

p
tn))∥ · ∥X̃

p
tn −Xp

tn∥376

≤
√
2∥ωj∥ · ∥X̃p

tn −Xp
tn∥.(3.9)377
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Using the triangle inequality, we get:378

I2 ≤

∥∥∥∥∥1ϵ
∫ tn

tn−1

e−Zj·(tn−s)/δt(Fj[ρ(x, s)]−Fj[ρP (x, s)]) ds

∥∥∥∥∥︸ ︷︷ ︸
I2,1

379

+

∥∥∥∥∥1ϵ
∫ tn

tn−1

e−Zj·(tn−s)/δt(Fj[ρP (x, s)]−Fj[ρ(x, tn)]) ds

∥∥∥∥∥︸ ︷︷ ︸
I2,2

380

+

∥∥∥∥δtϵ
(
1− e−Zj

Zj
− 1

1 + Zj

)
· Fj[ρ(x, tn)]

∥∥∥∥︸ ︷︷ ︸
I2,3

381

+

∥∥∥∥δtϵ 1

1 + Zj
(Fj[ρ(x, tn)]−Fj[ρ̃(x, tn)])

∥∥∥∥︸ ︷︷ ︸
I2,4

,(3.10)382

where ρP (x, t) = M0

P

∑P
p=1 δ(x − Xp

t ). By Glivenko-Cantelli’s Theorem, ρP tends383

weakly to ρ as P →∞.384

By the Central Limit Theorem, for the empirical measure ρP with i.i.d. samples385

Xp
t drawn from the distribution ρ(·, t), the difference in Fourier coefficients satisfies:386

∥Fj[ρ(·, s)]−Fj[ρP (·, s)]∥ = M0 ·

√
Var

(
e−iωj·Xp

s
)

P
= O

(
1√
P

)
.387

Now, we can rewrite the expression:388

I2,1 ≤

∥∥∥∥∥1ϵ
∫ tn

tn−1

e−Zj·(tn−s)/δtO
(

1√
P

)
ds

∥∥∥∥∥389

≤δt

ϵ
O
(

1√
P

)
.(3.11)390

According to Eqs.(2.16)-(3.8) and the uniform boundness property of ∇c in As-391

sumption 2,392

I2,2 ≤

∥∥∥∥∥1ϵ M0

P

∫ tn

tn−1

e−Zj·(tn−s)/δt
P∑
i=1

(
√
2∥ωj∥∥Xi

tn −Xi
s∥) ds

∥∥∥∥∥393

≤

∥∥∥∥∥1ϵ M0

P

∫ tn

tn−1

e−Zj·(tn−s)/δt
P∑
i=1

(√
2∥ωj∥∥

∫ tn

s

∇c(Xi
u, u) du∥

)
ds

∥∥∥∥∥394

≤
√
2

ϵ
M0M3∥ωj∥

∣∣∣∣∣
∫ tn

tn−1

e−Zj·(tn−s)/δt(tn − s) ds

∣∣∣∣∣395

≤
√
2

ϵ
M0M3∥ωj∥

∣∣∣∣∣δt2Z2
j

(1− e−Zj − Zje
−Zj)

∣∣∣∣∣396

≤
√
2M0M3

2ϵ
∥ωj∥δt2.(3.12)397
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Combined with Taylor Expansion, we obtain:398

(3.13) I2,3 ≤
1

2ϵ
M0Zjδt.399

Based on Eq.(3.9), we find that:400

I2,4 ≤

∥∥∥∥∥δtϵ 1

1 + Zj

M0

P

P∑
p=1

(e−iωj·Xp
tn − e−iωj·X̃p

tn )

∥∥∥∥∥401

≤
√
2M0∥ωj∥ ·

δt

ϵ
·

P∑
p=1

∥X̃p
tn −Xp

tn∥
P

.(3.14)402

Let Yp = ∥X̃p
tn −Xp

tn∥, where {Yp}Pp=1 are i.i.d. random variables. This follows from403

the fact that the particles {Xp
tn}

P
p=1 and {X̃p

tn}
P
p=1 are separately i.i.d.. Specifically,404

the i.i.d. property of {X̃p
tn}

P
p=1 is ensured by the RBM described in Alg.2.2. Based405

on Assumption 1, Yp is bounded. The empirical mean is defined as:406

ȲP =
1

P

P∑
p=1

Yp.407

The expectation of Yp is:408

µ = E[Yp] = E[∥X̃tn −Xtn∥].409

According to the Bernstein’s inequality, for i.i.d. random variables Y1, Y2, . . . , YP with410

|Yp − µ| ≤ M1(from Assumption 1) almost surely, the probability that the empirical411

mean deviates from the expectation is bounded as:412

P
(
|ȲP − µ| ≥ η

)
≤ 2 exp

(
− Pη2

2σ2 + 2M1η
3

)
,413

where σ2 = E[(Yp − µ)2] is also bounded. With high probability (e.g., 1− δ for very414

small δ > 0), the following holds:415

|ȲP − µ| ≤
√

2σ2 ln(2/δ)

P
+

2M1 ln(2/δ)

3P
.416

This implies that, with 1− δ probability:417

(3.15) I2,4 ≤
√
2M0∥ωj∥ ·

δt

ϵ
·

(
E[∥X̃tn −Xtn∥] +

√
2σ2 ln(2/δ)

P
+

2M1 ln(2/δ)

3P

)
.418

Combining all the equations above and merging the first and second terms, we con-419

clude that, with high probability:420

∥α̃tn;j − αtn;j∥ ≤∥α̃tn−1;j − αtn−1;j∥+
(
√
2M0∥ωj∥+ 1)

ϵ · O(
√
P )

δt+O( δt2

∥ωj∥4
)421

+ C1∥ωj∥δt2 +
√
2M0∥ωj∥

ϵ
δtE[∥X̃tn −Xtn∥],(3.16)422

where C1 =
√
2M0M3

2ϵ is a constant.423
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The error estimate between ∇c and ∇c̃ is more complex than that between c and424

c̃. To analyze this, we introduce an intermediate quantity ∇˜̃c. Using the frequency425

notation ωj from Lemma 3.5 that ωj =
(
2πj1
L , 2πj2

L , 2πj3
L

)
, we define426

∇˜̃c(x, tn) : =∑
j∈H

iωjα̃n;j exp(iωjx)427

= − ϵ

δt

∫
∇xKϵ,δt(x− y)c̃n−1(y) dy −

P∑
q=1

M0

P
∇xKϵ,δt(x− X̃q

n)428

= − ϵ

δt

∫
∇xKϵ,δt(x+ x̄− y)c̃n−1(y − x̄) dy︸ ︷︷ ︸

I4

−
P∑

q=1

M0

P
∇xKϵ,δt(x− X̃q

n)︸ ︷︷ ︸
I5

,(3.17)429

where x̄ = L
2H + ⌊ x

L/H ⌋
L
H − x. From Alg.2.2, we have:430

∇c̃(x, tn) =−∇xKϵ,δt ∗ (ϵ c̃n−1(x)/δt+ ρ̃n(x))431

=− ϵ

δt

L3

H3

∑
j∈H

∇xKϵ,δt(x+ x̄− xj)c̃n−1(xj − x̄)︸ ︷︷ ︸
I6

432

−
∑

s∈Cp,s ̸=p

M0

R
∇xKϵ,δt(x− X̃s

n)︸ ︷︷ ︸
I7

,(3.18)433

where xj is the same notation in Eq.(2.14). The error between ∇c and ∇c̃ can be434

estimated by:435

(3.19) ∥∇c(x, tn)−∇c̃(x, tn)∥ ≤ ∥∇c(x, tn)−∇˜̃c(x, tn)∥+ ∥∇˜̃c(x, tn)−∇c̃(x, tn)∥.436

To estimate the error between ∇c̃ and ∇˜̃c, we divide the analysis into two parts:437

∥∇c̃(x, tn)−∇˜̃c(x, tn)∥ ≤ ϵ

δt
∥I4 − I6∥+ ∥I5 − f7∥.(3.20)438

The first part, involving I4 and I6, focuses on the different methods of approximating439

(∇xKϵ,δt ∗ c̃) in ∇c̃ and ∇˜̃c, while the second part, involving I5 and I7, examines the440

differences in the approximations of (∇xKϵ,δt ∗ ρ̃) between ∇c̃ and ∇˜̃c. Specifically,441

I4 represents the continuous integral, while I6 is constructed as a discrete Riemann442

sum that approximates this integral, excluding the interval [− L
2H , L

2H ]3.443

To analyze the error introduced by the approximation of (∇xKϵ,δt ∗ c̃), we rely on444

the following lemma:445

Lemma 3.6. For ∀n ∈ N+, based on the definitions of I4 and I6 in Eq.(3.17) and446

Eq.(3.18), the following error bound holds:447

∥I4 − I6∥ ≤ C2(
L

H
)2 +

1

λ2 + ϵ
δt

(
M3 +

K

2

)
,(3.21)448

where C2 is a constant that depends on the norm of the second derivative of ∇xKϵ,δt ∗449

c̃n−1, M3 is the uniform bound of ∇c̃, K is the spatial Lipschitz constant for ∇c̃, L450

is the characteristic domain size, and H is the grid spacing. Moreover, λ and ϵ are451

parameters in the system (1.1), tn = nδt.452
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Proof. We rewrite the integral as follows to facilitate the computation of the error453

between I4 and I6. Specifically, we have454

I4 =

∫
x+x̄−y∈[− L

2H , L
2H ]3
∇xKϵ,δt(x+ x̄− y)c̃n−1(y − x̄) dy︸ ︷︷ ︸

I4,1

455

+

∫
x+x̄−y∈[−L

2 ,L2 ]3\[− L
2H , L

2H ]3
∇xKϵ,δt(x+ x̄− y)c̃n−1(y − x̄) dy︸ ︷︷ ︸
I4,2

.(3.22)456

The leading-order term of the error ∥I6− I4,2∥ depends on the smoothness of the457

integrand, specifically the second derivatives of the product of functions ∇xKϵ,δt and458

c̃n−1. Under Assumption 2, c̃n−1 is assumed to be twice continuously differentiable459

with uniformly bounded derivatives. Furthermore, with the inclusion of the shift460

term, ∇xKϵ,δt can be regarded as smooth, similar to I4,2. The smoothness of ∇xKϵ,δt461

and c̃n−1 in [−L
2 ,

L
2 ]

3 \ [− L
2H , L

2H ]3 ensures that the integrand is twice differentiable,462

and its second derivatives are uniformly bounded. As a result, the error ∥I6 − I4,2∥463

can be bounded by:464

(3.23) ∥I6 − I4,2∥ ≤ C2(
L

H
)2,465

where the constant C2 satisfies that466

C2 = O(∥∇2
(
∇xKϵ,δt ∗ c̃n−1

)
∥).467

The boundedness of C2 is a combined outcome of the derivation, as it relies on the468

uniform bounds of the second derivatives of the integrand, which are guaranteed by469

both the smoothness of ∇xKϵ,δt in [−L
2 ,

L
2 ]

3 \ [− L
2H , L

2H ]3 and Assumption 2 on c̃n−1.470

The integral I4,1 is defined as:471

I4,1 =

∫
z∈[− L

2H , L
2H ]

3
∇xKϵ,δt(z)c̃n−1(x− z) dz472

=

∫
z∈[− L

2H , L
2H ]

3
∇xKϵ,δt(z)

(
c̃n−1(x)−∇c̃n−1(x) · z+

1

2
z⊤H(c̃n−1(ξ))z

)
dz473

:= I
(0)
4,1 + I

(1)
4,1 +R1,

(3.24)

474

where H(c̃n−1(ξ)) is the Hessian matrix of c̃n−1 (composed of second-order partial475

derivatives at some point ξ between z and x).476

Since
∫
z
z dz = 0 over a symmetric domain, the zeroth-order term I

(0)
4,1 vanishes477

(3.25) I
(0)
4,1 = c̃n−1(x)

∫
z

exp(−β∥z∥)
4π∥z∥3

(1 + β∥z∥)z dz = 0,478

where β =
√
λ2 + ϵ/δt is the same notation in Eq.(2.9).479

For the first term I
(1)
4,1 , switching to spherical coordinates: let ∥z∥ = r, z = rẑ,480

where ẑ is the unit vector (sin θ cosϕ, sin θ sinϕ, cos θ). Substituting these, the integral481
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becomes:482

∥I(1)4,1∥ ≤ ∥ −
∫ L

2H

0

∫ π

0

∫ 2π

0

exp(−βr)
4πr3

(1 + βr)r4ẑ(ẑ · ∇c̃n−1(x)) sin θ dϕ dθ dr∥483

= ∥1
3
∇c̃n−1(x)

∫ L
2H

0

r exp(−βr)(1 + βr) dr∥484

=

∥∥∥∥−∇c̃n−1(x)

β2

[
1−

(
1 + β

L

2H
+

1

3
(β

L

2H
)2
)
exp

(
−β L

2H

)]∥∥∥∥485

≤
∥∥∥∥∇c̃n−1(x)

β2

∥∥∥∥486

≤
∣∣∣∣M3

β2

∣∣∣∣ ,(3.26)487

where, according to Assumption 3, β diverges to positive infinity at a faster rate than488

H, and according to Assumption 2, M3 is the uniform bound of ∇c̃n−1.489

Under Assumption 2, H(c̃n−1(ξ)) is bounded, then we can get the inequality for490

the remainder term R1.491

|R1| ≤ |
1

2

∫ L
2H

0

∫ π

0

∫ 2π

0

exp(−βr)
4πr3

(1 + βr) · r2(ẑ⊤H(c̃n−1(ξ))ẑ) · r2 sin θ dϕ dθ dr|492

≤ |K
6

∫ L
2H

0

r exp(−βr)(1 + βr) dr|493

≤ K

2β2
,(3.27)494

where K is the spatial Lipschitz constant for ∇c̃.495

From the above inequalities, we can conclude that:496

(3.28) ∥I4 − I6∥ ≤ C2(
L

H
)2 +

1

β2

(
M3 +

K

2

)
.497

We now proceed to estimate (∇xKϵ,δt ∗ ρn)(X̃
p
n) in ∇c̃ and ∇˜̃c. Using the RBM in498

Alg.2.2, we replace499
P∑

q=1,q ̸=p

M0

P
∇xKϵ,δt(X̃

p
n − X̃q

n)500

with501 ∑
s∈Cp,s̸=p

M0

R
∇xKϵ,δt(X̃

p
n − X̃s

n).502

We write503

ζn,p :=

P∑
q=1,q ̸=p

M0

P
∇xKϵ,δt(X̃

p
n − X̃q

n)−
∑

s∈Cp,s̸=p

M0

R
∇xKϵ,δt(X̃

p
n − X̃s

n).504

Lemma 3.7. For ∀n ∈ N+, p ∈ 1, 2, ..., P ,505

E(∥ζn,p∥) ≤M0M4

√(
1

R
− 1

P

)
,(3.29)506
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where M4 = maxq ̸=p ∥∇xKϵ,δt(X̃
p
n − X̃q

n)∥, M0 is the conserved total mass, P is the507

total number of particles, R is the batch size.508

Proof. Similar to Lemma 3.1 in [18], we rewrite509

fp =
∑

s∈Cp,s̸=p

M0

R
∇xKϵ,δt(X̃

p
n − X̃s

n) =

P∑
q=1,q ̸=p

M0

R
∇xKϵ,δt(X̃

p
n − X̃q

n)I(p, q),(3.30)510

where I(p, q) means q is in the batch Cp. Here we have that I(p, q) is a Bernoulli511

random variable with E[I(p, q)] = R
P , which indicates that E[ζn,p] = 0.512

E|fp|2 =
M2

0

R2

∑
q,r:

q ̸=r,q ̸=p,
r ̸=p

∥∇xKϵ,δt(X̃
p
n − X̃q

n) · ∇xKϵ,δt(X̃
p
n − X̃r

n)∥2P (I(p, q)I(p, r) = 1)

+
M2

0

R2

P∑
q=1,q ̸=p

∥∇xKϵ,δt(X̃
p
n − X̃q

n)∥2P (I(p, q) = 1)

=
M2

0

RP

P∑
q=1,q ̸=p

∥∇xKϵ,δt(X̃
p
n − X̃q

n)∥2

+
M2

0

P 2

∑
q,r:q ̸=r,q ̸=p,r ̸=p

∥∇xKϵ,δt(X̃
p
n − X̃q

n) · ∇xKϵ,δt(X̃
p
n − X̃r

n)∥2.

513

Hence,514

Var(ζn,p) = E|fp|2 − (E|fp|)2515

= M2
0 (

1

R
− 1

P
)
1

P

P∑
q=1,q ̸=p

∥∇xKϵ,δt(X̃
p
n − X̃q

n)∥2.(3.31)516

According to Jensen’s Inequality, we obtain:517

E(∥ζn,p∥) ≤
√
E(∥ζn,p∥2) =

√
Var(ζn,p) ≤M0M4

√(
1

R
− 1

P

)
,(3.32)518

where M4 = maxq ̸=p ∥∇xKϵ,δt(X̃
p
n − X̃q

n)∥. Since all particles are located at distinct519

positions in the SIPF-r algorithm (X̃p
n ̸= X̃q

n for p ̸= q), there exists a minimum520

separation distance dmin > 0 between any two particles. Consequently, ∥∇xKϵ,δt(X̃
p
n−521

X̃q
n)∥ is bounded for all pairs of particles. This ensures thatM4, which is the maximum522

of these kernel gradient norms, is finite.523

Now we quantify the error between ∇˜̃c and ∇c as follows.524

Lemma 3.8. For ∀n ∈ N+, with high probability:525

∥∇˜̃c(x, tn)−∇c(x, tn)∥526

≤L3/2 max
j∈H
∥ωj∥∥α̃tn;j − αtn;j∥527

≤
(
C3 ·

H2

O(
√
P )

+ C4 ·H
)
δt+O( δt

2

H3
) + C5 ·H2 · δt2528

+ C3 ·H2δt · E(∥X̃tn −Xtn∥) + L
3
2 max

j∈H
∥ωj∥|α̃tn−1;j − αtn−1;j|,(3.33)529
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where C3, C4, C5 are constants, tn = nδt.530

Proof. We begin with the Fourier transform of the difference between ˜̃c and c:531

F{˜̃c− c}(k) = ˜̃̂c(k)− ĉ(k),532

where k = (k1, k2, k3) is the Fourier dual variable.533

Next, we consider the Fourier transform of the gradient difference ∇˜̃c−∇c. Using534

the properties of the Fourier transform, we have:535

F{∇˜̃c−∇c}(k) = ik ·
(˜̃̂
c(k)− ĉ(k)

)
.536

Here, the operation ik corresponds to multiplication in the Fourier domain, which is537

the Fourier representation of the gradient operator in real space. By the Parseval’s538

theorem,539

(3.34) ∥∇c(x, tn)−∇˜̃c(x, tn)∥ =
√√√√ L3

H3

∑
j∈H

∥ωj∥2|αtn;j − α̃tn;j|2.540

Using the conclusion of Lemma 3.5 and inequality
∑n

j=1(ajbj) ≤ n ·max ajbj , we541

obtain that with high probability:542

∥∇c(x, tn)−∇˜̃c(x, tn)∥543

≤L 3
2 max

j∈H
∥ωj∥∥α̃tn;j − αtn;j∥544

≤
(
C3 · O

(
H2

√
P

)
+ C4 ·H

)
δt+O( δt

2

H3
) + C5 ·H2 · δt2545

+ C3 ·H2δt · E(∥X̃tn −Xtn∥) + L
3
2 max

j∈H
∥ωj∥|α̃tn−1;j − αtn−1;j|,(3.35)546

where the constants C3, C4, C5 are given by:547

(3.36) C3 =
3
√
2π2M0

ϵ
√
L

, C4 =
2π
√
3LM0

ϵ
, C5 =

3π2M0M3

ϵ
√
2L

.548

Hence, combining Lemma 3.6, 3.7, 3.8 and Eq.(3.19), we get that with high549

probability:550

E(∥∇c(X̃tn , tn)−∇c̃(X̃tn , tn)∥)551

≤E(∥∇c(X̃tn , tn)−∇˜̃c(X̃tn , tn)∥) + E(∥∇˜̃c(X̃tn , tn)−∇c̃(X̃tn , tn)∥)552

≤ ϵ

δt

(
C2(

L

H
)2 +

1

λ2 + ϵ
δt

(M3 +
K

2
)

)
+M0M4

√(
1

R
− 1

P

)
553

+ L3/2 max
j∈H
∥ωj∥∥α̃tn;j − αtn;j∥554

≤ ϵ

δt

(
C2(

L

H
)2 +

1

λ2 + ϵ
δt

(M3 +
K

2
)

)
+M0M4

√(
1

R
− 1

P

)
555

+

(
C3 · O

(
H2

√
P

)
+ C4 ·H

)
δt+O( δt

2

H3
) + C5 ·H2 · δt2556

+ C3 ·H2δt · E(∥X̃tn −Xtn∥) + L3/2 max
j∈H
∥ωj∥|α̃tn−1;j − αtn−1;j|.(3.37)557
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For simplicity of notation in the proof below, we define:558

an := E(∥X̃tn −Xtn∥),(3.38)559

bn := L3/2 max
j∈H
∥ωj∥∥α̃tn;j − αtn;j∥.(3.39)560

The following provides a bound on the error between X̃tn+1
and Xtn+1

.561

Lemma 3.9. For ∀n ∈ N+,562

E(∥X̃tn+1
−Xtn+1

∥) ≤(1 + χKδt)E(∥X̃tn −Xtn∥) + χϵC2(
L

H
)2563

+ χδt

(
L3/2 max

j∈H
∥ωj∥∥α̃tn;j − αtn;j∥+ 3M3 +

K

2
+

1

O(
√
R)

)
,(3.40)564

where K is the Lipschitz constant, M3 is the uniform bound of ∇c, C2 is a constant565

that depends on the norm of the second derivative of ∇xKϵ,δt, tn = nδt.566

Proof. According to Eqs.(2.15)-(2.16),567

E(∥X̃tn+1
−Xtn+1

∥)568

≤E(∥X̃tn −Xtn∥) + χE(
∫ tn+1

tn

∥∇c̃(X̃tn , tn)−∇c(Xs, s)∥ ds)569

=E(∥X̃tn −Xtn∥) + χ

∫ tn+1

tn

E(∥∇c̃(X̃tn , tn)−∇c(Xs, s)∥) ds,(3.41)570

by the triangle inequality and Tonelli’s theorem. According to the Assumption 2,571

∥∇c̃(X̃tn , tn)−∇c(Xs, s)∥572

≤∥∇c̃(X̃tn , tn)−∇c(X̃tn , tn)∥+ ∥∇c(X̃tn , tn)−∇c(Xtn , tn)∥573

+ ∥∇c(Xtn , tn)−∇c(Xs, s)∥574

≤∥∇c̃(X̃tn , tn)−∇c(X̃tn , tn)∥+K∥Xtn − X̃tn∥575

+ ∥∇c(Xtn , tn)−∇c(Xs, s)∥,(3.42)576

where K is the Lipschitz constant.577
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Using the notations for an and bn in Eqs.(3.38)-(3.39), we have:578

an+1 =E(∥X̃tn+1
−Xtn+1

∥)579

≤E(∥X̃tn −Xtn∥) + χ

∫ tn+1

tn

E(∥∇c̃(X̃tn , tn)−∇c(X̃tn , tn)∥) ds580

+ χK

∫ tn+1

tn

E(∥X̃tn −Xtn∥) ds+ χ

∫ tn+1

tn

E(∥∇c(Xtn , tn)−∇c(Xs, s)∥) ds581

≤(1 + χKδt)an + χ

∫ tn+1

tn

E(∥∇c(Xtn , tn)−∇c(Xs, s)∥) ds582

+ χδt

(
bn +

ϵ

δt

(
C2(

L

H
)2 +

1

λ2 + ϵ
δt

(M3 +
K

2
)

)
+M0M4

√(
1

R
− 1

P

))
583

≤(1 + χKδt)an + χδtbn584

+ χδt

(
2M3 +

ϵ

δt

(
C2(

L

H
)2 +

1

λ2 + ϵ
δt

(M3 +
K

2
)

)
+M0M4

√(
1

R
− 1

P

))
585

≤(1 + χKδt)an + χδt

(
bn + 3M3 +

K

2
+O( 1

4
√
P
)

)
+ χϵC2(

L

H
)2,

(3.43)

586

where K is the Lipschitz constant, M3 is the uniform bound of ∇c, thereby concluding587

the proof.588

Now, we are ready to prove Theorem 3.3.589

Proof of Theorem 3.3. From Lemmas 3.9 and Eq.(3.37), we obtain the system of590

inequalities that couples an and bn defined in Eqs.(3.38)-(3.39):591

an+1 ≤(1 + χKδt)an + χδt

(
bn + 3M3 +

K

2
+O( 1√

R
)

)
+ χϵC2(

L

H
)2,

(3.44)

592

bn+1 ≤
(
C3 · O

(
H2

√
P

)
+ C4 ·H

)
δt+O( δt

2

H3
) + C5 ·H2δt2 + C3 ·H2δtan+1 + bn.

(3.45)

593

From this coupled system, we can derive a general bound for an. Substituting594

Eq.(3.45) into Eq.(3.44), we iteratively propagate and simplify the inequality to de-595

rive:596

an+1 ≤(1 + χ(Kδt+ C3 ·H2δt2))an + χϵC2(
L

H
)2 +

n−1∑
j=1

χC3 ·H2δt2aj597

+ χδt

(
3M3 +

K

2
+O( 1√

R
) + T ·

(
C3 · O

(
H2

√
P

)
+ C4 ·H

))
+O(δt2).(3.46)598

By the discrete Gronwall inequality, if (un) and (wn) be nonnegative sequences satis-599

fying600

un ≤ α+

n−1∑
k=0

ukwk ∀n ≥ 1,601
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for some constant α ≥ 0. Then for all n ≥ 1, the sequence (un) satisfies the bound:602

un ≤ α exp

(
n−1∑
k=0

wk

)
.603

Applying this result to the recursive inequality (3.46), we obtain the following bound604

with high probability:605

an+1 ≤
(
N0(

L

H
)2 +N1δt+

(
N2 · O

(
H2

√
P

)
+N3 ·H +

1

O(
√
R)

)
· δt+O(δt2)

)
606

· exp(1 +N4δt+N2H
2δt),(3.47)607

for ∀n ≥ 0, where608

(3.48)

N0 = χϵC2, N1 = χ(3M3 +
K

2
), N2 = χTC3, N3 = χC4, N4 = χK.609

Here, C2 is a constant that defined in Eq.(3.23) in Lemma 3.6, C3, C4 are constants610

that defined in Eq.(3.36) in Lemma 3.8.611

According to the discrete and continuous dynamics defined in Eqs.(2.15)-(2.16), the612

1-Wasserstein distance between the approximate and exact distributions at time tn+1613

is given by:614

W1(ρ̃tn+1 , ρtn+1) = inf
γ∈Π(ρ̃tn+1

,ρtn+1
)

(∫
R3×R3

∥x− y∥L1 dγ(x,y)

)
,(3.49)615

where the infimum is taken over all possible couplings of the two distributions. Un-616

der the natural coupling induced by shared initial conditions and Brownian motion617

paths (i.e., X̃tn and Xtn evolve via the same Wiener process Ws), we explicitly con-618

struct a joint distribution γn = Law(X̃tn , Xtn). This coupling allows us to bound the619

Wasserstein distance as:620

W1(ρ̃tn+1
, ρtn+1

) ≤E(∥X̃tn+1
−Xtn+1

∥L1)621

≤
√
3E(∥X̃tn+1

−Xtn+1
∥L2)622

≤
(
S0(

L

H
)2 + S1δt+

(
S2O

(
H2

√
P

)
+ S3H +

1

O(
√
R)

)
δt+O(δt2)

)
623

· exp(1 + S4δt+ S2H
2δt),(3.50)624

where for ∀n ≥ 0625

(3.51) Si =
√
3Ni, for all i = 0, . . . , 4.626

The inequality follows from the fact that the Wasserstein distance is defined as the627

infimum over all possible couplings, and our construction provides one such coupling.628

The transition is obtained through the elementary norm inequality ∥x∥L1 ≤
√
3∥x∥L2629

for vectors in R3, which follows from the Cauchy-Schwarz inequality.630

Combining Eq.(3.47) with Lemma 3.5, we have:631

max
j∈H
∥α̃tn;j − αtn;j∥ ≤

(
S7

H
+

(
S8H + S9H

2 + S5
H

O(
√
R)

+ S10
H3

O(
√
P )

)
δt

)
632

· exp(1 + S4δt+ S2H
2δt) + S5

H

O(
√
P )

+ S6Hδt,(3.52)633

This manuscript is for review purposes only.



22 BOYI HU, ZHONGJIAN WANG, JACK XIN, ZHIWEN ZHANG

for ∀n ≥ 0, where634

(3.53)
S5 =

√
6M0T

2ϵ
, S6 =

√
3πTC1

2
, S7 =

√
6L2M0TS0

2ϵ
,

S8 =

√
6M0TS1

2ϵ
, S9 =

√
6L2M0TS3

2ϵ
, S10 =

√
6L2M0TS2

2ϵ
,

635

where C1 is a constant defined in Eq.(3.16) in Lemma 3.5. This completes the proof636

of Theorem 3.3.637

4. Numerical Experiments. The numerical experiments are divided into two638

main subsections: (1) validation of the assumptions and (2) validation of the con-639

vergence rate of the SIPF-r method. These experiments aim to empirically verify640

the theoretical foundations and practical performance of the algorithm. The inter-641

ested reader is referred to [39] for demonstrations that our algorithm can handle642

multi-modal initial data and resolve complex evolution processes, including merging643

of particle clusters and finite-time singularity formation in the 3D fully parabolic KS644

systems.645

4.1. Validation of Convergence Rate.646

4.1.1. Accuracy of SIPF-r Method. Because some adjustments have been647

made to the original SIPF algorithm [39], and the RBM [18] has been introduced,648

we verify the accuracy of the SIPF-r method in Section 3. In the radially symmetric649

case, the fully parabolic KS system (1.1) can be expressed as ρ(x, y, z, t) = ρ(r, t)650

and c(x, y, z, t) = c(r, t), where r =
√
x2 + y2 + z2. The system is then rewritten as651

follows:652

(4.1)


ρt = µ

(
∂2ρ

∂r2
+

2

r

∂ρ

∂r

)
− χ

(
∂ρ

∂r

∂f

∂r
+ ρ · (∂

2f

∂r2
+

2

r

∂f

∂r
)

)
,

ϵct =

(
∂2c

∂r2
+

2

r

∂c

∂r

)
− λ2c+ ρ.

653

To quantify the accuracy of the SIPF-r method, we compute a reference solution654

using a very fine mesh for the radial system, which serves as a benchmark for com-655

parison. We define the relative error between the cumulative distribution functions656

(CDFs) obtained from the radial finite difference method (FDM) and the SIPF-r657

method as658

(4.2) Relative Error =
1

N

N∑
i=1

{
0, if FFDM(si) = 0,
|FSIPF-r(si)−FFDM(si)|

FFDM(si)
, otherwise,

659

where FSIPF-r(si) and FFDM(si) represent the CDFs of ρ computed via the SIPF-r660

and FDM methods respectively, and si denotes the i-th radial mesh point in the FDM,661

which are the discrete points along the radial direction starting from the origin. To662

ensure the relative error is well-defined, we set it to zero wherever FFDM(si) = 0.663

Here the initial distribution ρ0 is assumed to be a uniform distribution over a ball664

centered at (0, 0, 0)T with radius 1. The model parameters are chosen as follows:665

µ = χ = 1, ϵ = 10−4, λ = 10−1.(4.3)666
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For the numerical computation, we use H = 24 Fourier basis in each spatial dimension667

to discretize the chemical concentration c and use P = 10000 particles to represent668

the approximated distribution ρ, where the batch size in Alg.2.2 is R = ⌊
√
P ⌋ = 100.669

The computational domain is Ω = [−L/2, L/2]3, where L = 8, and the total mass is670

chosen to be M0 = 20. The evolution of c and ρ is computed using Alg.2.3 with a671

time step size δt = 10−4, up to the final simulation time T = 0.1.672

In Fig.1, we present the evolution of particles over time, showing the dynamic673

behavior of ρ. Additionally, in Fig.2, we compare the cumulative probability curves674

of ρ obtained from the radial FDM and the SIPF-r method at T = 0.1, with a mean675

relative error of 0.05512 as defined in Eq.(4.2). This comparison demonstrates that the676

SIPF-r algorithm achieves high accuracy in approximating the true solution. These677

results validate the effectiveness of the SIPF-r algorithm in capturing the behavior of678

the particle distribution.679

(a) t=0 (b) t=0.025 (c) t=0.05 (d) t=0.1

Fig. 1: Scattering plot of particles with M0 = 20.

Fig. 2: Cumlative distribution of ρ computed by SIPF-r and radial FDM

4.1.2. Convergence of the SIPF-r Method. In this subsection, we validate680

the convergence of the SIPF-r numerically. Based on Eq.(3.52), the error between c̃681

and c can be quantified by the L2 error between their Fourier coefficients α̃ and α. We682

adopt the same initial conditions in Subsection 4.1.1. To eliminate the uncertainty683

introduced by the RBM, the reference solution is computed using the original SIPF684

method [39] with parameters δt = 10−6, H = 24, and P = 10000. Additionally,685

we set M0 = 20, T = 0.01 to ensure that the system remains free of singularities,686
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as verified in Fig.3 of [39]. To investigate the convergence with respect to the time687

step δt, we vary δt from 2−8T to 2−4T . Since Theorem 3.3 holds with high prob-688

ability, we perform 100 independent experiments for each δt to empirically validate689

the algorithm’s accuracy. The mean L2 error of the Fourier coefficients is computed690

over these 100 trials. As shown in Fig.3a, the slope of the mean L2 error versus691

δt on a logarithmic scale indicates an approximate first-order convergence rate, with692

e(δt) = O(δt1.023). This result aligns with the theoretical bound given in Eq.(3.4) of693

Theorem 3.3. Furthermore, we examine the mean L2 error of c̃(·, T ) for varying batch694

sizes R = 100, 200, 400, 800, 1600, while keeping P = 10000. From Eq.(3.4), with695

other parameters unchanged, the theoretical L2 error of c̃ with respect to the batch696

size R should scale as O(R− 1
2 ). This is empirically verified in Fig.3b, where the fitted697

convergence rate is e(R) = O(R−0.495), closely matching the theoretical prediction.698

(a) vs. time step δt (log-scale) (b) vs. batch size R (log-scale)

Fig. 3: L2 error of c̃ in SIPF-r

4.2. Validation of Theoretical Assumptions.699

4.2.1. Spatial Lipschitz Continuity. To verify the spatial Lipschitz continuity700

in Assumption 2, we change the spatial discretization, varying H from 6 to 24. At701

the final time T = 0.1, we randomly select 1000 pairs of particle points from a total702

of 10,000 particles in each calculation. The Spatial Lipschitz Constant L(H) for ∇c̃703

is defined as the maximum ratio of the gradient difference to the spatial distance over704

all pairs of particle points {x,y}:705

(4.4) L(H) := max
{x,y}

∥∇c̃(x, T )−∇c̃(y, T )∥
∥x− y∥

.706

The results, shown in Table 1, list the computed Lipschitz constant L(H) for each707

value of H. The variation in these values is relatively small, confirming that the708

spatial Lipschitz continuity holds for ∇c̃ computed by the SIPF-r algorithm.709

4.2.2. CFL-like Condition. To validate Assumption 3, we conduct experi-710

ments by selecting several pairs of (δt,H) and (P,H) that violate the conditions711

outlined in the assumption. Specifically, we choose the following pairs:712

- For (δt,H):713

(8× 10−3, 4), (4× 10−3, 8), (2× 10−3, 16), (1× 10−3, 32).714
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Fourier Modes(H) Spatial Lipschitz Constant(L(H))
6 0.002085
12 0.002106
18 0.002036
24 0.001957

Table 1: Spatial Lipschitz Constant of ∇c̃ vs. H.

- For (P,H):715

(1000, 4), (2000, 8), (4000, 16), (8000, 32).716

For each pair, we repeat the experiment 100 times and compute the mean of the717

relative error defined in Eq.(4.2). Following the notations in Assumption 3, we define718

κ = H
√
δt and ν = H√

P
. In Fig.4, we plot the error versus κ and ν, corresponding to719

the above pairs of (δt,H), (P,H). As δt decreases and H increases, it is evident that720

the error decreases. However, since H increases at a faster rate than δt decreases,721

which violates the condition κ = H
√
δt→ 0 in Assumption 3. Similarly, H increases722

at a faster rate than
√
P , which violates the condition ν = H√

P
→ 0. As a result, the723

error reduction slows down, and convergence cannot be achieved under these condi-724

tions. This demonstrates that convergence cannot be achieved under these conditions,725

thereby validating the necessity of Assumption 3.726

(a) vs. κ = H
√
δt (b) vs. ν = H√

P

Fig. 4: Relative Error

5. Conclusions. In this paper, we introduced a random batch variant [18] of the727

original SIPF method [39] to approximate the 3D fully parabolic KS system. This728

modification leverages the randomness in batch sampling to bypass the mean-field729

limit, reducing computational complexity without sacrificing accuracy. We established730

the L2 convergence of the SIPF-r method for the 3D fully parabolic KS system.731

Specifically, we prove the convergence with high probability for both the density732

ρ̃(x, t) and the concentration field c̃(x, t) to their respective exact solutions ρ(x, t) and733

c(x, t). The error bounds reveal a dependence on δt, H, P , and R, with the density734

and concentration field exhibiting distinct but interrelated convergence behaviors.735
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Computational results further validated the effectiveness of the SIPF-r method736

which maintains accuracy while supporting our assumptions on the regularity of the737

original KS system and the boundedness of the numerical approximation. The ob-738

served convergence rates for both the time step δt and the batch size R align closely739

with the theoretical predictions derived in Theorem 3.3. Our error estimates can be740

seen as a theoretical and computational advancement over the prior work [39], as741

we justify SIPF-r by providing a convergence analysis supported by numerical experi-742

ment. Future work will focus on improving the efficiency of the algorithm, particularly743

in high-dimensional settings, and refining error estimates, particularly the overesti-744

mated bounds for the Fourier mode H. Additionally, extending the SIPF-r method to745

other related systems, such as models with more complex chemo-attractant dynamics746

or systems involving anisotropic interactions, offers an exciting direction for future747

research.748
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