THE UNIVERSITY

OF HONG KONG

Institute of Mathematical Research Department of Mathematics

SPECIAL SESSION IN ALGEBRAIC GEOMETRY

December 13, 2002 (Friday)

Room 517, Meng Wah Complex, HKU

3:00 - 4:00pm

Xiaotao Sun HKU

Degeneration of moduli spaces of SL(n)-bundles on curves

Tea Break

.....

4:20 – 5:20pm

Fu Lei Nankai University and IMS, CUHK

l-adic Fourier Transformations and the Thom-Sebastiani Theorem

All are welcome

SPECIAL SESSION IN ALGEBRAIC GEOMETRY

December 13, 2002 (Friday)

Room 517, Meng Wah Complex, HKU

Xiaotao Sun HKU

Degeneration of moduli spaces of SL(n)-bundles on curves

Abstract

When a smooth curve *C* degenerates to a stable curve C_0 , the moduli space \mathcal{U}_C of semistable vector bundles on *C* will degenerate to the moduli space \mathcal{U}_{C_0} of semistable torsion free sheaves on C_0 . The moduli space $\mathcal{S}U_C(L)$ of semistable bundles with fixed determinant *L* is a subvariety of \mathcal{U}_C . A natural question is to understand the degeneration of $\mathcal{S}U_C(L)$ in \mathcal{U}_{C_0} . Namely, one expects a definition of SL(n)-torsion free sheaves on C_0 such that the moduli functor of semistable SL(n)torsion free sheaves is universally corepresented by a closed subscheme $\mathcal{S}U_{C_0}(L_0)$ of \mathcal{U}_{C_0} . The scheme $\mathcal{S}U_{C_0}(L_0)$ should satisfy at least the following conditions: (1) $\mathcal{S}U_{C_0}(L_0)$ should be the "limit" of $\mathcal{S}U_C(L)$ when *b* tends to 0 and *L* degenerates to L_0 , (2) when L_0 is a line bundle, $\mathcal{S}U_{C_0}(L_0)$ should be reduced and contain a dense open set of locally free sheaves. When C_0 is irreducible with only one node, D.S. Nagaraj and C.S. Seshadri defined $\mathcal{S}U_{C_0}(L_0)$ and conjectured (1) and (2). In this talk, we will give a proof of (2) and thus (1) when *L* degenerates to a line bundle.

Fu Lei Nankai University and IMS, CUHK

l-adic Fourier Transformations and the Thom-Sebastiani Theorem

Abstract

Let $f: \mathbb{C}^m \to \mathbb{C}$ and $g: \mathbb{C}^n \to \mathbb{C}$ be two holomorphic germs with isolated singularities at the origin and let $h = f \oplus g: \mathbb{C}^{m+n} \to \mathbb{C}$ be the germ defined by h(z, w) = f(z) + g(w). One can define the so called vanishing cycle cohomology groups *H* and monodromy operators *T* associated to these germs. A classical theorem of Thom and Sebastiani says that

$$(H,T)_h \cong (H,T)_f \otimes (H,T)_g.$$

In this talk, I will formulate a Thom-Sebastiani theorem in the characteristic p case and prove it using *l*-adic Fourier transformations and the stationary phase principle. It turns that result is not tensor product, but a convolution:

$$(H,T)_h \cong (H,T)_f * (H,T)_g.$$