THE UNIVERSITY

OF HONG KONG

Institute of Mathematical Research Department of Mathematics

Number Theory Seminar

Gap Principle of Divisibility Sequences of Polynomials

Professor Stephen K.K. Choi

Simon Fraser University, Vancouver, BC, Canada

Date: October 30, 2023 (Monday)

Time: 4:00 – 5:00pm

Venue: Room 210, Run Run Shaw Bldg., HKU

Abstract

Let $f \in \mathbb{Z}[x]$ and $\ell \in \mathbb{N}$. Consider the set of all $(a_0, a_1, \ldots, a_\ell) \in \mathbb{N}^{\ell+1}$ with $a_i < a_{i+1}$ and $f(a_i) \mid f(a_{i+1})$ for all $0 \le i \le \ell - 1$. We say that f satisfies the gap principle of order ℓ if $\lim a_\ell/a_0 = \infty$ as $a_0 \to \infty$ for any such $(a_0, a_1, \ldots, a_\ell)$. We also define the gap order of f(x) to be the smallest positive integer ℓ such that f(x) satisfies the gap principle of order ℓ . If such ℓ does not exist, we say that f(x) does not satisfy the gap principle. In this talk, we will discuss a conjecture by Chan, Choi and Lam that f(x) does not satisfy the gap principle if and only if f(x) is in the form of $f(x) = A(Bx + C)^n$ for some $A, B, C \in \mathbb{Z}$. Moreover, we completely determine the gap order of any polynomial that if f(x) is not in the form of $A(Bx + C)^n$, then f(x) has gap order 2 if f(x) is a quadratic polynomial or a power of a quadratic polynomial; and has gap order 1 otherwise. Related to the proof of above results, the multiplicative order of the fundamental solution of Pell's equation $X^2 - DY^2 = 1$ in $\mathbb{Z}[\sqrt{D}]/< D>$ will also be discussed. These are joint work with Tsz Ho Chan, Peter Cho-Ho Lam and Daniel Tarnu.