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Abstract 

This is meant to be an introduction to introductions to deformation quantization. Physical 
theories have their domain of applicability. The “Flato deformation philosophy” states that in the 
passage from one domain to another attached mathematical structures are deformed in some category. 
For instance the Galilean geometrical symmetry group of Newtonian mechanics is deformed to the 
Poincaré group in the theory of relativity. We shall start with a quick survey of the Gerstenhaber 
(1964) theory of deformations and its origins, and of the advent of quantization in physics. We 
concentrate on deformations of the algebra of functions over a symplectic or Poisson manifold, 
indicate how we arrived to the idea that this can (in fact, should) express quantization, and sketch 
some developments in the past 35 years. In addition to its developments in physics the idea is seminal 
in a variety  of areas of mathematics, going from e.g. algebraic geometry to index theorems to number 
theory and representation theory. Quantum groups and noncommutative geometry can be 
considered as avatars. For some more details see first an extensive review of deformation 
quantization [2] from about 10 years ago, the “founding papers” [1], e.g. [3,4], and references therein. 
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