THE UNIVERSITY

OF HONG KONG

Institute of Mathematical Research Department of Mathematics

Numerical Analysis Seminar

Regularized Reduced Order Models (Reg-ROMs) for Turbulent Flows

Professor Traian Iliescu

Department of Mathematics, Virginia Tech, USA

Abstract

Over the past decade, several closure and stabilization strategies have been developed to tackle the ROM inaccuracy in the convection-dominated, under-resolved regime, i.e., when the number of degrees of freedom is too small to capture the complex underlying dynamics. In this talk, I will survey regularized reduced order models (Reg-ROMs), which are simple, modular stabilizations that employ ROM spatial filtering of various terms in the Navier-Stokes equations (NSE) to alleviate the spurious numerical oscillations generally produced by standard ROMs in the convection-dominated, underresolved regime. I will focus on two different types of Reg-ROM strategies: (i) the evolvefilter-relax ROM (EFR-ROM), which first filters an intermediate velocity approximation, and then relaxes it; and (ii) the Leray-ROM (L-ROM), which filters the convective term in the NSE. Throughout my talk, I will highlight the impact made by ROM spatial filtering on the Reg-ROM development. Specifically, I will talk about the two main types of ROM spatial filters: (i) the ROM differential filter; and (ii) the ROM projection. I will also propose two novel higher-order ROM differential filters. An important role played in ROM spatial filters and Reg-ROMs is the ROM lengthscale. In my talk, I will put forth a novel ROM lengthscale, which is constructed by leveraging energy balancing arguments. I emphasize that this novel energy-based lengthscale is fundamentally different from the standard ROM lengthscale introduced decades ago, which is based on simple dimensional arguments. Finally, I will illustrate the success achieved by ROM spatial filters and Reg-ROMs in under-resolved numerical simulations of the flow past a cylinder and turbulent channel flow.

Throughout my talk, I will discuss numerical analysis results proved for the Reg-ROMs that we proposed, including fundamental properties, e.g., stability, convergence, and parameter scalings. I will also present some of the challenges and open questions in the development of rigorous numerical analysis foundations for ROM closures and stabilizations. This talk should be accessible to a wide audience, including students and postdocs.

> Date: May 10, 2023 (Wednesday) Time: 9:00am - 10:00am Venue: ZOOM: <u>https://hku.zoom.us/j/</u> Meeting ID: 913 6532 3891 Password: 310656

> > All are welcome