
OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE1

PROBLEMS∗2

HAOQIAN LI† , JIGUANG SUN‡ , AND ZHIWEN ZHANG§3

Abstract. Eigenvalue problems for elliptic operators play an important role in science and engi-4
neering applications, where efficient and accurate numerical computation is essential. In this work, we5
propose a novel operator inference approach for elliptic eigenvalue problems based on neural network6
approximations that directly maps computational domains to their associated eigenvalues and eigen-7
functions. Motivated by existing neural network architectures and the mathematical characteristics8
of eigenvalue problems, we represent computational domains as pixelated images and decompose9
the task into two subtasks: eigenvalue prediction and eigenfunction prediction. For the eigenvalue10
prediction, we design a convolutional neural network (CNN), while for the eigenfunction prediction,11
we employ a Fourier Neural Operator (FNO). Additionally, we introduce a critical preprocessing12
module that integrates domain scaling, detailed boundary pixelization, and main-axis alignment.13
This preprocessing step not only simplifies the learning task but also enhances the performance of14
the neural networks. Finally, we present numerical results to demonstrate the effectiveness of the15
proposed method.16

Key words. Operator inference, elliptic eigenvalue problems, convolutional neural network,17
Fourier Neural Operator.18

MSC codes. 35J15, 65N25, 68T07, 65T50.19

1. Introduction. Eigenvalue problems for partial differential equations (PDEs)20

arise in a wide range of disciplines, including mathematics, physics, and engineer-21

ing. Classical numerical methods—such as the finite element method, finite difference22

method, and spectral method—have been extensively studied and successfully applied23

[6, 11, 3]. While these methods are effective and reliable, they are often computa-24

tionally intensive, rendering them less suitable for time-sensitive applications such as25

real-time simulation and inverse problems [18, 16].26

Recently, data-driven and deep learning approaches have gained increasing at-27

tention for the computation of eigenvalue problems. In [7], Han et al. construct28

two deep neural networks to represent eigenfunctions in high-dimensional settings.29

Li and Ying [13] propose a semigroup-based method using neural networks to solve30

high-dimensional eigenvalue problems. In [22], Wang and Xie develop a tensor neural31

network approach to compute multiple eigenpairs. Ji et al. [9] introduce a deep Ritz32

method for approximating multiple elliptic eigenvalues in high dimensions. Ben-Shaul33

et al. [1] design an unsupervised neural network to compute multiple eigenpairs, and34

Dai et al. [4] propose a subspace method utilizing basis functions generated by neural35

networks.36

∗Submitted to the editors DATE.
Funding: JS was partially supported by NSF Grant DMS-2109949 and SIMONS Foundation

Collaboration Grant 711922. ZZ was partially supported by the National Natural Science Foundation
of China (Project 92470103), the Hong Kong RGC grant (Project 17304324), an R&D Funding
Scheme from the HKU-SCF FinTech Academy, the Outstanding Young Researcher Award of HKU
(2020-21), and Seed Funding for Strategic Interdisciplinary Research Scheme 2021/22 (HKU).

†Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR,
China. lihaoqianlhq@connect.hku.hk.

‡Corresponding author. Department of Mathematical Sciences, Michigan Technological Univer-
sity, Houghton, MI 49931, U.S.A. jiguangs@mtu.edu.

§Corresponding author. Department of Mathematics, The University of Hong Kong, Pokfulam
Road, Hong Kong SAR, China. AND Materials Innovation Institute for Life Sciences and Energy
(MILES), HKU-SIRI, Shenzhen, P.R. China. zhangzw@hku.hk

1

This manuscript is for review purposes only.

mailto:lihaoqianlhq@connect.hku.hk
mailto:jiguangs@mtu.edu
mailto:zhangzw@hku.hk

2 H, LI, J. SUN, AND Z. ZHANG

In contrast with the above studies, which treat one eigenvalue problem (the do-37

main is fixed), we are interested in the development of neural operators. Focusing38

on elliptic eigenvalue problems, we aim to build deep neural networks that take a39

general domain as input and output eigenvalues and/or eigenfunctions. Such oper-40

ator learning is crucial for many query scenarios, e.g., shape optimization, inverse41

spectral problems, and real-time simulations, for which fast and reliable predictions42

of eigenvalues and eigenfunctions of different domains are necessary.43

The first challenge lies in reformulating the eigenvalue problem as an operator44

learning task. This reformulation can be approached in various ways—for instance, by45

representing the domain boundary as a continuous function. In this paper, we adopt46

a neural-network-oriented strategy. Specifically, we choose an operator representation47

that aligns with existing neural networks known to perform well on similar problems.48

Leveraging the strengths of Convolutional Neural Networks (CNNs, [12]) and Fourier49

Neural Operators (FNOs, [14]), we represent both the computational domains and50

their associated eigenfunctions as pixelated images. This image-based representation51

explicitly preserves the geometric features of the domains, which is beneficial for52

learning and generalization.53

The second challenge lies in generating a suitable dataset. Our dataset includes54

both random polygonal domains and smooth domains constructed using random55

Bézier curves. To support learning from pixel-based representations, we introduce56

a preprocessing module designed to address several key issues. First, we scale each57

domain to fit within the unit square, ensuring consistent size across samples. To ac-58

count for the rotational and translational invariance of eigenvalues, we apply a main59

axis alignment (ma) technique to normalize domain orientation. Since pixelization60

can introduce representation errors, particularly along rapidly varying boundaries,61

we apply a detailed pixelization (dp) technique that refines boundary representation62

without increasing image resolution or computational cost. This preprocessing step63

standardizes the input data and enables the model to focus on intrinsic geometric64

features, rather than being distracted by variations in scale, position, or orientation.65

The proposed method primarily falls within the framework of neural operator66

learning [15, 2, 23]. Since the introduction of Fourier Neural Operators (FNOs),67

there has been growing interest in employing them for learning mappings between68

infinite-dimensional function spaces, with demonstrated success in applications such69

as weather forecasting and inverse problems [10, 20, 17]. FNOs excel in learning com-70

plex mappings between function spaces due to their ability to capture both local and71

global features through Fourier transforms. Our proposed method extends this capa-72

bility by using CNNs and FNOs to respectively predict eigenvalues and eigenfunctions.73

Specifically, we employ CNNs to learn the mapping from the domain representations74

(pixelated images) to eigenvalues, and FNOs to learn the mapping from domains to75

eigenfunctions. This separation of tasks not only enhances the model’s interpretabil-76

ity, but also allows for flexible model expansion [5]. A key strength of our method77

is its generalizability to unseen domain geometries, which is particularly useful for78

shape optimization and real-time design queries, where rapid evaluation of diverse79

configurations is critical.80

We conduct extensive experiments to evaluate the robustness, generalization ca-81

pability, and predictive accuracy of the proposed method. The results demonstrate82

that our approach achieves high accuracy in both regression and function approxi-83

mation tasks for the first few eigenpairs. Notably, the relative error in eigenvalue84

prediction remains stable across different eigenvalue indices, yielding uniformly low85

errors for the first 20 eigenvalues. In contrast, the relative error in eigenfunction86

This manuscript is for review purposes only.

OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE PROBLEMS 3

prediction tends to increase with higher eigenvalue indices, reflecting the growing87

complexity and oscillatory nature of the corresponding eigenfunctions.88

The rest of the paper is organized as follows. In Section 2, we discuss the model89

setup and data generation. We provide details for the main axis alignment and de-90

tailed pixelization. Section 3 presents the structures of the CNN and FNO for ei-91

genvalue and eigenfunction prediction, respectively. The loss functions and training92

of the networks are also discussed. In Section 4, we present various experiments to93

demonstrate the effectiveness of networks. We end up with conclusions and future94

work in Section 5.95

2. Model Setup and Data Generation. In this section, we present the modal96

problem, the choice of the operator, and the generation of dataset. We consider the97

representative Dirichlet eigenvalue problem in two dimensions. Let Ω ⊂ R2 be a98

simply connected bounded Lipschitz domain. The eigenvalue problem is to find λ ∈ R99

and u ∈ H1(Ω) such that100

(2.1) −∆u = λu in Ω and u = 0 on ∂Ω.101

As stated above, we shall represent Ω by an image such that the shape information102

is encoded in pixel values, 1 for pixels inside the domain and 0 outside. This represen-103

tation allows for the incorporation of geometric information. To further simplify the104

task, we shall treat the eigenvalues and the eigenfunctions separately by introducing105

two subtasks: Ω → λ and Ω → u.106

The eigenvalues are invariant to both position and rotation of Ω. In addition,107

they are scale-dependent. If we multiply the x and y coordinates by a factor k, the108

eigenvalues are scaled by a factor of 1
k2 . Hence, we first scale a domain such that it fits109

into the unit square [0, 1]2. Taking these properties into consideration, we introduce110

a preprocessing module to simplify the task.111

2.1. Domain Generation. To generate a domain, we select n random points112

in [0, 1]2, enforcing a minimum distance threshold c between them. These points are113

translated so that the centroid is (0, 0) and then reordered according to their principal114

arguments, denoted by p1, p2, ..., pn. Polygons are obtained by connecting adjacent115

points with line segments116

(2.2) Li,i+1(t) = t · pi + (1− t) · pi+1, t ∈ [0, 1].117

To obtain a smooth domain, a cubic Bézier curve segment is generated to connect118

pi and pi+1. Then ∂Ω is obtained by concatenating all the Bézier curve segments. We119

briefly describe how to construct a cubic Bézier curve as follows. The angles between120

each pair of consecutive points are calculated. A weighted average is then computed121

(2.3) θ∗i,i+1 = w · θi−1,i + (1− w) · θi,i+1, i = 1, 2, . . . , n− 1,122

where θi is the principle argument of pi and w = arctan(ϵ)/π + 0.5. Here ϵ is a123

parameter that controls the “smoothness” of the curve with ϵ = 0 being the smoothest.124

Two control points between pi and pi+1 are generated125

(2.4)
p∗i = pi + r · (cos(θ∗i,i+1), sin(θ

∗
i,i+1)),

p∗i+1 = pi+1 − r · (cos(θ∗i,i+1), sin(θ
∗
i,i+1)),

126

where the positive number r ∈ [0, 1] controls the curvature. For r = 0, p∗i and127

p∗i+1 coincide, respectively, with pi and pi+1, and the curve has larger curvature at128

This manuscript is for review purposes only.

4 H, LI, J. SUN, AND Z. ZHANG

the control points. Intermediate values of r produce smoother curves, with maximal129

smoothness when r = 0.5. When increasing further toward r = 1, sharp features start130

to appear near the crossing of the initial and final curve tangents. The points p∗i and131

p∗i+1 are used to define a cubic Bézier curve segment connecting pi and pi+1:132

(2.5) Bi,i+1(t) = (1− t)3pi + 3(1− t)2tp∗i + 3(1− t)t2p∗i+1 + t3pi+1, t ∈ [0, 1].133

The above method for generating smooth domain boundaries is inspired by a134

discussion on Stack Overflow 1 and has also been employed in [21] for the generation135

of random shapes.136

2.2. Dataset Generation. The eigenvalue problem (2.1) has several properties137

that bring challenges to the design of effective neural networks. Firstly, it is rota-138

tionally invariant. Traditional computer vision techniques typically address this by139

employing data augmentation, where images are rotated by various angles to increase140

the diversity of the training data. Another approach is to introduce global pooling141

layers or more complex architectures to capture rotational invariance. However, these142

methods do not fully address the difficulty.143

We choose a different approach that simplifies the problem: main axis align-144

ment, which aligns the domains along their principal axes. This preprocessing step145

eliminates the rotational invariance by adjusting the domain’s orientation before146

feeding it into the model. Specifically, given a series of points on ∂Ω, denoted by147

Q =

(
x0 x1 . . . xn

y0 y2 . . . yn

)T

, we compute the covariance matrix of Q148

(2.6) M =
1

n− 1

n∑
i=1

(Q− Q̄)T (Q− Q̄).149

Then, we apply the eigenvalue decomposition of M150

(2.7) M = DM · vM ,151

where the eigenvectors vM are sorted in ascending order according to the associated152

eigenvalues (diagonal of DM). The principal axes are given by these eigenvectors. We153

then rotate the region coordinates about its centroid using vM154

(2.8) Qrotated = (Q− Q̄) · vM .155

Secondly, the problem is flipping invariant about x or y axis. To address this156

issue, we impose an additional constraint by requiring that the x-direction standard157

deviation in the left half of the region is less than or equal to that of the right half,158

and that the y-direction standard deviation in the lower half is less than or equal to159

that of the upper half.160

Thirdly, we need to represent a domain as a low-resolution pixelated image. The161

value of a pixel is 0 if it is completely outside ∂Ω and 1 if it is completely inside. The162

situation for pixels on the boundary is more complicate. The eigenvalues are sensitive163

to the pixel value on the boundary if the domain is rather narrow. A simple 0/1164

choice inevitably reduces accuracy.165

This issue is particularly subtle and cannot be resolved through conventional hy-166

perparameter tuning, as illustrated by the following example. Consider four rectangu-167

lar domains Ωi = (0, wi)× (0, h) with height h = 1 and width wi =
2+ i

4

32 , i = 1, 2, 3, 4.168

1https://stackoverflow.com/questions/50731785/create-random-shape-contour-using-matplotlib

This manuscript is for review purposes only.

OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE PROBLEMS 5

Using 32 × 32 pixels, they have the same image but different eigenvalues. The first169

Dirichlet eigenvalues are170

(2.9) λi = π2

(
1

w2
i

+
1

h2

)
, i = 1, 2, 3, 4,171

which approximately equal to 2006.21, 1626.91, 1346.26, and 1132.81.172

While increasing the image resolution can help, it significantly increases the com-173

putational cost. To this end, we employ edge-sensitive pixelization. Specifically, we174

first generate a high-resolution image and then use average pooling to down-sample175

the image to the target resolution. The pixel value near the boundary is no longer176

binary (0/1) but instead a value between 0 and 1, reflecting the proportion of the177

region contained within the pixel. Although this technique is simple, it significantly178

improves accuracy without increasing the training cost or the size of the model.179

To generate the dateset, i.e., eigenpairs of (2.1), we use a linear Lagrange finite180

element code on a triangular mesh with mesh size h ≈ 0.01 (Chp. 3 of [19]). The181

errors of the computed eigenpairs can be ignored for our purposes. Figure 1 illustrates182

the workflow of data generation. Figure 2 displays some samples from the dataset.183

For each domain, it shows the first ten eigenvalues and the associated eigenfunctions.184

3. Methodology.185

3.1. CNN for Eigenvalue Prediction. For eigenvalue prediction, we propose186

a convolutional neural network. CNNs are particularly well-suited for the task due to187

their powerful ability to capture both global and local geometric features. The local188

receptive fields of CNNs allow them to effectively extract fine-grained spatial informa-189

tion, while the deeper layers capture global patterns that are critical for understanding190

the overall shape of the domain.191

In comparison to traditional Deep Neural Networks (DNNs), CNNs exhibit a192

specialized architecture tailored for processing grid-like data, such as images. One193

of the primary distinctions lies in how CNNs handle spatial relationships. Unlike194

DNNs, which treat input data as a flattened vector, CNNs preserve the spatial ar-195

rangement of pixels. Furthermore, CNNs reduce the computational burden compared196

to DNNs by employing weight sharing and pooling operations. The shared weights in197

convolutional layers drastically reduce the number of parameters compared to fully198

connected layers in DNNs. This not only enhances the model’s ability to generalize199

but also makes CNNs more computationally efficient. Note that CNNs possess the200

universal approximation property [8].201

The proposed CNN eigenvalue predictor consists of several key components: con-202

volutional layers, max-pooling layers, batch normalization layers, fully connected lay-203

ers, activation functions (ReLU), and skip connections. Below is a brief overview of204

each component and its role.205

The convolutional layer is the core building block of a CNN. It applies a set of206

learnable filters (or kernels) to the input data in order to extract local features. For207

a 2D image input, the convolution operation is given by208

(3.1) Convk(X)(i, j) = (X ∗K)(i, j) =

k∑
m=0

k∑
n=0

X(i+m, j + n)K(m,n),209

where X ∈ Rd×d is the input image, K is the convolutional kernel (filter), k is the210

size of the filter.211

This manuscript is for review purposes only.

6 H, LI, J. SUN, AND Z. ZHANG

Fig. 1. Diagram of dataset generation.

Max-pooling is applied after a convolutional layer to downsample the spatial212

dimensions of the feature map. It reduces the computational complexity and helps213

prevent overfitting. The max-pooling is defined as214

(3.2) Poolk′(X)(i, j) = max
m,n∈[0,k′]

X(i+m, j + n),215

where k′ is the size of the pooling window. The operation selects the maximum value216

within each local region, producing a downsampled output.217

Batch normalization (Bn) is used to normalize the inputs by adjusting and scal-218

ing the activations. This helps to stabilize and speed up the training process. The219

This manuscript is for review purposes only.

OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE PROBLEMS 7

Fig. 2. Samples in the dataset. The first 10 eigenvalues and eigenfunctions are shown, as well
as their corresponding regions.

normalized output is given by220

(3.3) Bn(X) = γ

(
X− µ

σ

)
+ β,221

where µ and σ are the mean and standard deviation of the batch, respectively, and γ222

and β are learnable scaling and shifting parameters, respectively.223

The fully connected (FC) layer is applied after the convolutional and pooling224

layers to make predictions based on the extracted features. The FC layer takes the225

flattened output from the previous layer and computes a weighted sum, followed by226

a bias,227

(3.4) FCdin,dout(x) = Wdin×doutx+ bdout ,228

where Wdin×dout
is the weight matrix, x ∈ Rdin is the flattened input vector, and229

bdout
is the bias term.230

The activation function introduces non-linearity into the network, enabling it to231

learn complex patterns. We use the Rectified Linear Unit (ReLU)232

(3.5) ReLU(x) = max(0, x).233

This function replaces all negative values with zero, introducing sparsity and reducing234

the risk of vanishing gradients during the training.235

Skip connections (or residual connections) allow the model to bypass certain layers236

and directly pass the output from one layer to a deeper layer. In our case, since we do237

not need a very deep network, we use skip connections to pass downsampled original238

input to the deep convolution layers to allow the model to capture global features.239

These connections also help prevent the vanishing gradient problem and allow for240

more efficient training. In the context of downsampling, we use a 1 × 1 convolution241

to reduce the spatial dimensions242

(3.6) Skips(X) = X ∗K′(s)
1×1,243

This manuscript is for review purposes only.

8 H, LI, J. SUN, AND Z. ZHANG

where s is the stride and K′(s)
1×1 is a 1×1 conventional kernel with stride s, which cor-244

responds to the downsampling factor of the input. This operation effectively reduces245

the spatial dimensions of the input without changing the depth (number of channels)246

of the feature maps, making it suitable for skip connections that maintain spatial247

information while reducing computational cost. The result of this operation is added248

element-wise to the output of a convolutional layer, combining both local and global249

information.250

For different image sizes, the network needs to be slightly adjusted. For the251

32 × 32 case, we use 3 convolutional blocks, each containing a convolutional layer252

with 64/128/256 channels, kernel size 7/5/3, padding 3/2/1, and stride 1. Each253

convolutional layer is followed by a batchnorm layer, an activation function, and a254

max-pooling operation with size 2×2, which downsamples the width and height of the255

feature map by 2. Next, a skip connection of the downsampled input is added to the256

output of the max-pooling operation of each convolutional block. The convolutional257

block can be written as258

(3.7) ConvBlock(X) = Poolk′ (ReLU(Bn(Convk(X)))) + Skip(X).259

The output of the last convolutional block is then flattened and passed through260

three fully connected layers and two activation functions in between to make predic-261

tions. For 64×64, we simply add another conventional block and adjust the channels,262

kernel size, and padding accordingly. The rest of the network remains unchanged.263

The overall structure is illustrated in Figure 3.264

Fig. 3. Structures of the proposed CNNs. Left: 32× 32 image. Right: 64× 64 image.

3.2. FNO for Eigenfunction Prediction. We propose a Fourier Neural Op-265

erator (FNO) to learn the mapping between images and the eigenfunctions. Domains266

This manuscript is for review purposes only.

OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE PROBLEMS 9

with complex boundaries or irregular shapes have subtle influences on the eigenfunc-267

tions, and FNO’s ability to operate in the frequency domain can capture these features268

efficiently.269

An FNO is organized as a sequence of layers that alternately operate in the spa-270

tial domain and the frequency domain. In each Fourier block, the input is first passed271

through a linear mapping layer P to lift the dimensionality of the channels. Then,272

the lifted input passes through multiple Fourier blocks, in which a discrete Fourier273

transform F is applied, with a weight tensor multiplication R, which introduces learn-274

able parameters, followed by an inverse Fourier transform F−1. In the Fourier block,275

the lifted input is also processed in parallel by a local linear transformation W. The276

output of the above two paths is added element-wise and finally mapped back at the277

last Fourier block to the output channel dimension via another linear mapping Q. We278

describe each layer in more detail as follows.279

The first layer of the FNO applies a linear mapping P, which operates along280

the channel dimension of the input. This layer is to elevate the input channels to a281

higher-dimensional space, enabling the model to learn richer representations of the282

input data. The transformation is implemented as a fully connected (FC) layer283

(3.8) P(X) = FCcin,chd
(X),284

where X ∈ Rcin×d×d is the input with cin channels, cin and chd are the number of285

channels in the input and hidden space, respectively. It allows for increased flexibility286

and capacity in the subsequent layers of the model, as it projects the input features287

into a higher-dimensional space where more complex interactions can be captured.288

Once the input is mapped to a higher-dimensional space, the discrete Fast Fourier289

Transform (FFT) is applied to compute the frequency components of the input data,290

which are crucial for understanding periodic or spatially extended features of the291

domain292

(3.9) (FM (X))c =

d−1∑
x,y=0

Xc(x, y)e
− 2iπ(M1x+M2y)

d , c ∈ [1, chd],293

where M = (M1,M2) are the largest discrete modes for dimensions 1 and 2 (namely294

x and y direction) and Xc is the cth channel of X.295

FFT transforms the spatial domain data into a frequency domain representa-296

tion. Then the frequency domain representation is processed by a weight tensor297

R ∈ CMmax×chd×chd to introduce learnable parameters that enable the model to cap-298

ture specific patterns or features in the input data299

(3.10) (R · FM (X))m,c =

chd∑
j=1

Rm,c,j(FM (X))j , m ∈ [1,Mmax], c ∈ [1, chd].300

Afterward, an Inverse Fast Fourier Transform (IFFT) is applied to map X̃ =301

R · FM (X) to the spatial domain302

(3.11) (F−1
M (X̃))c =

dx̃−1∑
x̃=0

dỹ−1∑
ỹ=0

X̃c(x̃, ỹ)e
2iπ

(
(M1x̃)

dx̃
+

(M2ỹ)
dỹ

)
, c ∈ [1, chd].303

Finally, the folowing Fourier integral operator K is applied304

(3.12) KM (X)(x, y) = F−1(R · FM (X))(x, y).305

This manuscript is for review purposes only.

10 H, LI, J. SUN, AND Z. ZHANG

While the data passes through the Fourier integral operator, it also passes through306

a local linear transformation W in parallel, which is implemented as a two-stacked307

1 × 1 convolution with an activation function in between. It operates in the spatial308

domain and allows the model to perform fine-grained adjustments to the features.309

The transformation W is defined as310

(3.13) W(X) = Conv1×1(GeLU(Conv1×1(X))),311

where GeLU is the Gaussian Error Linear Unit312

(3.14)

GeLU(x) = x · Φ(x), where Φ(x) = 0.5x

(
1 + tanh

(√
2

π
(x+ 0.044715x3)

))
,313

a smooth approximation of ReLU that has been shown to improve performance in314

various deep-learning tasks.315

A Fourier block combining W and KM (X) is defined as316

(3.15) FourierBlockM (X) = GeLU (KM (X) +W(X)) .317

After several Fourier blocks, the output is passed through a second linear mapping318

Q, which converts the dimensionality of the channels back to the desired output319

dimension. This layer is implemented as a fully connected layer and is responsible for320

mapping the high-dimensional representations learned in the previous layers back to321

the output space. The mapping Q is defined as322

(3.16) Q(X) = FCchd,cout
(X).323

The complete network representation is as follows:324

(3.17) FNO(X) = Q ◦ FourierBlock(n)M ◦ . . . ◦ FourierBlock(1)M ◦ P(X).325

For different input image sizes, the same network architecture is used. Only the326

number of hidden channels changes. Specifically, for d × d images, the number of327

hidden channels is d. In the experiments, we use 4 Fourier blocks and 16 frequency328

modes in both directions. To better capture the spatial domain information after the329

Fourier transform, we incorporate positional encoding into the input. In particular,330

we augment the original single-channel input by adding x and y coordinate values of331

each sampling point as additional channels. Consequently, the input image becomes332

a three-channel representation. The overall architecture of the proposed FNO is333

illustrated in Figure 4.334

3.3. Network Training. We describe the loss functions for the networks and335

the training parameters. For the prediction of the eigenvalue, the loss function is336

(3.18) L1(ŷ, y) =
1

N

N∑
i=1

|ŷi − yi|,337

where N is the number of data points, ŷi’s are the predicted values, and yi’s are338

the actual values. The MSE penalizes large deviations between predicted and actual339

values.340

We use the Adam optimizer (β1 = 0.9, β2 = 0.999) for training. The initial learn-341

ing rate is set to 0.001, and the learning rate is halved every 10 steps during training.342

This manuscript is for review purposes only.

OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE PROBLEMS 11

Fig. 4. Structure of the proposed FNO.

This allows the model to start with a higher learning rate for faster convergence and343

gradually reduce it for finer adjustments as the model approaches the optimal solution.344

The dataset consists of 20, 000 domain-eigenvalue-eigenfunction triplets, with345

10, 000 smooth domains and 10, 000 non-smooth domains. We use 80% of the dataset346

(16, 000 input-output pairs) for training and the remaining 20% (4, 000 input-output347

pairs) for testing. The batch size is set to 32. The model is trained for 100 epochs.348

For the prediction of the eigenfunction, the design of the loss function and the349

training process are more challenging. One needs to take the following key elements350

into account. (1) Domain of definition. The output image should be 0 outside Ω.351

(2) Normalization. It is important that the predicted eigenfunctions are normalized.352

This prevents the model from learning arbitrary scaling factors. (3) Sign ambiguity.353

Even if the predicted eigenfunctions are normalized, they may still differ by a sign.354

To address the above difficulties, we propose an adaptive relative masked L2 loss355

(3.19) LARM2(ŷ,y) =
1

N

N∑
i=1

min {∥ŷi ⊗Xi − yi∥2, ∥−ŷi ⊗Xi − yi∥2} /∥yi∥2,356

where ⊗ denotes the Hadamard product (element-wise multiplication), Xi is a d× d357

binary mask indicating the domain interior, ŷ and y are the d× d predicted and true358

eigenfunctions, and ∥ · ∥2 denotes the L2 norm.359

Noted that the output y is already normalized such that360

(3.20) ∥yi∥2 = C, i ∈ {1, 2, . . . , N}.361

The loss function (3.19) ensures that the value of the predicted eigenfunction362

within the domain is optimized, while the value outside is ignored. It also takes363

care of the sign ambiguity by considering both positive and negative versions of the364

predicted eigenfunction. Finally, the denominator ∥yi∥2 normalizes the loss by the365

true eigenfunction norm within the region. It ensures that the predicted eigenfunctions366

have the same scale, reducing the difficulty of model training.367

Again, the Adam optimizer is used. The initial learning rate is 0.001 and the368

learning rate decay factor is 0.8. We set the batch size to be 128 and train for 50369

epochs. The remaining hyperparameters are the same as the eigenvalue case.370

4. Numerical Experiments. We present experimental results, including an371

ablation study, to show the performance of the proposed networks. Special atten-372

tion is devoted to the prediction of the first eigenpair, which plays a critical role in373

This manuscript is for review purposes only.

12 H, LI, J. SUN, AND Z. ZHANG

applications such as spectral geometry and quantum mechanics. Meanwhile, the suc-374

cessful prediction of other eigenpairs demonstrates the robustness and versatility of375

our approach.376

4.1. Eigenvalue Prediction. To evaluate the performance of the eigenvalue377

prediction, we use several metrics, including the Root Mean Squared Error (RMSE),378

R-squared (R2), and Mean Absolute Percentage Error (MAPE).379

Let yi and ŷi be the true eigenvalues and the predicted eigenvalues, respectively.380

The RMSE measures the average magnitude of the errors between the predicted and381

actual values382

(4.1) RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2.383

It is particularly sensitive to large errors, as it squares the differences before averaging.384

A lower RMSE indicates better prediction accuracy.385

Let ȳ be the mean of the true eigenvalues. The R-squared metric386

(4.2) R2 = 1−
∑N

i=1(ŷi − yi)
2∑N

i=1(yi − ȳ)2
387

measures the proportion of variance in the true eigenvalues that is explained by the388

model’s predictions. It indicates how well the model captures the underlying relation-389

ship between the input and the eigenvalue. An R2 value closer to 1 indicates that390

the model explains most of the variance in the data, while a value closer to 0 or even391

smaller than 0 suggests poor performance.392

Let ϵ be a small positive number. The MAPE is defined as393

(4.3) MAPE =
100%

N

N∑
i=1

∣∣∣∣ ŷi − yi
yi + ϵ

∣∣∣∣ ,394

which measures the average absolute percentage error between the predicted and395

true eigenvalues. The MAPE is particularly useful for comparing predictions across396

different scales.397

Figure 5 shows the loss curves for the first eigenvalue prediction for 32× 32 and398

64 × 64 images in log scale. Both the training and testing losses of the two models399

stop decreasing significantly around 80 epochs. Figure 6 shows the predictions of the400

first eigenvalues of some domains, which are close to the true values.401

Table 1 shows different error metrics for the prediction of the first eigenvalue.402

The detailed pixelization and main axis alignment significantly improve the model403

accuracy. The transition from a 32×32 grid to a 64×64 yields a slight improvement in404

the MAPE, from 1.15% to 0.73%, and a modest increase in the RMSE. The examples405

in the rest of the paper use the 32× 32 + dp + ma setting.406

Figure 7 presents several samples with large errors. They are elongated domains.407

Such domains are more sensitive to small pixelization errors. More intricate shapes408

tend to introduce greater approximation errors, leading to higher MAPEs.409

Next, we consider more eigenvalues. Table 2 shows the performance metrics for410

the 1st, 2nd, and 3rd eigenvalues. It can be seen that RMSE becomes larger for larger411

eigenvalues, while R2 and MAPE are relatively stable. Figure 8 plots RMSE, R2, and412

MAPE for the first 20 eigenvalues. RMSE increases uniformly with the eigenvalue413

index, and the growth rate aligns with the standard deviation of the corresponding414

eigenvalues. R2 and MAPE remain nearly constant.415

This manuscript is for review purposes only.

OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE PROBLEMS 13

Fig. 5. Losses in log scale for the first eigenvalue. Left: 32× 32 image. Right: 64× 64 image.

Fig. 6. Sample predictions of the first eigenvalue. Top: 32× 32. Bottom: 64× 64.

This manuscript is for review purposes only.

14 H, LI, J. SUN, AND Z. ZHANG

Table 1
Performance metrics for the first eigenvalue prediction with different settings. d × d+dp+ma

stands for d×d image with detailed pixelization on the boundaries and main axis alignment. d×d+ma
stands for d× d image with main axis alignment.

Setting RMSE R2 MAPE
32× 32+dp+ma 2.2121 0.9988 1.15%
32× 32+ma 5.9933 0.9917 1.75%
32× 32 7.3343 0.9864 1.67%
64× 64+dp+ma 2.2113 0.9988 0.73%
64× 64+ma 3.0124 0.9979 1.57%
64× 64 3.6447 0.9966 1.78%

Fig. 7. Samples with the largest errors for first eigenvalue predictions. Top: prediction samples
with the largest RMSEs. Bottom: prediction samples with the largest MAPEs. ”T”, ”P”, and ”E”
refer to the true, predicted, and error values, respectively. All samples are from the 32×32+dp+ma
setting.

This manuscript is for review purposes only.

OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE PROBLEMS 15

Table 2
Performance metrics for the first three eigenvalues (32× 32+dp+ma).

Eigenvalue index RMSE R2 MAPE
1 2.2121 0.9988 1.15%
2 6.7920 0.9963 1.22%
3 9.2938 0.9850 1.78%

Fig. 8. Prediction metrics for the first 20 eigenvalues. Left: RMSE. Middle: R2. Right: MAPE

4.2. Eigenfunction Prediction. We now present results for the eigenfunction416

prediction. Three metrics are used: Maximum Absolute Error (MaxAE), Peak Signal-417

to-Noise Ratio (PSNR), and Relative L1 Error (RelL1).418

The Maximum Absolute Error (MaxAE) is defined as the largest difference be-419

tween the predicted and true eigenfunctions420

(4.4) MaxAE = max |utrue(x)− upred(x)|,421

where upred(x) and utrue(x) are the predicted and true eigenfunctions evaluated at x,422

respectively.423

The Peak Signal-to-Noise Ratio (PSNR), often used in image and signal process-424

ing, is defined as425

(4.5) PSNR = 20 log10

(
maxx |utrue(x)|

RMSE

)
,426

where maxx |utrue(x)| is the maximum value of the true eigenfunction and RMSE is427

the Root Mean Squared Error between the predicted and true functions.428

PSNR provides a measure of the quality of the predicted eigenfunction by com-429

paring the noise (or error) relative to the maximum signal (the true function). A430

larger PSNR indicates better quality, as the error is smaller relative to the signal’s431

strength. This metric is especially useful for evaluating the overall quality of the pre-432

dicted eigenfunction, particularly when many small errors may not be captured by433

MaxAE.434

The Relative L1 Error (RelL1) is defined as435

(4.6) RelL1 =

∑
x |utrue(x)− upred(x)|∑

x |utrue(x)|
.436

The use of MaxAE, PSNR, and RelL1 allows for a comprehensive evaluation of437

the eigenfunction prediction: MaxAE gives insight into the worst-case errors, PSNR438

provides a relative measure of the prediction quality, and RelL1 offers an overall439

picture of the error function.440

Figure 9 shows the loss curves for the first eigenfunction prediction on the 32×32441

grid and the 64 × 64 grid in log scale. The decreases in training and testing losses442

This manuscript is for review purposes only.

16 H, LI, J. SUN, AND Z. ZHANG

slow down significantly after around 40 epochs, indicating that the models have been443

sufficiently trained. Figure 10 shows sample predictions of the first eigenfunction for444

both 32 × 32 and 64 × 64 grids. The predictions are generally close to the actual445

eigenfunctions, and the scale of errors of both grid sizes is relatively small.446

Fig. 9. Losses in log scale for the first eigenfunction. Left: 32× 32. Right: 64× 64.

Table 3 lists MaxAE, PSNR, and RelL1 for the first eigenfunction prediction under447

different settings. Similar to Table 1, the use of detailed pixelization (dp) and main448

axis alignment (ma) improves the accuracy. For the 32 × 32 grid, dp+ma reduces449

MaxAE from 0.26 to 0.12, improves PSNR from 42.64 to 52.00, and significantly450

reduces RelL1 from 3.63% to 1.30%. Similar results are observed for the 64× 64 grid.451

MaxAE decreases from 0.14 to 0.09, RelL1 decreases from 1.55% to 0.72%, and PSNR452

increases from 49.88 to 57.54.453

Table 3
Performance metrics for the first eigenfunction prediction with different settings. d×d+dp+ma

stands for d× d grid with detailed pixelization and main axis alignment. d× d+ma stands for d× d
grid with main axis alignment.

Setting MaxAE PSNR RelL1
32× 32+dp+ma 0.12 52.00 1.30%
32× 32+ma 0.27 43.14 3.57%
32× 32 0.26 42.64 3.63%
64× 64+dp+ma 0.09 57.54 0.72%
64× 64+ma 0.14 50.18 1.56%
64× 64 0.14 49.88 1.55%

Table 4 shows the performance metrics for different eigenfunctions. In contrast to454

Table 2, where the relative error (MAPE) remains stable for different eigenvalues, the455

prediction of eigenfunctions exhibits a clear trend: both the absolute error (MaxAE)456

and the relative error (RelL1) increase, and PSNR decreases.457

Table 4
Performance metrics for the different eigenfunctions (32× 32+dp+ma).

Index of Eigenvalue MaxAE PSNR RelL1
1 0.11 53.04 1.22%
2 0.37 42.13 7.04%
3 0.68 35.88 13.01%

Figure 11 presents several samples of the predicted second and third eigenfunc-458

tions. Although the prediction errors are larger than the first eigenfunction, the459

This manuscript is for review purposes only.

OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE PROBLEMS 17

Fig. 10. Sample predictions of the first eigenfunction. Top: 32× 32. Bottom: 64× 64.

predicted and true eigenfunctions remain close. For higher eigenfunctions, the model460

can capture the structure and key features.461

Figure 12 shows MaxAE, PSNR, and RelL1 for the first 20 eigenfunctions. The462

performance declines as the eigenfunction index increases. It is interesting that463

MaxAE, which reflects the absolute error, aligns with the average gradient norm of464

the eigenfunctions. This correlation indicates that higher eigenfunctions, with more465

complex structures and oscillations, pose greater challenges for accurate prediction.466

The simultaneous decrease in PSNR and increase in RelL1 can partially be attributed467

This manuscript is for review purposes only.

18 H, LI, J. SUN, AND Z. ZHANG

Fig. 11. Predictions of the second (top) and third (bottom) eigenfunctions.

to the resolution.468

Figure 13 shows predicted results for higher eigenfunctions (10th and 20th). For469

some samples, the predicted eigenfunctions preserve the overall structures, despite470

non-negligible errors. Other predicted eigenfunctions differ significantly from the ex-471

act ones.472

5. Conclusions. In this paper, we proposed a novel operator learning frame-473

work for the efficient prediction of eigenvalues and eigenfunctions of elliptic equations474

on various two-dimensional domains. Unlike most existing neural network methods475

This manuscript is for review purposes only.

OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE PROBLEMS 19

Fig. 12. Prediction metrics for the first 20 eigenfunctions. Left: MaxAE. Middle: PSNR.
Right: RelL1.

that focus on single eigenvalue problems or specific high-dimensional settings, our476

method takes different domains as inputs and outputs the corresponding eigenvalues477

and eigenfunctions. The key innovations of our approach are threefold. Firstly, we478

adopt a divide-and-conquer strategy to decompose the task into two subtasks: eigen-479

value prediction and eigenfunction prediction. Secondly, we reformulate the problem480

in a neural-network-oriented manner, enabling the effective application of CNNs for481

eigenvalue prediction and FNOs for eigenfunction prediction. Thirdly, we simplify the482

input problem before passing it into the neural networks, which helps to improve the483

training efficiency and prediction accuracy.484

To validate the effectiveness of our proposed method, we conducted extensive485

numerical experiments on a variety of two-dimensional elliptic domains. The results486

demonstrate that our method achieves significant improvements in terms of prediction487

accuracy and computational efficiency. In the future, we will extend our approach to488

more challenging problems, including non-self-adjoint eigenvalue problems, nonlinear489

eigenvalue problems and parameterized eigenvalue problems.490

Declarations. The authors have no competing interests to declare that are rel-491

evant to the content of this article.492

REFERENCES493

[1] I. Ben-Shaul, L. Bar, D. Fishelov, and N. Sochen, Deep learning solution of the eigenvalue494
problem for differential operators, Neural Computation, 35 (2023), pp. 1100–1134.495

[2] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart, Model reduction and496
neural networks for parametric PDEs, The SMAI journal of computational mathematics,497
7 (2021), pp. 121–157.498

[3] I. Bubuška and J. Osborn, Eigenvalue problems. Handbook of numerical analysis, Vol. II,499
North-Holland, Amsterdam, 1991.500

[4] X. Dai, Y. Fan, and Z. Sheng, Subspace method based on neural networks for eigenvalue501
problems, arXiv preprint arXiv:2410.13358, (2024).502

[5] H. Du, Z. Li, J. Liu, Y. Liu, and J. Sun, Divide-and-conquer DNN approach for the inverse503
point source problem using a few single frequency measurements, Inverse Problems, 39504
(2023), pp. Paper No. 115006, 19 pp.505

[6] M. Feit, J. Fleck Jr, and A. Steiger, Solution of the Schrödinger equation by a spectral506
method, Journal of Computational Physics, 47 (1982), pp. 412–433.507

[7] J. Han, J. Lu, and M. Zhou, Solving high-dimensional eigenvalue problems using deep neural508
networks: A diffusion Monte Carlo like approach, Journal of Computational Physics, 423509
(2020), p. 109792.510

[8] J. He, L. Li, and J. Xu, Approximation properties of deep ReLU CNNs, Research in the511
mathematical sciences, 9 (2022), p. 38.512

[9] X. Ji, Y. Jiao, X. Lu, P. Song, and F. Wang, Deep Ritz method for elliptical multiple513
eigenvalue problems, Journal of Scientific Computing, 98 (2024), p. 48.514

[10] M. A. Khabou, L. Hermi, and M. B. H. Rhouma, Shape recognition using eigenvalues of the515
Dirichlet Laplacian, Pattern recognition, 40 (2007), pp. 141–153.516

This manuscript is for review purposes only.

20 H, LI, J. SUN, AND Z. ZHANG

Fig. 13. Sample predictions of the 10th and 20th eigenfunctions. Top: the 10th eigenfunction.
Bottom: the 20th eigenfunction.

This manuscript is for review purposes only.

OPERATOR INFERENCE FOR ELLIPTIC EIGENVALUE PROBLEMS 21

[11] J. R. Kuttler and V. G. Sigillito, Eigenvalues of the Laplacian in two dimensions, Siam517
Review, 26 (1984), pp. 163–193.518

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to519
document recognition, Proceedings of the IEEE, 86 (1998), pp. 2278–2324.520

[13] H. Li and L. Ying, A semigroup method for high dimensional elliptic PDEs and eigen-521
value problems based on neural networks, Journal of Computational Physics, 453 (2022),522
p. 110939.523

[14] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and524
A. Anandkumar, Fourier neural operator for parametric partial differential equations,525
arXiv preprint arXiv:2010.08895, (2020).526

[15] L. Lu, P. Jin, and G. E. Karniadakis, DeepOnet: Learning nonlinear operators for identifying527
differential equations based on the universal approximation theorem of operators, arXiv528
preprint arXiv:1910.03193, (2019).529

[16] T. Nguyen, J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover, Climax: A foun-530
dation model for weather and climate, arXiv preprint arXiv:2301.10343, (2023).531

[17] N. Pallikarakis and A. Ntargaras, Application of machine learning regression models to532
inverse eigenvalue problems, Computers & Mathematics with Applications, 154 (2024),533
pp. 162–174.534

[18] J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani,535
T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, et al., Fourcastnet: A global data-driven536
high-resolution weather model using adaptive Fourier neural operators, arXiv preprint537
arXiv:2202.11214, (2022).538

[19] J. Sun and A. Zhou, Finite element methods for eigenvalue problems, Chapman and539
Hall/CRC, 2016.540

[20] B. T. Thodi, S. V. R. Ambadipudi, and S. E. Jabari, Fourier neural operator for learn-541
ing solutions to macroscopic traffic flow models: Application to the forward and inverse542
problems, Transportation research part C: emerging technologies, 160 (2024), p. 104500.543

[21] J. Viquerata and E. Hachema, A supervised neural network for drag prediction of arbitrary544
2D shapes in low reynolds number flows, arXiv preprint arXiv:1907.05090, (2019).545

[22] Y. Wang and H. Xie, Computing multi-eigenpairs of high-dimensional eigenvalue problems546
using tensor neural networks, Journal of Computational Physics, 506 (2024), p. 112928.547

[23] Z. Wang, J. Xin, and Z. Zhang, DeepParticle: learning invariant measure by a deep neural548
network minimizing wasserstein distance on data generated from an interacting particle549
method, Journal of Computational Physics, 464 (2022), p. 111309.550

This manuscript is for review purposes only.

	Introduction
	Model Setup and Data Generation
	Domain Generation
	Dataset Generation

	Methodology
	CNN for Eigenvalue Prediction
	FNO for Eigenfunction Prediction
	Network Training

	Numerical Experiments
	Eigenvalue Prediction
	Eigenfunction Prediction

	Conclusions
	References

