THE UNIVERSITY



**OF HONG KONG** 

# Institute of Mathematical Research Department of Mathematics

## **SPECIAL SESSION IN ALGEBRAIC GEOMETRY**

## November 29, 2002 (Friday)

## Room 517, Meng Wah Complex, HKU

3:10 – 4:10pm

**Professor Ngaiming Mok** HKU

*Automorphisms on moduli spaces of minimal rational curves on Fano manifolds* 

Tea Break

4:30 - 5:30pm

**Professor Sheng-Li Tan** East China Normal University, Shanghai & IMS, CUHK *Behaviour of multiple linear systems on an algebraic surface* 

All are welcome

### **SPECIAL SESSION IN ALGEBRAIC GEOMETRY**

#### November 29, 2002 (Friday)

### Room 517, Meng Wah Complex, HKU

ISTERNARI AN ANTARA MATERNARIA ANTARA ANT

#### Ngaiming Mok HKU

Automorphisms on moduli spaces of minimal rational curves on Fano manifolds

#### Abstract

We consider Fano manifold *X* of Picard number 1 and irreducible components *M* of the space of minimal rational curves. This includes in particular the case where *X* is a Fano hypersurface in  $\mathbb{P}^n$  of degree  $\leq n - 1$  and *M* is a space of projective lines lying on *X*. It is a natural problem to understand the extent to which the geometry of *X* is captured by the geometry of *M*. In this vein, in a joint work with Jun-Muk Hwang we raise the question as to whether the canonical map  $\operatorname{Aut}_o(X) \to \operatorname{Aut}_o(M)$  is an isomorphism. After providing examples showing that this may fail in general, we show that the map is indeed an isomorphism under the additional assumption that the subvariety of *M* consisiting of members passing through a general point  $x \in X$  is irreducible and of dimension at least 2.

**Sheng-Li Tan** East China Normal University, Shanghai & IMS, CUHK

Behaviour of multiple linear systems on an algebraic surface

#### Abstract

I will talk about the behaviour of the map  $\Phi_n$  defined by a linear system |nD| for large n, here D is an arbitrary divisor on an algebraic surface X. More precisely, we will give effective solutions to the following problems: An explicit computation of the dimension of |nD| for large n (Riemann-Roch problem). When is the linear system |nD| base point free, birationally very ample and k-very ample? When is the image of  $\Phi_n$  projectively normal? We will see that the behaviour of  $\Phi_n$  depends heavily on the curves  $C_i$  with  $DC_i = 0$ .